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A MIXED FINITE ELEMENT METHOD FOR THE 
NAVIER-STOKES EQUATIONS. 

Claes JOHNSON 

1 . 1ntroduct ion 
We shall consider the stationary Navier-Stokes equations for an 
incompressible fluid: 

(1.1a) u.vu - yAu + Vp = f in Q9 

(1.1b) div u = 0 infl, 
(1.1c) u = 0 on T, 

2 
where Q is a bounded domain in R with Lipschitz boundary T, 
f = ( f p ^ ' s a 9 ' v e n ^orce, u = ( u ^ u ^ is the velocity, p 
the pressure and y > 0 is the viscosity of the fluid. For simpli
city we shall consider the particular boundary condition (1.1c). 
However, the mixed finite element method to be introduced can be 
applied with no additional complications also in the case of other 
boundary conditions (cf. Remark 2 below). 

The classical variational characterization of the velocity u is 
o 

the following (see [6]): Find u € If* such that 

(1.2) b(u,u,v) + ya(u,v) = (f,v), v € V, 

where 
o 
V = { v € [H^(fi)] 2: div v = 0 in Q } , 
a(u'v) = I -3?. dx' 
b(u,w,v) = J u | p v dx, 

n 1 d x i J 

(v,w) = J v-w dx, 
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and H](Q) = {v € H'fn): V = 0 on r), where H ' {Q) I S the 
usual Sobolev space. Here and below we use the summation convention: 

2 2 

repeated indices inc^cate summation from 1 to 2 . If f€[L (£2) ] 
c 

then there exists EV satisfying ( 1 . 1 ) . Moreover if f is 
sufficiently small or v sufficiently large then u is uniquely 
determined (see [ 6 ] ) . 
In this note we shall consider a mixed finite element method for the 
stationary Navier-Stokes equations ( 1 . 1 ) where we seek an approxima-

o 
tion u^ of the velocity u in a space of functions v satis
fying the imcompressibi1ity condition div v = 0 exactly but where 

0 1 2 0 

the conformity condition V, c [H (Q)] is relaxed; if v€V, then h h 
the tangential velocity v-t may be discontinuous across an inter-
element boundary S, t being a tangent to S. The continuity of the 
tangential velocity u ^ # t will then be imposed in an approximate way 
by using a space of Lagrange multipliers having the interpreta
tion of stress deviatorics in mechanics. To construct the space 
we shall use the equilibrium stress element introduced in [4]. 

Methods of this type, with a different choice of the space H^, was 
first proposed by Fortin [ 3 l to handle the case of a very small 
viscosity corresponding to a very large Reynold's number. The proof 
of convergence of the method was left open. Further, Raviart and 
Girault [5] have proposed and analyzed a somewhat similar method 
using as Lagrange multiplier the vorticity. That method can in fact 
be viewed as a finite element method of Navier-Stokes equations 
in the vorticity - streamfunction formulation. 

An outline of the note is as follows: 
In Section 2 we introduce the mixed finite element method. In Section 
3 we prove existence of a finite element solution and finally in 
Section k we prove that the method will converge. The problem of 
estimating the rate of convergence is left open. 

We shall use the following notation: By H (E), where I is a 
2 

bounded domain in R , s^O, we will denote the usual Sobolev space 
with norm || · || ^. When Z = Q this index will be dropped. 

S , L 
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2 . The mixed finite element method 
Let us first recall the formulation of Navier-Stokes equations 
( 1 . 1 ) used in mechanics: Find the velocity u = ( u ^ u ^ ) , the 
pressure p and the stress deviatoric a = }> » >J = 1 » 2 , 
with a.. = a.. , such that U J i 

( 2 . 1 a ) a = ve(u) in ft, 
( 2 . 1 b ) div u = 0 in ft, 
( 2 . 1 c ) -u-Vu + div a - Vp + f = 0 in ft, 
(2 .Id) u = 0 on T, 

where v = 2y 

e ( u ) . | e , j ( u ) ) , E l J ( „ ) . ^ J | H , , 

J J 

if we eliminate a in ( 2 . 1 ) we obtain ( 1 . 1 ) . 

Remark 1 . 
We observe that by ( 2 . 1 a,b) one has 

( 2 .2 ) tr(a) = o]} + a 2 2 = 0. 

