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1 
L°° - CONVERGENCE OF FINITE ELEMENT GALERKIN APPROXIMATIONS 

N 
be given- Here Q c R is a bounded domain with do sufficiently 

smooth. With the help of a finite-element-approximation-space 
o , x 

c H 1 the standard Galerkin approximation u^ = u^Ct) 5 

is defined by 

(u h,x) + D(u h ,x) = (f,x) for X € S h 

V ° > " Q h u o · 

Here (.,.) is the L 2(n)-scalar product. D(.,.) the Dirichlet 

integral and an appropriate projection. 

The aim of this paper is to derive L -estimates for the 
0 0 

error e = e^ = u-u^ · For the corresponding elliptic case 

this problem was solved by SCOTT, NITSCHE about three years 

ago. There is a certain feeling that the proofs for the parabolic 

case would (resp. should) be more or less a direct consequence. 

Besides the case of one space-dimension seemingly only 

B R A M B I Z - S C H A T Z - T H O M E E - V J A H I J B I N h?.ve attacked this problem. Their 

approach is to rewrite the Galerkin-equations in the form 

e + T h e = (I-Rh) u . 

ON GALERKIN PROBLEMS 

J.A. NITSCHE 

0 . Introduction J M Œ a s s s = = a 

Let the model problem 

û - Au = f in n x ( 0 , T ] 

u = 0 on an x ( 0 , T ] 

ut= 0 = u o l n n 
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Here to any f the clement U h - T hf = R h(-£
- 1f) is the 

Ritz-approxi.mation on -A - 1f defined by U h € S h and 

D(U h , x ) = ( f , x ) for X € S h . 

We may also write 

e = - A* Xe + (I-R h) A
_ 1 e + (I-Rh)u 

In this way L -estimates for e are reduced to L -estimates 

-1 · 

of the Ritz-method applied to u on the one hand and to A e 

on the other and L -estimates of A ~ l e . The last term is 
OO 

bounded in L if e belongs to L with p > n /2 . In this 
OO P 

way 
||e||L < c||e|| + ... 

OO P 

is shown. Repeating this argument an estimate of the type 

||e||L̂  s c||a£e|| + ... 

can be derived. This finally leads to an optimal order of 

convergence - with respect to the subspaces - , but depending 

on the dimension the norms of the solution u entering the 

right hand side are stringent. 

Independent of the space-dimension the validity 

of the estimates can be shown: 

W l J l J < . # { M + tf, ; + , |ü,| } . 
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The proofs are given in an article to appear in R.A.I.FUO., 
anal, numer. Here we discuss the case of N = 3 space dimensions 
in some detail. The general case is only sketched, 

1· Notations, Lg-Projection 

In the following we will use the standard notations of the 
theory of partial differential equations. In addition we will 
work with weighted norms resp. semi-norms introduced three years 
ago here in Rennes. 

For € 0 and o > 0 let o K 

M = l * > x 0 l 2 + p 2 · 

The weighted semi-norms are defined by 

The first result of the mentioned paper was related to the 
L2-projection: 

Theorem 1: The L2-projection onto a finite-element-space 
is bounded in the a-norm for any a € R : 

||P. ul| < c ||u|| 

Generalizing this result in the same way it can be shown. 

Theorem 2 : Let be a finite-element-space and 
be the L2-projection onto S h · Then 



4 

l | u - P h u | | a + h||v(u-P hu) |J a < inf "{||u-x||a + h||v(u-x)||J . 
X € S h 

This theorem guarantees the simultaneous approximation property 
of the L2-projection with respect to the Lg- and Hj-norm. 

2 , A priori Estimates in Weighted Norms 

We will use the identity 

D(u,n-°u) = | |TU | |2 + Jj u,u vvT* = llvull̂  - § J J u 2 * f a . 

Now by direct differentiations we have 

*uf a = - 2 a ^ a " 2 ( N p 2 + (N - 2 a - 2 ) r 2 · 

For 0 < a < N / 2 - 1 therefore £n~ a is negative and 

n a + 1 | A i " a l 

is bounded and bounded away from zero: 

o 
Lemma 1; Let 0 < a < N / 2 - 1 . Then for any u € 

l | u i la+l + l | v u | la * ° D ( u ^ _ a u ) · 

The case a = N / 2 - 1 is of special interest. Then 

&lfa = - N(N-2) p 2
 M " a " 2 . 

