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A MIXED FINITE ELEMENT METHOD FOR THE
NAVIER~-STOKES EQUATIONS.

Claes JOHNSON

1. Introduction

We shall consider the stationary Navier-Stokes equations for an

incompressible fluid:

(1.1a) u-7u - ubu + Vp = f in Q,
(1.1p) divu =20 inQ,
(1.1¢) u=20 on T,

where { is 2 bounded domain in R2 with Lipschitz boundary T,
f = (fl,fz) is a given force, u = (u],uz) is the velocity, p
the pressure and u > 0 is the viscosity of the fluid. For simpli-
city we shall consider the particular boundary condition (1.lc).
However, the mixed finite element method toc be introduced can be
applied with no additional complications alsoc in the case of other

boundary conditions (cf. Remark 2 below).

The classical variational characterization of the velocity u is

. o
the following (see [6]): Find u € ¥ such that

o

(1.2) b(u,u,v) + pa(u,v) = (f,v), v €Y,

where

(]

v - {v € [Hé(Q)]Z: divvs=20inQ} ,

alu,v) = | . Bx dx,
Q i i
ow.
b(u,w,v) = [ u. 3 Vi dx,
o o5



and H;(Q) = {v € H](Q): v =0 on F}, where H](Q) is the

usual Sobolev space. Here and below we use the summation convention:
repeated indices ind’cate summation from 1 to 2. If fE[LZ(Q)]2
then there exists ;Ejl satisfying (1.1). Moreover if f s
sufficiently small or v sufficiently large then u is uniquely

determined (see [6]).

In this note we shall consider a mixed finite element method for the
stationary Navier-Stokes equations (1.1) where we seek an approxima-

o
tion u_ of the velocity u in a space V, of functions v satis-

fying t:e imcompressibility condition div C = 0 exactly but where
the conformity condition Sh c [H](Q)]2 is relaxed; if VESh then
the tangential velocity v-t may be discontinuous across an inter-
element boundary S, t being a tangent to S. The continuity of the
tangential velocity uh-t will then be imposed in an approximate way

by using a space Hh of Lagrange multipliers having the interpreta-

tion of stress deviatorics in mechanics. To construct the space Hh

we shall use the equilibrium stress element introduced in [4].

Methods of this type, with a different choice of the space Hh’ was
first proposed by Fortin [3] to handle the case of a very small
viscosity corresponding to a very large Reynold's number. The proof
of convergence of the method was left open. Further, Raviart and
Girault [5] have proposed and analyzed a somewhat similar method
using as Lagrange multiplier the vorticity. That method can in fact
be viewed as a finite element method of Navier-Stokes equations

in the vorticity - streamfunction formulation.

An outline of the note is as follows:

In Section 2 we introduce the mixed finite element method. In Section
3 we prove existence of a finite element solution and finally in
Section 4 we prove that the method will converge. The problem of

estimating the rate of convergence is left open.

We shall use the following notation: By H°(I), where & is a

bounded domain in Rz, s»0, we will denote the usual Sobolev space

with norm I‘- L 7 When L =0 this index will be dropped.

b



The mixed finite element method

Let us first recall the formulation of Navier-Stokes equations
(1.1) used in mechanics: Find the velocity u = (UI’UZ)’ the

pressure p and ths stress deviatoric o = {cij }, i,j =1,2,

with Oij = Oji , Ssuch that

(2.1a) o = ve(u) in Q,
(2.1b) divu=0 in Q,
(2.1¢) -ueVu + divo - Vp + f =0 in Q,
(2.1d) u=20 on T,

where v = 2u

= _ 1V JQu. |, 3u
e(u) = {€|J(U)} ; iJ.(u)—zlaxj ﬁ-]l,
. _ a0, . 00+ . X
div o = ( B_X}J ’ 'BX-?J ) ’

if we eliminate o in (2.1) we obtain (1.1).

Remark 1.

We observe that by (2.1a,b) one has

(2.2) tr{o) = Oy * 0y = 0.

In continuum mechanics the (total) stress

a={8u}»

is decomposed according to

~

o-ps ,

I

where

1if =]
s= {8}, &= , i,j=1,2,
J J 0 if if]

into a deviatoric part ¢ satisfying (2.2) and a uniform pressure p.



Remark 2.
In general one can have the following (homogenous) boundary conditions

on different parts of the boundary:

(i) uen =0, ust =0 ,
(ii) u-n =20, On¢ = 0,
(iii) CI 0, u-t =0,
(iv) G = 0, Oo¢ = 0,

where n = (n],nz) is a unit normal and t f (t],tz) = (nz,-n])

is a tangent to I'y, and o _=o0..n.n. and o, = 0,.n,
nn ijoij nt ijij

the normal and tangential components of o, respectively.

