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ON UÍTEGRATION WITH RESPECT TO MEASURES WITH VALUES IN 

ARBITRARY TOPOLOGICAL VECTOR SPACES 

D. BUTKOVIC, ZAGREB 

Abstract. Completions of measures with values in arbitrary topological vector 

spaces are discussed and applied to the integral of Ph»Turpin. By the completion 

of 2 . Lipecki, integrability is reduced to integrability with respect to measures 

with values in metric vector spaces. Using this result we are able to compare 

integration theories for Borel and Radon measures, extending analogous results 

obtained by the author in the locally convex case. 

This note concernes integration with respect to measures m with values in 

topological vector spaces X which are not necessarily locally convete. A Le\poegue-

-type integration theory in such a gegeral setting is developed by PĴ TjjrjJin [4^. 

The natural framework for this theory is given by classes of functions which are 

measurable with respect to complete measures. On the other hand-, considering X as 

a projective limit of metric vector spaces, from every m we ofctain a family (mj^jL€l 

of metric space valued measures. Now, it turns out that integrability with respect 

to the Lebesgue completion m of m is not equivalent to integrability with respect 

to m^ of measures m^. We find that in order to obtain an equivalence-theorem it 

suffice to apply a Lebesgue-type completion which exists for every additive X-valued 

set function; in case of measures this completion m coincides with the completion 

introduced by Z. Lipecki [ 2 ] . In Section 1 various types of extensions and of x^easu-

rability are studied. In Section 2 we prove that a function is integrable with 

respect to m* if and only if it is i/vtegrable with respect to m^ for e v e i y i € l . In 

particular, for locally compact spaces this implies that the integration theory of 

regular ML°°-bounded" Borel measures completed in such a way is equivalent to the E-

Thomas integration theory of "globally extendible" Radon measures £$]. 

AMS(MOS) subject classifications (1970): 28A45, 46G10. 
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1. Completions and measurability. Everywhere in the sequel X denotes a Hausdorff 

topological vector space i.e. a vector space endowed with a Hausdorff topology which 

makes continuous the operations (x,y) x-fy (Xxx X) and (r,x) rx (IR(or C)xx -> X) . 

The topology of X is always determined by a family °f F~seminorms i.e. of 

applications |.| : X <R̂  such that |x+y| . < jx| . + |y|., l»c{ £ jxj if |rj £ 1, 

and j r x j ^ 0 if r 0. X denotes the completion of X, X, denotes (X/{x: |x{.«Q})~, 

and T T ^ denotes the quotient map X -> X . X denotes the quasi-completion of X. 

In all that follows A denotes an algebra of subsets of some set T C A and m an 

additive set function m:A -> X (m(0)=O). m is called a quasi-measure if it is exhaustive, 

i.e. if m ( A
n ) "* 0 f o r a n Y sequence ^ A

n ^ n ^ o f pairwise disjoint sets in A. m is a 

measure if A is a 0-aigebra and m is tf-additive i.e. if m([|*A ) - 5Tm(A } for a 

sequence as above, m^ denotes TT^ni. W(m) denotes a family of m-null sgts_ i.e. of A 

such that m(S)=0 for every S Q A, S € A. via W(m) we define m-e^sent^^ bo^dedness^, 

m-almost €rvex^h^e (m-a.e.)# etc. A 1 0 denotes the algebra of all A c T such that 4^iere 

existe M,N. £ A with properties M C A C N and N-M € W(m) ; the set function m:^ 1 X 
* - ' J 1 

defined by m(A) « m(M) ±s called the Lebesgue^ (or null-} ^4PiSii25Lof m* 
Examples show that[] A 1 (denoted by 7^) can be larger than J?1 (cf. [t, 1.1, 

p. 257]). The following theorem gives an additive extension wtzTt*1 X of m such that 

( T T • m) (A) » ( T T ^ o m) (A) for every i 6 I and A 6 A531. We call m (which is obviously 

unique) the P^J^SJi^ iiull^55mJP 1-e îS2 o f m* ^ is a quasi-measure (resp., a measure) 

if and only if so is m. 

1.1. THEOREM. - For every m there exists the projective null-completion m i.e. 

for every A € A 
»<A> = f l i f e I T T " 1 ((7TTm) (A) ) 

A. 

determines an element of X or, more precisely, of X. 
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Proof. The index set I can always be taken such that it is directed under 

defined by "i < j if jxj. < |x|. for every x £X • Denoting by ir. . the canonical 
i 3 "̂*3 

map TT . :X. -* X. (i < j) , X can be identified with lim(X. , 7 T . .) . Take i < j and A 6 ̂ *n. 
ij J 1 ^ X X ] 

Then A » B y C with B € A and C £ W(m ) for k=i , i ) . Also, A = B(jC with 

B a B ^ y B ^ A, C = C i n C j ^ ^ a n d consequently nl̂  (A) =m^(B) (k=i,j)% But ^(B) * 

« TT (m(B)) and so we have ra4 ( A ) » in. (B) » 7T..(m.(B)> = I T . . (m . (A)). Therefore, 
k x x xj 3 3 

(m. (A)) . ̂  can be identified with an element of X, say x . We have m. (A) « TT. (x,) , 
i x$I A x x A 

and the required extension is obtained by rn(A) = x • The proof works also with X* 
A, 

and (X/{x: 1x^=0})^ instead of X and X ^ 

We relate this extension with two other completions of m. 