. 4 

Lemma 2 : Let a = N / 2 - 1 . Then for any u € 
0 
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For finite elements the L^-norm is bounded by the weighted 
norms if x Q and p are chosen properly. Especially we 
have for 0 = Y h with y fixed: Let cp 6 and 
a = N / 2 - 1 · Then 

||<P!|l <; sup P IklL.p 
0 0 x o € n 

3» Error estimates for the Galerkin Method in Case of N = 3 

Space Dimensions. 

The defining relation of the error e » u ~ u h *P 

(e,x) + D(e,x) = 0 for X 6 S h . 

Now we introduce the Ritz-approximation u ^ = R h u a n d u s e 

the splitting 

e ^ (u-U h) - (u h-U h) 

= e - i 

with $ € S w · Further we assume the initial condition n 

V ° > " Rh u o * 

Therefore we have 

$(0) = 0 

The defining relation for • is 

(*,X) + D(*,X) = (i.X) for X € S h . 

i 



6 

/ 

Using the estimates of Section 2 we get for a = N /2 - 1 = 1 /2 

and 

D(*,|i"a*) = D($,u~a*-X) - ( e - $ , | a ~ a S - X ) + (ê-4,M"af) · 

If we choose X = Ph(ji""
a$) the L2~projection then the middle 

term vanishes mostly. By pure approximation arguments we get 
Lemma 

inf D(*, M-
a*-X) < c (£) 2 {P 2 IUII ;U

 + IMI2} · 
X€S h 

For p = y h with a proper y this gives 

p 
' The left hand side is a bound of II$IIL if x Q is chosen 

CO 

properly. The right hand side can be estimated by 

< « - * , » r a # > * MLvt JJV- ar«-#i s II«IILo8 l | i - * l l { J K 2 a } 1 / 2 

In" the case of N =? 3 we have 2a = 1 and the last integral 

is bounded. This gives because of e = e-$ 

Theorem 3: Let N = j5 · Then for any fixed time * t 

M I ) - s o { | . i I t a + i ; i 4 . n ê | i g . · 
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The Lg-error estimates 

are well-known. We apply this with e replaced by e and 
e replaced by c · In this way we come to 

Theorem 4: Let N = 3 . Then 

For u sufficiently regular this leads to optimal error 
estimates of the Galerkin approximation. 

4» Two Types of Error Estimates in Arbitrary Dimensions. 

Using the splitting e = e - $ of above we ^et for 
arbitrary N of space dimensions with a = N /2 - 1 similar 
.to above with X = P h(n~ a$) 

( « . # ) a + + k p 2 H < + 2 = 

= D ( f , M _ a $ - X ) - ( e , p " a $ - X ) + ( e , $ K . 
a 

By approximation arguments we come to 

<».·>„* o { « < + 

if yh with y properly chosen. This leads to the 
interesting a priori inequality 

t 
1 1 * 0 0 II* S l l * ( 0 ) | £ + c J \\t(r)fa dr . 

0 
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A first -but non-optimal - L^-result is the consequence. 
If x Q is chosen properly then ll*ll a

 i s a bound of 
h||*||L . Therefore we get 

o o 

The a-norm is bounded by the L-norm for p > N · Therefore 
we have 

Theorem 5 : Let N > 3 be arbitrary and p > N · Then 

M L (L ) * N I L (L ) + c h ~Velk ( l J 

Similarily we can get 
t 

ll*(t)||2 < | |*(0) | |2 + c J | | V ( t ) | | 2 d T . 
0 

For $(0) = 0 we find 

n * ( o ) i i a * c | i ; c o ) i i a 

and in this way 

T 
sup ||#(t)||a < sup H i ( t ) | | a + c { J d r } 1 / 2 . 

0 

The link to L -estimates of $ and therefore of e is 
o o 
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Theorem 6: Let N > 3 and a = N /2 - 1 · Por Q * yh 
with * y chosen properly 

H*!la+2 + H * » H a + l * c 0 _ 1 " ^ " a * 

The proof of this theorem is quite lengthy, the lines of it 
still being the same as in the paper three years ago. 

Since now a + 2 = N /2 + 1 for x Q € Q appropriate 
and p = yh we get 

1 1 . 1 1 ^ * o p n * n o + 2 . 

This finally gives the error estimate stated at the end of 
the introduction. 

In the mentioned paper to appear in R.A.I.R.O. a detailed 
bibliography is given. We suppress this here. 