In order to motivate the formulation of the mixed method we shatll
first consider a variational formulation of the Stokes problem

corresponding to (2.1):

(2.3a) o = ve(u) in Q,
(2.3b) divu=20 in Q,
(2.3¢) divo -Vp+ f=0 in Q,
(2.3d) u=20 on T,

obtained by omitting the non linear term wu-Vu in (2.1). We

shall seek p, u and o in the spaces Y, V and H defined by

Y=L2(Q) )
2 X
v ={vey’: divvey, vn=0onrT} ,
H = {TEQ: tr(t) =0 in Q} ,
H=H(div; @) ={7: 1= 1., , 1..=1. € |,
i ] ij ji

i,j=1,2 , div TEY2

We also recall the following Green's formulas:



(2.4) (t,e(v)) = [ voten ds - (div T, v) ,
T

(2.5) (v,vq) = [ g ven ds - (div v,q) ,
T
where (:,.) denotes the scalar product in [LZ(Q)]m, m=1,2,4,

so that in particular

(O,T) =S{ Oij Tij dx .

Further,

T-n = (

T,.0n, , T,.N.

1j7] 2j J) ’

and n = (n],nz) is an outward unit normal to T. |If
(u,0,p)€EVXHxY satisfies (2.3), then using (2.4) and (2.5) we
find that

(2.6a) (o,t) + v(u, div 1) =0 , TEH,
(2.6b) (div u,q) =0 , q€y,
(2.6c¢) (div o,v) + (p,div v) + (f,v) =0, vEV.

We note that by introducing the space
0
V = {vev: div v = 0 in 2},

we obtain from (2.6) the following variational characterization
of u and O not involving the pressure p : Find

0
(u,0)€VxH, such that

(2.7a) (0,7} + v(u,divT) =0 |, TEH,
(2.7b) (divo,w) + (Fv) =0 vev.

0
Note also that the functions v in V or V do not have to
satisfy the boundary condition v.t = 0. This condition is impli~-
citely contained in (2.7a); if we formally integrate by parts and

vary T in (2.7a) we obtain (2.3a) and wu-t = 0.



We shall now introduce finite dimensional spaces approximating
the spaces V, Y and H. For simplicity we shall assume that
¢ is polygonal. Let {gh} be a reqgular family of triangulations
gh of ,

indexed by the parameter h representing the maximum of the diameters

of the triangles K. We define

Vh = {vEV : v]K is linear on K, KEﬁh },

Yh = {qEY : qlK is constant on K, K€6h} ;

Ho = Lteh : ], € n, £ tr(t)dx = 0, Kkeg_ |,
where for each KE@h, HK is a finite dimensional space defined

as follows (see [4]): Let K be divided into three subtriangles
Ti’ i=1,2,3, by connecting the center of gravity with the vertices

of K and set

HK = {TEﬁ(div;K) : TIT is linear i=1,2,3}.
i

In [4] it is proved that any TEHK is uniquely determinad by the

following 15 degrees of freedom:

(i) the value of T'n at two points on each side S of K,

n being a normal to S,

(ii) JT..dx, i,j=1,2.
k '

Note that the requirement He © g(div;K), i.e., divrt €[L2(K)]2

if TEHK, implies that T+n is continuous arross the subtriangle

boundaries, i.e., if S is a side common to the subtriangles
Ti and Tj’ then

Tlpsn=rtlpsn ons,
i ]



~

where n is a normal to S. Likewise, the requirement HH: H
will require T-n to be continuous across interelement boundaries.

As degrees of freedom for TEHh one can choose

(i") the value o 7T-n at two points on each side S of Gh,

n being a normal to S,

. _ ,
(ii") £ L dx = & Ty dx , i Ty dx for KECh )

where the first relation in (ii') comes from the requirement

[ tr(t) dx = 0 , KE®
K h

for TEHh. Note that if TEHh then it is not true in general

that tr(t) =0 in® and thus Hy & H. Further, the inclusion
Vh SV will require the velocity in the normal direction ven
to be continuous across interelement boundaries. As degrees of

freedom for v€Vh we choose the value of v.n at two points

on each side S of Qh. Note however that the tangential velocity
vet may be discontinuous across the interelement boundary S,

for veEV t being a tangent to S.

h’

We now formulate the following finite element method for the

Stokes equations (2.6): Find (uh,Oh,ph) € thHthh such that

(2.8a) (Oh,T) + v(uh,div T) =0, TEHh,
(2.8b) (div u ,q) =0, q€Y,
(2.8¢) (div Oh,v) + (ph,div v) + (f,v) = 0, VEV, .

