J.A. NITSCHE

Convergence of Finite Element Galerkin Approximations on Galerkin Problems

Publications des séminaires de mathématiques et informatique de Rennes, 1978, fascicule S4 « Journées éléments finis », , p. 1-9

http://www.numdam.org/item?id=PSMIR_1978___S4_A8_0

© Département de mathématiques et informatique, université de Rennes, 1978, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ON GALERKIN PROBLEMS

0. Introduction

Let the model problem

 $\dot{u} - \Delta u = f \qquad \text{in } \Omega \times (0,T] ,$ $u = 0 \qquad \text{on } \partial \Omega \times (0,T] ,$ $u_{t=0} = u_0 \qquad \text{in } \Omega$

be given. Here $\Omega \subseteq \mathbb{R}^N$ is a bounded domain with $\partial \Omega$ sufficiently smooth. With the help of a finite-element-approximation-space $S_h \subseteq \overset{O}{H}_1$ the standard Galerkin approximation $u_h = u_h(t) \in S_h$ is defined by

$$(\dot{u}_h, \chi) + D(u_h, \chi) = (f, \chi)$$
 for $\chi \in S_h$
 $u_h(0) = Q_h u_0$.

Here (.,.) is the $L_2(\Omega)$ -scalar product, D(.,.) the Dirichlet integral and Q_h an appropriate projection.

The aim of this paper is to derive L_{∞} -estimates for the error $e = e_h = u - u_h$. For the corresponding elliptic case this problem was solved by SCOTT, NITSCHE about three years ago. There is a certain feeling that the proofs for the parabolic case would (resp. should) be more or less a direct consequence.

Besides the case of one space-dimension seemingly only BRAMBLE-SCHATZ-THOMEE-WAHLBIN have attacked this problem. Their approach is to rewrite the Galerkin-equations in the form

$$e + T_h \dot{e} = (I-R_h) u$$

J.A. NITSCHE

Here to any f the element $U_h = T_h f = R_h (-\Delta^{-1} f)$ is the Ritz-approximation on $-\Delta^{-1} f$ defined by $U_h \in S_h$ and

$$D(U_h, \chi) = (f, \chi)$$
 for $\chi \in S_h$

We may also write

$$e = -\Delta^{-1}\dot{e} + (I-R_h) \Lambda^{-1}\dot{e} + (I-R_h)u$$
.

In this way L_{∞} -estimates for e are reduced to L_{∞} -estimates of the Ritz-method applied to u on the one hand and to $\Delta^{-1}\dot{e}$ on the other and L_{∞} -estimates of $\Delta^{-1}\dot{e}$. The last term is bounded in L_{∞} if \dot{e} belongs to L_{p} with p > n/2. In this way

$$\|\mathbf{e}\|_{\mathbf{L}_{\infty}} \leq \mathbf{c} \|\dot{\mathbf{e}}\|_{\mathbf{L}_{p}} + \dots$$

is shown. Repeating this argument an estimate of the type

$$\|\mathbf{e}\|_{\mathbf{L}_{\infty}} \leq \mathbf{e} \|\mathbf{d}_{\mathbf{t}}^{\mathbf{v}}\mathbf{e}\|_{\mathbf{L}_{2}} + \cdots$$

can be derived. This finally leads to an optimal order of convergence - with respect to the subspaces - , but depending on the dimension the norms of the solution u entering the right hand side are stringent.

Independent of the space-dimension the validity of the estimates can be shown:

$$\|\mathbf{e}\|_{\mathbf{L}_{\infty}(\mathbf{L}_{\infty})} \leq \mathbf{c} \, \mathbf{h}^{\mathsf{m}} \left\{ \|\mathbf{u}\|_{\mathbf{L}_{\infty}(\mathsf{W}_{\infty}^{\mathsf{m}})} + \|\mathbf{\dot{u}}\|_{\mathbf{L}_{\infty}(\mathsf{W}_{\infty}^{\mathsf{m}})} + \|\mathbf{\ddot{u}}\|_{\mathbf{L}_{2}(\mathsf{W}_{\infty}^{\mathsf{m}})} \right\}$$

The proofs are given in an article to appear in R.A.I.R.O., anal. numer. Here we discuss the case of N = 3 space dimensions in some detail. The general case is only sketched.