In continuum mechanics the (total) stress 

a = ( a . . , i j 
is decomposed according to 

/ \ 

a = a - p6 , 

where 

6 = { 6 . . ) , 6 . . = , i,j=l , 2 , 
J J 0 if i#j 

into a deviatoric part a satisfying ( 2 . 2 ) and a uniform pressure p. 
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Remark 2. 
In general one can have the following (homogenous) boundary conditions 
on different parts of the boundary: 

(i) u-n = 0 , u«t = 0 , 
(i i) u-n = 0 , a n t = 0 , 
(iii) a n n = 0 , u-t = 0 , 

nn 
(iv) 6" = 0 , a = 0 , 

nn nt 
where n = (n^n^) is a unit normal and t = (t^t^) = (n^j-n^) 
is a tangent to T, and a = a..n.n. and cr = a..n.t. are 3 nn I J i j nt I J i j 
the normal and tangential components of a, respectively. 

In order to motivate the formulation of the mixed method we shall 
first consider a variational formulation of the Stokes problem 
corresponding to (2.1): 

(2.3a) a = ve(u) in fi, 
(2.3b) div u = 0 in £2, 
(2.3c) div a - Vp + f = 0 in fi, 
(2.3d) u = 0 on r, 

obtained by omitting the non linear term u^Vu in (2.1). We 
shall seek p, u and a in the spaces Y, V and H defined by 

Y = L2(ft) , 

V = {vEY 2: div v€Y , v n = 0 on r} , 

H = { T G H : tr(i) = 0 in fl} , 

H E H(div; n) = · T : T = T . . , T . . = T . . £ Y , 
I iJ i j J · 

i,j=l,2 , div T € Y 2 . 

We also recall the following Green's formulas: 
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(2.k) (x,e(v)) = / v.T.n ds - (div x, v) , 
r 

( 2 . 5 ) (v,Vq) = J q v-n ds - (div v,q) , 
r 

2 m 
where (·,·) denotes the scalar product in [L (£2)] , m = l , 2 , 4 , 
so that in particular 

(a,x) = f a . , x.. dx . 

Further, 

x.n = ( T , J n j , T 2 jn.) , 

and n = (n^.n^) is an outward unit normal to T. If 
(u,a,p)GVxHxY satisfies ( 2 . 3 ) , then using (2 .4 ) and ( 2 . 5 ) we 
find that 

(2 .6a) (G,T) + v(u, div T ) = 0 , T C H , 
(2 .6b) (div u,q) = 0 , qGY, 
( 2 .6c ) (div a,v) + (p,div v) + (f,v) = 0 , v£V. 

We note that by introducing the space 

V = {vGV: div v = 0 in fi}, 

we obtain from (2 .6 ) the following variational characterization 
of u and o not involving the pressure p : Find 

0 
(u,a)€VxH, such that 

( 2 . 7 a ) j (a,x) + v(u,div T ) = 0 , x£H, 
(2 .7b) 1 (div a,v) + (f,v) = 0 , vGV. 

0 
Note also that the functions v in V or V do not have to 
satisfy the boundary condition v*t = 0. This condition is impli-
citely contained in ( 2 . 7 a ) ; if we formally integrate by parts and 
vary T in ( 2 .7a ) we obtain ( 2 . 3a ) and u*t = 0. 
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We shall now introduce finite dimensional spaces approximating 

the spaces V, Y and H. For simplicity we shall assume that 

ft is polygonal. Let {ß^} be a regular family of triangulations 

£ h of ft, 

ft = U K , 
K G S U 

n 

indexed by the parameter h representing the maximum of the diameters 

of the triangles K. We define 

V u = IvGV : v L is 1 inear on K, KG6, } , 
h K h 

Y h = {q€Y : q | K is constant on K, K G ^ } , 

H H = { T € H : T | k G H K , J tr(x)dx = 0, K G ^ } , 
K 

where for each K£# , H is a finite dimensional space defined 
n K 

as follows (see [ 4 ] ) : Let K be divided into three subtriangles 

T., ¡ = 1 , 2 , 3 , by connecting the center of gravity with the vertices 

of K and set 

H K = {xeH(div;K) : T | t is linear 1 = 1,2,3} . 
i 

In [k] it is proved that any T £ H is uniquely determined by the 
K 

following 15 degrees of freedom: 