Denote by A the algebra of all A C T for which, for every neighborhood V of 

zero in X there exist M,N £ A, MC A CN, such that m(S) £ V if N-M2S6A.A coincides 

with TP e.g. in case that the topology of X is discrete ¡2, Remark 2, p.20], or in 

case that X is rnetrizable and A is a o-algebra [2, Prop.2, p.2lj. m is F-tight on 

F C A if for any A £ A and any zero neighborhood V in X there exists BC A, B £ F , 

suchthat m(S) £ V for every S £ A, SCA-B. If m is a quasi-measure, it has a unique 

A~tight extension m : A — X [2, Th.2, p.23] (the Lipecki or topological compl£tion_ 

of m). 

1.2. PROPOSITION. - For every quasi-measure m the projective null-completion 

n is a restriction of the topological completion m, and these extensions are 

generally not equal; if m is defined on a O-algebra, m and m coincide. 

^m D '^i ^ * 
Proof. We easily check A == fl.^^A and, by the A-tightness of m and m. , 

1 1 x€I x 
^ ^ ^m 

7i \ (m(A)) = m^ (A) for every A £ A . Therefore, 

m(A) a < m p (A)) , 

and to end the proof we have to compare (77.0 m) * and (TT.o m) (the later is clearly also 

A-tight). m and m are generally not equal even in case of scalar m [2, Ex.1, p.2lj. 
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The second completion which we relate to m is defined in case of X being a 

locally convex Hausdorff space. Let X' denote the topological and X* the algebraic 

dual of X. Then, by the same argument as in 1.1, f) , ,xf * ( (x'a m) (A) ) determines 
X £ A 

an element of X 1* for every A from A m -f) A x If for all A£ A m the elements 
x t 

of X f* determined in such a way are in X, denote them by 3(A). We call m the scalar 

nu^-comj^etion of m. By [l, 1.7, p. 25S>] / S exists for every quasi-measure m. But if 

1, 1.11, p. 260 j, r\ just coincides with A and m coincides 

with m. 

In the following m will be an X-valued measure, and therefore m - m. We take X 

to be a real vector space, but the statements are valid for the complex c|/se as well. 

By f we always denote a function f:T ÎR. f is m~m^surable if f * (B) £ À for 

— 0 oo 

every Borel BCR. The vector space of m-measurable f is denoted by L (m). L (m) 

denotes the space of m-essentially bounded f from i^(m), endowed with the F-seminorm 

II»(' of the essential upper bound. S (A) denotes the space of simple f i.e. the 
oo 

space spanned by f of the form 1 # A £ A (S(A) is dense in L ( m ) ) . 

1.3. LEMMA. - A scalar function f is m-measurable if and only if it differs 

from an m-measurable function by an m-null function. 

Proof. For f=g+h with g £ L^(m) and h an m-null function, f is obviously from 

L^(m). Conversely, f £ L°(m) iff f 1 ( B ) ̂  ? for every B= [ - o o , a ] , a being rational. 

But f-"1(B) « A U N , À £ A, N C M £ N(m); taking g(t)=0 if t € I I M , and g(t)«f (t) 
a w a 1 a a a u a a 

otherwise, we have g £ L^(m) and f-g is an m- (and m-) null function. 

Similarly, £ € t*°(m) iff it differs from an L°°(m)-function by an m-null function; 

oo — • \ o 
therefore, S(A) is also dense in L (m) . Because m and m^ are defined on A^, L (in) » 

3 8 L^(m^) for any i£ I. On the other hand, by 1.1, for thé completions we have 
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1.4. PROPOSITION. - For any X-valued measure m, 

L ° a - n i K i ° s t » . 
The seraivariations |jm j{ of measures (or i~semivariations 8xa|̂  of on sets 

rom A are defined by 

i case of an m on a Hausdorff topological space T and with A containing all compact 

jbsets of T, by \\m I we define the so called "Luzin measurability" (cf. [3, 1.8, p.13]). 

is Luzin m~measurable if, for every i£l, compact K C T , and £>0, there exists a compact 

*/ K'CK, such that ||m | (K-K1 )<£ and fJK* is continuous. On the other hand/ for such 

we define regularity again in terms of m is innerly regular if, for every i6*> 

£ A, and £>0, there exists a compact K C A such that ||m | (A~K) <£. Both notions apply 

D the Borel measures (i.e. measures defined on the algebra of Borel subsets of T) and 

D their extensions. 