1. Notations, L2-Projection

In the following we will use the standard notations of the theory of partial differential equations. In addition we will work with weighted norms resp. semi-norms introduced three years ago here in Rennes.

For $x_0 \in \Omega$ and p > 0 let

$$\mu = |\mathbf{x} - \mathbf{x}_0|^2 + \rho^2 .$$

The weighted semi-norms are defined by

$$\|\nabla^{\mathbf{k}} u\|_{\alpha}^{2} = \sum_{\|\mathbf{s}\| = \nu} \iint \mu^{-\alpha} \|\mathbf{D}^{\mathbf{s}} u\|^{2} d\mathbf{x}$$

The first result of the mentioned paper was related to the L_2 -projection:

<u>Theorem 1:</u> The L₂-projection onto a finite-element-space is bounded in the α -norm for any $\alpha \in \mathbb{R}$:

$$\|P_{h}u\|_{\alpha} \leq c_{\alpha}\|u\|_{\alpha}$$

Generalizing this result in the same way it can be shown.

<u>Theorem 2:</u> Let S_h be a finite-element-space and P_h be the L₂-projection onto S_h . Then

$$\|u-P_{h}u\|_{\alpha} + h\|\nabla(u-P_{h}u)\|_{\alpha} \leq \inf_{X \in S_{h}} \left\{ \|u-X\|_{\alpha} + h\|\nabla(u-X)\|_{\alpha} \right\}.$$

This theorem guarantees the simultaneous approximation property of the L_2 -projection with respect to the L_2 - and H_1 -norm.

2. A priori Estimates in Weighted Norms

We will use the identity

$$D(u,\mu^{-\alpha}u) = \|\nabla u\|_{\alpha}^{2} + \iint u\pi u \nabla \mu^{-\alpha} = \|\nabla u\|_{\alpha}^{2} - \frac{1}{2} \iint u^{2} \Delta \mu^{-\alpha}$$

Now by direct differentiations we have

$$\Delta \mu^{-\alpha} = -2\alpha \mu^{-\alpha-2} (N_{\rho}^{2} + (N_{-2\alpha-2}) r^{2})$$

For $0 < \alpha < N/2 - 1$ therefore $\Delta \mu^{-\alpha}$ is negative and

$$\mu^{\alpha+1} | \Delta \mu^{-\alpha} |$$

is bounded and bounded away from zero:

Lemma 1: Let
$$0 < \alpha < N/2 - 1$$
. Then for any $u \in H_1$
 $\|u\|_{\alpha+1}^2 + \|\nabla u\|_{\alpha}^2 \le c D(u,\mu^{-\alpha}u)$.

The case $\alpha = N/2 - 1$ is of special interest. Then

$$\Delta \mu^{-\alpha} = - N(N-2) \rho^2 \mu^{-\alpha-2}$$

Lemma 2: Let $\alpha = N/2 - 1$. Then for any $u \in H_1$

$$\mathfrak{c} \mathfrak{p}^2 \| u \|_{\alpha+2}^2 + \| \nabla u \|_{\alpha}^2 \leq D(u, \mu^{-\alpha} u)$$

For finite elements the L_{∞} -norm is bounded by the weighted norms if x_0 and ρ are chosen properly. Especially we have for $\rho = \gamma h$ with γ fixed: Let $\phi \in S_h$ and $\alpha = N/2 - 1$. Then

$$\|\phi\|_{L_{\infty}} \leq \sup_{x_{\alpha} \in \Omega} \rho \|\phi\|_{\alpha+2}$$

3. Error Estimates for the Galerkin Method in Case of N = 3Space Dimensions.

The defining relation of the error $e = u - u_h$ is

$$(\dot{\mathbf{e}}, \chi) + D(\mathbf{e}, \chi) = 0$$
 for $\chi \in S_{h}$

Now we introduce the Ritz-approximation $U_h = R_h u$ and use the splitting

$$e = (u - U_h) - (u_h - U_h)$$
$$= \varepsilon - \phi$$

with ${\bf \Phi} \in {\bf S}_h$. Further we assume the initial condition ${\bf H}_k$

$$u_{h}(0) = R_{h} u_{0}$$

Therefore we have

$$\Phi(0) = 0$$

The defining relation for 🕴 is

$$(\dot{\phi}, \chi) + D(\dot{\phi}, \chi) = (\dot{\epsilon}, \chi)$$
 for $\chi \in S_h$