(i) the value of T> n at two points on each side S of K, 

n being a normal to S, 

(i i) J T . dx , i ,j = l ,2 . 
K , J 

Note that the requirement H a H(d i v;K), i.e., d i v T £[L2(K)]2 

K 
if T ^ H

K , implies that 7· n is continuous across the subtriangle 

boundaries, i.e., if S is a side common to the subtriangles 

T. and T., then 
• J 

T I j * n = T I y ' n o n S , 
' j 
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where n is a normal to S. Likewise, the requirement H^c: H 
will require T « n to be continuous across interelement boundaries. 
As degrees of freedom for T £ H ^ one can choose 

(i 1) the value o T-n at two points on each side S of 
n being a normal to S, 

( u 1 ) / x, 1 dx = -/ T dx , J T ] 2 dx for \<£&h , 
K K K 

where the first relation in (ii 1) comes from the requirement 

J tr(T) dx = 0 , K6K , 
K h 

for T ^ H , . Note that if T € H then it is not true in general h h 
that tr(i) = 0 in and thus cf: H. Further, the inclusion 

c V will require the velocity in the normal direction v»n 
to be continuous across interelement boundaries. As degrees of 
freedom for V ^ V ^ we choose the value of v-n at two points 
on each side S of (2^. Note however that the tangential velocity 
v t may be discontinuous across the interelement boundary S, 
for V£V^> t being a tangent to S. 

We now formulate the following finite element method for the 
Stokes equations (2.6): Find (u^,a^,p^) £ V^xH^xy^ such that 

(2.8a) [ (a H,T) + v ( u h , d i v x ) = 0 , T £ H h ' 

(2.8b) (div u h,q) = 0 , q € Y h , 

(2.8c) [ (div a h,v) • (p h,div v) + (f ,v) = 0, v £ V h . 

In analogy with (2.7) introducing the space 

V h = {v£V h : (div v,q) = 0 , q E Y h } , 

we see that if (u,,a, ) E V.xH. satisfies (2.8), then o h h h h 
( V a h ) € V H h a n d 
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(2 .9a ) (a h,x) + v(u h,div x) « Q , x€H^ t 

o 
(2 .9b) j (div a h,v) + (f,v) « 0 , v€V h. 

Since div v is constant on each triangle K if V ^ V ^ , the 
relation (div v,q) = 0 for q € Y h will imply that div v - 0 in ft 
so that 

o o 
V h e V , 

i.e. we will work with approximations of the velocity satisfying 
the incompressibi1ity condition exactly/For simplicity, we shall 
below consider the formulation (2 .9 ) and its analogy for Navier-
Stokes equations. In practice we would have to work with the 
formulation (2 .8 ) since we do not know of any convenient basis 

o for V.. h 

Let us now extend the formulation (2 .9 ) to the case of Navier-
o 

Stokes equations. Since the functions in may be discontinuous 
we have to handle the nonlinear term u»Vu in a particular way; 
we shall use a method introduced by Fortin [3] producing an 
"upwind" dissipative scheme. This method is an extension of a 
method for linear hyperbolic equations using discontinuous 
functions introduced by Lesaint. For a given w e will for 

w 
each KG8^ distinguish between the part 3K_ of the boundary 
3K of K where the flow is entering, 

3K* = {x€3K : w-n(x) < 0 ) , 

and the part where the flow is sorting, 

3K* = {x£3K : w-n(x) > 0 } , 

n being an ourward normal to 3K. We note that if w€V. , then 
n 

w-n is continuous across interelement boundaries so that for two 
triangles K and K with the common side S, 
( 2 . 1 0 ) 3K^ n s = 3K^ n s . 
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We can now formulate the mixed method for the stationary Navier-
Stokes equations: Find ( u h > a h ) £ V h x H h such that 