In analogy with (2.7) introducing the space
Vo= {V€V : (div v,q)= 0 qeY }
h h ’ b4 h ’

we see that if (uh,Oh) € V, xH satisfies (2.8), then

0 h 'h
( ) € V_xH_ and

Uhn h "k



(2.9a) (Uh,t) + v(uh,div 1) =‘0 , TEH, ,

(o]

(2.9b) (div oh,v) + (F,v) =0 , v€Vh.

Since div v is constant on each triangle K if V€Vh, the
relation (div v,q) = 0 for qeY, will imply that divv =20 inQ

h
so that

<o
n
<o

i.e. we will work with approximations of the velocity satisfying
the incompressibility condition exactly. For simplicity, we shall
below consider the formulation (2.9) and its analogy for Navier-
Stokes equations. In practice we would have to work with the
formuéation (2.8) since we do not know of any convenient basis
for Vh'
Let us now extend the formulation (2.9) to the case of Navier-
Stokes equations. Since the functions in 3h may be discontinuous
we have to handle the nonlinear term usVu in a particular way;

we shall use a method introduced by Fortin [3] producing an
"upwind'' dissipative scheme. This method is an extension of a
method for linear hyperbolic equations using discontinuous
functions introduced by Lesaint. For a given w€Vh we will for
.each KE%% distinguish between the part axﬁ of the boundary

9K of K where the flow is entering,
k" = {x€3K : wen(x) <o},
and the part where the flow is sorting,
oKy = {x€3k : wen(x) >0} ,

n being an ourward normal to 3K. We note that if  wEV then

h’
wen is continuous across interelement boundaries so that for two

triangles K and K with the common side S,

(2.10) 3kIns=93kns.



We can now formulate the mixed method for the stationary Navier-

o
Stokes equations: Find (uh,oh) €V, x H_ such that
(2.11a) (Oh,T) + v(uh,dlv ) =0, TEHh,
0
- * .\ -
(2.11b) b (uh,uh,v) + (div Oh,v) + (f,v) 0o , VEVh.
Here
(2.12) b¥(w,w,v) = I l-f W, %%i dx + [ wen Wivi ds’ ,
keg Uk ' °%; 3K
where
trace of w|, on aK"” ,
~ K +
(2.13) WIBK T oe w
w = trace of WIR on oK™ N S,

where K 1is a triangle with the side S in common with K, K + K.
To motivate the expression corresponding to the nonlinear term
u-Vu, we note that by multiplying this term by v and integra-
ting we obtain

b(a,u,v) = £ f u, u, . dx .

) Vv
kes, K ox7

Using Green's formula on each KE@k and the fact that div u =0,

we see that

[
b(u,u,v) = £ {-f u.u, gﬁi dx + [ u-n u.v, ds[
k Lk "4 9K 1

Thus, the term b*{w,w,v) is obtained from b(w,w,v) by replacing

X . w . . e
the "interior trace'" of w on 09K by the ''exterior trace' w .



3.

Existence of a finite element solution.

In the proof of existence of a solution of (2.11) we shall refer
to the following lemma which will also be used in the convergence

proof. Here |- || denotes the norm in [LZ(Q)]m, m=1,2,4.

Lemma 1. Ffor 0 <aqac< % there is a constant C independent

(-]
of h such that if (w,x) € V xH_ satisfies

h 'h
(3.1) (x,t) + viw,div T) =0, TEH, ,
then
G2 fwl <clx .

Proof. The dual of Ya = [Ha(Q)]2 can be characterized (see [1])

as the closure of C=(Q) in the norm

(u,v)
v ., = sup
o uEYa Y o

Thus, to prove (3.2) it is sufficient to prove that

(3.3) [wov)] <Cllx Bl vl I vec=(Q) .

To prove this inequality let for a given Vve€C®(Q), ©,q) be

the solution of the Stoke's problem

(3.4a) v civie(®)) + Vg = v in Q,
(3.4b) dive =0 in @,
(3.4c) @ =0 on 30,

where Q is a region with smooth boundary containing Q and v
has been extended by zero outside Q. By well known regularity

results for the Stoke's problem (see [6]) and interpolation it

follows that

(3.5) le@ll, o sy v,



Let us now introduce the interpolation operator ﬂh : H —°Hh

defined for 1 € [H]-G(Q)]u, a < % , as follows: nhr is the
unique element in Hh satisfying
(3.6) fve(--T T)nds =0 for v linear

s

S h

for any side S of gh’ n being a normal to S, and

(3.7) - (r-TT)dx =0 |, KEE .