Using the estimates of Section 2 we get for $\alpha = N/2 - 1 = 1/2$

$$\mathbf{c}^{-1}\left\{\mathbf{p}^{2} \| \mathbf{\Phi} \|_{\mathbf{a}+2}^{2} + \| \nabla \mathbf{\Phi} \|_{\mathbf{a}}^{2}\right\} \leq \mathbf{D}(\mathbf{\Phi}, \mathbf{\mu}^{-\alpha} \mathbf{\Phi})$$

and

$$D(\Phi,\mu^{-\alpha}\Phi) = D(\Phi,\mu^{-\alpha}\Phi-\chi) - (\epsilon - \Phi,\mu^{-\alpha}\Phi-\chi) + (\epsilon - \Phi,\mu^{-\alpha}\Phi)$$

If we choose $\chi = P_h(\mu^{-\alpha} \Phi)$ the L₂-projection then the middle term vanishes mostly. By pure approximation arguments we get

Lemma

$$\inf_{\substack{X \in S_{h}}} D(\Phi, \mu^{-\alpha} \Phi - X) \leq c \left(\frac{h}{\rho}\right)^{2} \left\{ \rho^{2} \|\Phi\|_{\alpha+2}^{2} + \|\nabla \Phi\|_{\alpha}^{2} \right\}$$

For $\rho = \gamma$ h with a proper γ this gives

$$\rho^{2} \| \phi \|_{\alpha+2}^{2} + \| \nabla \phi \|_{\alpha}^{2} \leq c \left(\epsilon - \phi, \mu^{-\alpha} \phi \right)$$

The left hand side is a bound of $\|\Phi\|_{L_{\infty}}^2$ if x_0 is chosen properly. The right hand side can be estimated by

$$(\dot{\mathfrak{e}}-\dot{\Phi},\mu^{-\alpha}\Phi) \leq \|\Phi\|_{L_{\infty}} \iint \mu^{-\alpha} |\dot{\mathfrak{e}}-\dot{\Phi}| \leq \|\Phi\|_{L_{\infty}} \|\dot{\mathfrak{e}}-\dot{\Phi}\| \left\{ \iint \mu^{-2\alpha} \right\}^{1/2}$$

In the case of N = 3 we have $2\alpha = 1$ and the last integral is bounded. This gives because of $e = \epsilon - \phi$

<u>Theorem 3:</u> Let N = 3. Then for any fixed time 't

$$\left\|\mathbf{e}\right\|_{\mathbf{L}_{\infty}} \leq \mathbf{c}\left\{\left\|\mathbf{\epsilon}\right\|_{\mathbf{L}_{\infty}} + \left\|\mathbf{\dot{\epsilon}}\right\|_{\mathbf{L}_{2}} + \left\|\mathbf{\dot{e}}\right\|_{\mathbf{L}_{2}}\right\}$$

The L_p-error estimates

$$\|\mathbf{e}\|_{\mathbf{L}_{\infty}(\mathbf{L}_{2})} \leq \|\mathbf{\epsilon}\|_{\mathbf{L}_{\infty}(\mathbf{L}_{2})} + \mathbf{c}\|\mathbf{\dot{\epsilon}}\|_{\mathbf{L}_{2}(\mathbf{L}_{2})}$$

are well-known. We apply this with e replaced by e and e replaced by e. In this way we come to

Theorem 4: Let N = 3. Then

$$\|\mathbf{e}\|_{\mathbf{L}_{\infty}(\mathbf{L}_{\infty})} \leq c \left\{ \|\mathbf{\epsilon}\|_{\mathbf{L}_{\infty}(\mathbf{L}_{\infty})} + \|\mathbf{\dot{\epsilon}}\|_{\mathbf{L}_{\infty}(\mathbf{L}_{2})} + \|\mathbf{\dot{\epsilon}}\|_{\mathbf{L}_{2}(\mathbf{L}_{2})} \right\}$$

For u sufficiently regular this leads to optimal error estimates of the Galerkin approximation.