( 2 . 1 1 a ) (a, , T ) + v(u, ,div x) = 0 , x€H, , h h h 
o 

( 2 . 1 1 b ) | - b * ( u H , J h , v ) + (div a h,v) + (f,v) = 0 , v E V ^ 

Here 

( 2 . 1 2 ) b*(w,w,v) = Z { - J w.w. Tpi dx + / w*n w.v. ds , 

K£g^ * K 1 J j 8K 1 1 J 
where 

i I W 

trace of w|^ on 3 K + , 
( 2 " , 3 ) " ' ^ = e , f , , „ w n w = trace of w|- on 9K fi S , J l\ — 
where K is a triangle with the side S in common with K, M K. 
To motivate the expression corresponding to the nonlinear term 
u*Vu, we note that by multiplying this term by v and integra
ting we obtain 

b ( j , u , v ) = Z J u . v. dx . 
K £ « u K 1 9 x1 -1 

h 
Using Green's formula on each K£{^ a n c' the fact that div u = 0, 

we see that 

3 v 
b(u,u,v) = Z - J u.u. TT-i dx + / u-n u.v. ds J 

K K 1 J j 8K J J 

Thus, the term b*(w,w,v) is obtained from b(w,w,v) by replacing 
w e the "interior trace" of w on 9K_ by the "exterior trace" w . 
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3. Existence of a finite element solution. 

In the proof of existence of a solution of ( 2 . 1 1 ) we shall refer 

to the following lemma which will also be used in the convergence 

proof. Here || · || denotes the norm in [L^(fi)] m, m = l , 2 , 4 . 

Lemma 1 . For 0 _< a < y there is a constant C independent 
z o 

of h such that if (w,x) e v

h

x H

h satisfies 

( 3 . 1 ) (x,T) + v(w,div T) = 0 , x € H h , 

then 

( 3 . 2 ) || w || o < C || x ¡1 . 
a 2 

Proof. The dual of = [H (0,)] can be characterized (see [ 1 ] ) 

as the closure of C°°(ft) in the norm 

a 

Thus, to prove ( 3 . 2 ) it is sufficient to prove that 

(3 -3 ) |(w,v)| < c || x || || v || _ a , v€C-(fl). 

To prove this inequality let for a given v£C°°(ft) , (cp,q) be 

the solution of the Stoke's problem 

(3 .4a) ( v div(e((p)) + Vq = v in Q, 

(3 .4b) div (p = 0 in Q9 

( 3 .4c ) I <p = 0 on 3S, 

where Q is a region with smooth boundary containing Q and v 

has been extended by zero outside Q. By well known regularity 

results for the Stoke's problem (see [6]) and interpolation it 

follows that 

( 3 -5 ) || e(<p)||. < C || v || 
" "1 - a v a 11 -a 
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Let us now introduce the interpolation operator FT, : H — H, 
1-a 4 1 defined for T £ [H (ft) ] , a < -r- , as follows: T7,T is the z n 

unique element in satisfying 

(3 .6 ) J v ( - TT T )· n ds = Q for v 1 inear 9 

S h 

for any side S of n being a normal to S, and 

( 3 . 7 ) / ( T - n , T ) dx = 0 , K £ g . 
K h h 

We note that if t r ( I ) = 0 then by ( 3 - 7 ) , we will have 

/ tr(n.T) dx = 0 , K£R 
K 

so that FF^T £ if T £ H . Further, by using a trace theorem 
on a reference element K and a linear mapping of K on to 
K i t follows that 

I I V n K ^ c I I T II i-ot.K · K G 8 h · 

By using the definition of the II · II , ~ norm via the K-method 
of interpolation it follows that we can sum in this relation to 
obta in 

l ! V II 1 c || T || ,_ A , x e H 1 " ^ ) . 

In particular, for the solution cp of the Stokes problem ( 3 . 4 ) , 

we have 

(3-9) || TThe(<p) || < c || e«P) || , _ a . 

Furthermore, using ( 3 . 6 ) , (3 -7 ) and Green's formula on each 
K£K , we see that h 

(v,div T) = (v,div n H X ) , v£V h . 
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Therefore, recalling (3-^a) and using the fact that w*n on T 
and div w = 0 in ft , we find that 

(w,v) = v(w,div e(cp)) + (Vp,w) 

= v(w,div n h e(tp)) = - (x,TThe(<p)) , 

where the last equality follows from ( 3 . 1 ) . Thus, by ( 3 - 5 ) and ( 3 - 9 ) , 
we have 

l< w , v ) | < || x || | | n h e ( c o ) | | < c a || x || || v ii _ a , 

which proves ( 3 - 3 ) . This completes the proof of the lemma. B 

We shall also use the following result. 

o 
Lemma 2 . If w ^ v ^ > then 

b*(w,w,w) = £ J | w * n | |[ w] | ds _> 0 , 
S S 

where we sum over all sides S of ^ , n is a unit normal to S , 
and [w] denotes the jump of w across S . 