We note that if tr(t) 0 then by (3.7), we will have

Jtr(m) dx =0 , KEE,
K
7o) fhat ﬂhT € Hh if TEH. Further, by using a trace theorem

~

on a reference element K and a linear mapping of K on to

K it follows that

KEE

I s liell oy .

K =

By using the definition of the - norm via the K-method

-l 1-a
of interpolation it follows that we can sum in this relation to

obtain

”r[hT ” <C ” T ” -0 ? TEH

In particular, for the solution ¢ of the Stokes problem (3.4),

we have
(3.9) | me@ || <cl @ I ,_, -

Furthermore, using (3.6), (3.7) and Green's formula on each

KEE , we see that

(v,div 1) = (v,div ﬂhT) , vEV



12

Therefore, recalling (3.4a) and using the fact that w.n on T

and divw=0 in§f , we find that -
(w,v) = v(w,div (o)) + (Vp,w)
= v(w,div m oelo)) = - (x,nhe(w)) ,

where the last equality follows from (3.1). Thus, by (3.5) and (3.9),

we have
Lo, | < fEx b lime@ h <c Ix b hv il s
which proves (3.3). This completes the proof of the lemma.
We shall also use the following result.
0
Lemma 2. If weV then

h ’

where we sum over all sides S of € , n is a unit normal to $ ,

and [w] denotes the jump of w across S .

Proof. By Green's formula we find using the fact that div w =0

o

[ owow, 2‘—M-i dx = - |
j K

b axJ (Wi“ﬁ) W, dx + [ w.,w.w.n. ds

j ok "4 1

Q2

X

==~ f %%i WiwW, dx + [ wen |w|2 ds ,
kK 9% 3K

where n is an outward unit normal to 9K , so that
. 1 2

J wow, =i dx = E-Z [ wen |w]© dx .

K j K 9K

Thus, recalling the definitions (2.12) and (2.13), writing
W
aKt =K, ,
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b*(w,w,w) = & [ wen(W-w - % |w|2) ds

K oK
=z { f w-n(|w|2 - %|w|2)ds + f wenw's wds - %— J w-n|w|2 dsl
Kk lak, 3K _ aK_
=z I%- | w.nlwlz - | werwew +-% f w-n|we|2 dsl
K aK oK aK
+ v + +
= % . wenlw - we|2 ds
K 9K

since by (2.10) and the fact that w-n on T

b

z J wenw's wds = - I f wenw-w'ds
K 9K_ KoK,

z w'n|w|2 ds = -z | w-n|we|2 ds .
K 9K_ K 8K+

This clearly proves the lemma, since w-n > 0 on 3K+ . B
We can now prove :

0
Theorem 1. There exists (uh,ch) €V, xH  satisfying (2.11).

)
Proof. For a given w€Vh let x(w)€EH_ be defined by the

h
relation
(3.10) (x{w),t) = = viw,div 1) , TEHh
By Lemma 1 with o = 0, we then have
| 0
(3.11) tw || <clxw Il . wev, .
0 0
Next, we define the mapping Ph : Vh > Vh by the relation
(Ph w,v) = v[b*(w,w,v) = (div x(w),v) - (f,v)1 , vey
0
Since Vh is finite dimensional, Ph is clearly continuous. By

Lemma 2 and (3.10) with T = x{w) , we then have using also (3.11)

o



(Pwsw) > =v(div x (w)ow) = v(fow) = || x(w) |12 = v(F,w)
2
>cllw B = vl e Il Hw b 2 Ihw [l Ceflw |- vl £ 1D
Thus,
. VC‘

if ||wll is sufficiently large, wEV, . But then it
follows by a classical lemma (see e.g. [6]) that there exists

0
uh€Vh such that Phuh =0 , i.e.

0

-b*(uh,uh,v) + (div x(uh),v) + (f,v) =0 , v€Vh

0
Thus, setting o = x(uh) we see that (uh,oh) €V, * Hy

satisfies (2.11) and the desired result follows. -



Convergence.

We shall prove the following result:

Theorem 2. There exists a subsequence of {(uh,oh)} , h>0,
again denoted by {(uh,oh)} , where (uh,oh) is the solution
of (2.11), such that

> g weakly in Yh ,

o
as h tends to zero, where u€l satisfies (1.2) and o = ve(u)
If u is uniquely determined then the whole sequence

{(uh,oh)} will converge.