4. Two Types of Error Estimates in Arbitrary Dimensions.

Using the splitting $e = \varepsilon - \Phi$ of above we get for arbitrary N of space dimensions with $\alpha = N/2 - 1$ similar to above with $\chi = P_h(\mu^{-\alpha}\Phi)$

$$(\dot{\phi}, \Phi)_{\alpha} + \|\nabla \Phi\|_{\alpha}^{2} + k\rho^{2} \|\Phi\|_{\alpha+2}^{2} =$$

$$= D(\phi, \mu^{-\alpha} \Phi - X) - (\dot{\epsilon}, \mu^{-\alpha} \Phi - X) + (\dot{\epsilon}, \Phi)_{\alpha} .$$

By approximation arguments we come to

$$(\bar{\bullet}, \bar{\bullet})_{\alpha} \leq c \left\{ \left\| \Phi \right\|_{\alpha}^{2} + \left\| i \right\|_{\alpha}^{2} \right\}$$

if $\rho \ge \gamma h$ with γ properly chosen. This leads to the interesting a priori inequality

$$\| \phi(t) \|_{\alpha}^{2} \leq \| \phi(0) \|_{\alpha}^{2} + c \int_{0}^{t} \| \dot{\epsilon}(\tau) \|_{\alpha}^{2} d\tau .$$

A first - but non-optimal - L_{∞} -result is the consequence. If x_0 is chosen properly then $\|\phi\|_{\alpha}$ is a bound of $\|\|\phi\|_{L_{\infty}}$. Therefore we get

$$\| \bullet \|_{L_{\infty}(L_{\infty})}^{2} \leq c h^{-2} \| \bullet \|_{L_{2}(\alpha)}^{2} = c h^{-2} \int_{0}^{T} \| \bullet \|_{\alpha}^{2} d\tau$$

The α -norm is bounded by the L -norm for p > N. Therefore we have

Theorem 5: Let $N \ge 3$ be arbitrary and $p \ge N$. Then

$$\|e\|_{L_{\infty}(L_{\infty})} \leq \|\epsilon\|_{L_{\infty}(L_{\infty})} + c h^{-1} \|\epsilon\|_{L_{2}(L_{p})}$$

Similarily we can get

$$\|\dot{\epsilon}(t)\|_{\alpha}^{2} \leq \|\dot{\epsilon}(0)\|_{\alpha}^{2} + c \int_{0}^{t} \|\dot{\epsilon}(\tau)\|_{\alpha}^{2} d\tau .$$

For $\phi(0) = 0$ we find

$$\| \Phi(0) \|_{\alpha} \le c \| \varepsilon(0) \|_{\alpha}$$

and in this way

$$\sup \left\|\dot{\phi}(t)\right\|_{\alpha} \leq \sup \left\|\dot{\epsilon}(t)\right\|_{\alpha} + c \left\{ \int_{0}^{T} \left\|\ddot{\epsilon}\right\|_{\alpha}^{2} d\tau \right\}^{1/2}$$

The link to L_{∞} -estimates of Φ and therefore of e is

Theorem 6: Let N > 3 and $\alpha = N/2 - 1$. For $\rho \ge \gamma h$ with γ chosen properly

$$\|\Phi\|_{\alpha+2} + \|\nabla\Phi\|_{\alpha+1} \le c \quad o^{-1} \quad \|\hat{\epsilon} - \Phi\|_{\alpha}$$

The proof of this theorem is quite lengthy, the lines of it still being the same as in the paper three years ago.

Since now $\alpha + 2 = N/2 + 1$ for $x_0 \in \Omega$ appropriate and $\rho = \gamma h$ we get

$$\left\| \mathbf{\bullet} \right\|_{\mathbf{L}_{co}} \leq \mathbf{c} \mathbf{\rho} \left\| \mathbf{\bullet} \right\|_{\alpha+2}$$

This finally gives the error estimate stated at the end of the introduction.

In the mentioned paper to appear in R.A.I.R.O. a detailed bibliography is given. We suppress this here.