Proof. By Green's formula we find using the fact that div w = 0 , 

f w.w. dx = - f (w.w.) w. dx + f w.w.w.n. ds 
K ' J 9 x j K j ' J ' 3K 1 J 1 J 

= - f -|^i w.w. dx + f w n I wI ^ ds , 
K 3 x j J 1 9K 

where n is an outward unit normal to 8K , so that 

E j w.w. ~^i dx = ]r Z J w-n |w|^ dx . 
K K 1 J j Z K dK 

Thus, recalling the definitions ( 2 . 1 2 ) and ( 2 . 1 3 ) , writing 
3 K ± = 3K^ , 
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b*(w,w,w) = Z J w.n(w-w - i |w| 2) ds 
K 3K 

= Z | J w*n(|w| 2 - ~|w|^)ds + J w-nw e-wds - ~- J w-n|w| 2 ds 
K 13K + 3K_ 3K_ 

= Z 4- J w*n|w| 2 - J w*nw-w 6 + y J w « n | w G | 2 ds 
K 1 3 K + 3 K + 3 K + 

= 4- S / w . n | w - w e | ^ d s , 
K 9K 

+ 
since by ( 2 . 1 0 ) and the fact that w-n on V , 

Z / w-nw e»wds = - Z / w«nw*w 6ds , 
K 3K K 9K 

+ 
Z / w n | w | 2 ds = -Z J w - n | w 6 | 2 ds . 
K 3K K 3K 

+ 

This clearly proves the lemma, since w-n _> 0 on 3 K + . • 

We can now prove : 
o 

Theorem 1 . There exists (u^,a^) £ x satisfying ( 2 . 1 1 ) . 
o 

Proof. For a given W ^ V ^ let x(w)£H^ be defined by the 
relat ion 

( 3 . 1 0 ) (x (w),T) = - v(w,div T ) , x € H h . 

By Lemma 1 with a = 0 , we then have 

( 3 . 1 1 ) || w || < C || X(w) || , w € V h . 

o o 
Next, we define the mapping : by the relation 

(P h w,v) = v[b*(w,w,v) - (div x(w),v) - (f,v)] , v€V h . 

o 
Since is finite dimensional, P^ is clearly continuous. By 
Lemma 2 and ( 3 . 1 0 ) with T = x(w) , we then have using also ( 3 - 1 1 ) 
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( P h w , w ) 2 - v ( d i v x ( w ) , w ) - v ( f , w ) = || x(w) || 2 - v ( f , w ) 

>. c|| w || 2 - v|| f || || w || > || w || Cc|| w || - v|| f ||) 

T h u s , 

( P h w , w ) > 0 , 

0 
if || w || is s u f f i c i e n t l y l a r g e , wE V ̂  . But t h e n it 
f o l l o w s by a c l a s s i c a l l e m m a (see e.g. [6]) that there exists 

o u . ev , such that P. u = 0 , i.e. h h n h 

-b*(u h,u h,v) + (div x(u h),v) + (f,v) = 0 , v€V h . 

0 
Thus, settinq a, = y(u L) we see that (u, ,a.) G V, x H, n n h h n h 
satisfies (2.11) and the desired result follows, • 



15 

Convergence. 
We shall prove the following result: 

Theorem 2. There exists a subsequence of |(u^,a^)} , h > 0 , 
again denoted by {(u^,o^)} , where (u^,a h) is the solution 
of (2.11), such that 

u u - u in Y 2 = [L 2(J7)] 2 , h 

k 
-> a weakly in Y , 

as h tends to zero, where u£tf satisfies (1.2) and a = ve(u) . 
If u is uniquely determined then the whole sequence 
{(u^,a^)} will converge. 

Proof. Let us first establish some a priori estimates for the 
finite element solution (u, ,a,) . Taking T = a, in (2.11a) 

h h h and v = u, in (2.11b) and subtractina we obtain h 

l||oh || 2
 + b * ( V V % ) = (f,u h) . 

so that using Lemmas 1 and 2, 

II %W2 1 v(f ,u h) <v|| f II II u h || i c || f || || o h || . 