Proof. Let us first establish some a priori estimates for the

) . Taking T =0 in (2.11a)

finite element solution ( h

Uh,Oh

and v = u_ in (2.11b) and subtracting we obtain

15

h
Do 112+ b%(uuu) = (Fu)
v h h’ h' h >ThY 2
so that using Lemmas | and 2,
oy 112 < w(fu) <ol £ 11 Bu I <cll el o, |l
h - R h - A L
Thus,
(4.1) o, I <clifll.

and hence by Lemma 1 for some 0a€(0,1/2) |,
(4.2) lug < Il

By (4.1) and (4.2) it follows, since Ha(Q) is compactly inbedded

in Y= LZ(Q) for a > 0, that there exists (u,0) € v2 x Yh

such that



(4.3) up, > u in Y,
. )

(4.4) o, >0 weakly in Y .
Using the fact that div u, = 0 inQ and U-n = 0 onT ,
it follows that

(Vg,u ) =0, qGH‘(Q) )
and thus by (4.3)

(Vgq,u) = 0, qEHI(Q) s

which implies that (see [3])

(4.5) divu=0 inQ,
(4.6) u-n =0 onT .

Furthermore, passing to the limit in (2.11a) and using the

approximability properties of H we find that

h°’

(o,7) + v(u,div 1) =0 ,

for all smooth TEH . Together with (4.5) and (4.6) this relation
implies that

(4.7) o

u=2_0 on I

ve (u) inQ ,

Thus, by Korn's inequality (see [2]),

Tvlly <clle I, vemi@?,

it follows that u € [Hl(Q)]2 so that finally u€’".



It remains to pass to the limit in the relation (2.11b), i.e.,

in the relation

(4.8) -b*(uh,uh,w) + (div Oh,w) + (f,w) =0 w€8h ,
where
b*(v,v,w) = b](v,v,w) + bz(v,v,w) ,
with
b](v,v,w) = - % I v ] %gi dx ,
K K

bz(v,v,w) =% [ ven Viw.ds )

<
Let now VvEV be a given smooth function. Then choosing th

by requiring that

[ (ven - vh-n) gds =0, q linear ,
S

for all sides S of gh , it follows that

h 2
(4.9) v - vl =) = ¢ >
h
oV, v, .
(k.10) laxi = 3 Iy 2 Ch -
J J
Let us now first consider the term (div Oh,w) . By Green's

formula (2.4) we have since v=0onT,
(div o vh) = (div o vh ~v) - (a,, e(v))
h’ h’ h! b
so that using (4.4), (4.9) and the inverse estimate

I divo_ || < crf'Ho

we have

0
\"

h



(4.11) (div o ,v") > - (0,e(v)) .

h*Y
Next, by (4.3) and (4.10) we get

h h
(4.12) b‘(uh,uh,v ) = b](uh,uh,v) + b‘(uh,uh,v -v) — b‘(u,u,v)

To handle the term bz(uh,uh,v) we first note that by (2.10), (2.13)

and the fact that v s continuous, we have
bz(uh,uh,v) =0 .
Further, by using the inverse estimate
-1
l|w|lU%K)§.Ch ||W|M’K,W6Vh, K€%1’

we see that

h 2 h :
l bZ(uh’uh’v 'V)l =< i 3{ ” Uy I L (K) v = v L2(K) ds
-2 2 .2 2
<oz n lyy lgih nsen o 17
and therefore
(hbl3) b, (u_,u vh) = b,(u,,u vh- v) » 0 h >0
: y 2 2% Y as :

Now, taking w = v oin (4.8) letting h tend to zero, we conclude
using (k.11)-(4.13) that

-b](u,u,v) - (o,e(v)) + (f,v) =0 ,

i <
for all smooth vEZ . But integrating by parts using the fact

that div'u =0, we have
b, (u,u,v) = blu,u,v)
and thus recalling (4.7), we find that

b(u,u,v) + v(e(u),e(v)) = (f,v) ,



0l

[2]

(3]

(4]

(5]

(6]

©
for all smooth VvE€EZ . Finally, it is easy to see that
C
2(e(u),e(v)) = a(u,v) , u,v €77,
and hence

b(u,u,v) + u alu,v) = (f,v) |,

. -4 <
for all smooth vEY and thus for all VvEJ by a density argument.
[-]
This shows that u€d satisfies (1.2) and the proof is complete. l
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