Thus, 

( * . ! ) II % II £c || f || . 

and hence by Lemma 1 for some ot€(0,1/2) , 

(*-2> I I u
h l l a < c a l l f I I . 

By (**.l) and (4.2) it follows, since H (ft) is compactly inbedded 
in Y = L2(fl) for a > 0 , that there exists (u,o) 6 Y 2 x Y^ 
such that 
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(4 .3 ) u h + u in Y 2 , 

k 
(4.4) a h + o weakly in Y . 

Using the fact that div u h = 0 in ft and u h« n = 0 on T , 

it follows that 

( v q , u h ) = o , q eH l (n) , 

and thus by (4 .3 ) 

(Vq,u) = 0 , q€H'(fl) , 

which implies that (see [ 3 ] ) 

(4 .5 ) div u = 0 in ft , 
(4 .6) u-n = 0 on T . 

Furthermore, passing to the limit in ( 2 . 1 1 a ) and using the 
approximabi1ity properties of , we find that 

(O,T) + v(u,div T) = 0 , 

for all smooth x€H . Together with ( 4 .5 ) and (4 .6) this relation 
implies that 

(4 .7 ) o = ve(u) in ft , 
u = 0 on T . 

Thus, by Korn's inequality (see [ 2 ] ) , 

II v ||, < C || e(v) || , v G [H^fi)] 2 , 

it follows that u € [h](J])] 2 SO that finally u£T. 
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It remains to pass to the limit in the relation (2.11b), i.e., 
in the relation 

(4.8) -b*(u u,u, ,w) + (div a. ,w) + (f,w) = 0 w€V, . 
h n n n J 

where 

b*(v,v,w) = bj(v,v 9w) + b 2(v,v,w) , 

with 

b, (v,v,w) = - £ J v v. |^i dx , 
1 K K j 

b ?(v,v,w) = E J v.n v.w.ds . 

* h 0 

Let now vEV be a given smooth function. Then choosing v 
by requiring that 

J ( v n - V* 1- n) q ds = 0 , q linear , 
S 

for all sides S of , it follows that 

( M l II v - v h || L - ( s ) < C h 2 , 

<*···> « I ; - £ H I L - < n > i c h · 
J J 

Let us now first consider the term (div a ^ > w ) · By Green's 
formula (2.4) we have since v = 0 on T , 

(div a
h > v h ) = (div c h> v h - v) - ( a h , c(v)) , 

so that using (4.4), (4.9) and the inverse estimate 

II div a h || < C h"'|| a h || < C h " 1 , 

we have 
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(4.11) (div o h , v h ) + - (a,e(v)) . 

Next, by (4.3) and (4.10) we get 

(4.12) b j ( u h , u h , v h ) = b ] ( u h , u h , v ) + b ] (u h,u h,v h-v) - b ^ u ^ v ) . 

To handle the term b n(u, ,u, ,v) we first note that by (2.10), (2.13) 
z n n 

and the fact that v is continuous, we have 

b 2 ( u h , u h , v ) = 0 . 

Further, by using the inverse estimate 

II w I) L - . ( K ) < c h" 1 II w || 0 ) K 1 w e v h , K e ^ , 
we see that 

I b 2 ( V V v h - v ) | < z JT II u h II J - ( K ) II v h - v |j L - ( K ) ds 

< c E h " 2 II u h H ^ h 2 h < c h II u h II 2 , 
K 

and therefore 

(4.13) b 2 (u h,u h,v h) = b 2 ( u h , u h , v h - v) + 0 as h + 0 . 

Now, taking w = v*1 in (4.8) letting h tend to zero j we conclude 
using (4.1l)-(4.13) that 

-bjdi.u.v) - (a,e(v)) + (f,v) = 0 , 

c 
for all smooth v € ^ . But integrating by parts using the fact 
that div u = 0 , we have 

bj(u,u,v) = b(u,u,v) , 

and thus recalling (4.7), we find that 

b(u,u,v) + v(e(u),e(v)) = (f,v) , 
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for all smooth v€2f. Finally, it is easy to see that 

c 

2(e(u),e(v)) = a(u,v) , u,v e ^ , 

and hence 

b(u,u,v) + y a(u,v) = (f,v) , 
O c 

for all smooth v€Z^ and thus for all v € ^ by a density argument. 
o 

This shows that u&o satisfies ( 1 . 2 ) and the proof is complete. H 
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