1.5. COROLLARY. - Let m be an innerly regular X-valued Borel measure. Then the 

space of Luzin m-measurable functions coincides with L (m). 

Proof. By 1.4, we have to prove that m^-measurability and Luzin el-measurability 
r>00 coincide. For a Luzin m.-measurable f there exists a partition T=N+) „ K with NfcNdn,) i L l n i 

and a compact set such that f|^n is continuous [3, 2.7(proof), p.24J. With f°(t) = 

= f(t) for t € K , and f°(t) « 0 for t6N, we have f ° € L°(m.) and f £ t°(m.) (1.3). 
n i x 

Conversely, for f £ iP (m^) , there exists an S(A)-sequence rn^-a.e.-converging to f. 

By inner regularity, S(A) are Lusin ir^-measurable functions, and the property is 

preserved by an m.-a.e. limit (cf. the proofs of [3, 2.8, p.25] and [3, 2.6, p.23]). 
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2 . Integration. The integration theory in [ 4 ] is developed for the class o f 

L ~t>ounded 5 ^ 2 5 H 5 5 S / t l i a t i s ~ o r measures m having bounded a convex ballanced hull o f 
• \ 

the range m(A). The integral, as an element of X, is defined in an obvious way for 

00 

simple functions, and is extended by continuity from 5(A) to L (m) . In the general 

case, f is integrable (f £ L (M)) if there exists a sequence (f^ € L (m)) such 

that (f ) converges m-a.e. to f and (if h dm) converges for every h € L (m) ; 
n nífitf ^ J n n£W * 

/f dm is defined as lim /f^ dm. Following the lines of the proof of 2 . 1 below it 

turns out that (m) = fl . , ( m . ) - As a matter of fact, for any m, integrability 

and measurability in [ 4 ] are defined with respect to ra, and in that setting the next 

theorem holds true (notice that (m) = m ; also, instead of X we can take X): 

2 . 1 . THEOREM. - Let m:A ~> x be an L -bounded measure. Then f is m-integrable if 

and only if it is nu-integrable for every i 6 I, and for such f we have 

TÍ if dm - i f día. . 
1 J J X 

Proof. First, notice that TT . o m and m. are consecutive extensions of m. , and that 
1 1 x 

o (A) is dense in L (rrm) as well as in L (nO . Therefore, L (iLom)Cl (m^) ,and we 

g d(7T^m) = J g dmu for every g £ L (ir^ñ) . On the other hand, i (a) C L (u^om), 

/
f—1 f t—1 CO r—1 

^ g dm ~ J g d(TLom) for every g £ I (m) . Therefore we have 

g dm = J g dnK as fahr as the class L (m) is concerned. 

Next, for a given f, define f , n£iN, by f(t)> n 4>f (t)~n, ~n<f(t)<n 4> f (t)=f(t), 
n n n 

f(t)<-n =^fn(t)=-n. By [ 4 , 2 . 1 2 , p . 8 . l o ] , f e L ! ( m ) if and only if f 6 L° (m>, ni IN, and 

j f h dm converges for all h € L (m). 

Let now f é. L*(m.) for every i£ I. Then f £ ¿-°(ra.) for every i'€I, which implies 
1 n 1 

f £ L (m), and therefore also f n € (m;• If h is an arbitrary function from L (m), 

we have ir./f h dm = if h dm., and when n-*° the right-hand-side converges in X. for 
i n n i ^ 1 

every i 6 I. Therefore J f ^ h dm converges in X, i.e. f £ (m) ; also, / f d5j,« ^ / f <3to*. 

00 
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Conversely, let f € L 1 (m) , let ± 6 1 , and let h 6 L°lm^) • Then £ L̂ (m ) , 

h « *li"h*X2 w ^ t ^ 1 £ r o ^ L ^ ( n O and bounded (and therefore from ) , and a 

m.-null-function. Hence, Jf h dm. ~ ff h 4 d(7i\*m)« tt ff h. dSl 3v the convergence i ^ n x ;

 n 1 i i' n. 1 * * 
of J f h dm, f 6. L 1 follows. ' n 1 i 

1. 

We consider L (in) endowed w i t h t h e topology determined by the family of 

F-setainorms 

! l f l l 1 # i
 s s uPt !/ f h < H A • h € l°°(m), Ijhjĵ  1 : 1 } , i £ l 

[4, 2 . 9 ( 5 ) , p. 8 . 8 ] ; in case of f * l v , A £ A / this reduces to i;m. [ (A) . 

2.2. COROLLARY. - For an L -bounded measure m :A X and f £ L te) , 

ifiil,i " S U p ^ f h ^ J 1 h £ S ( A ) ' " ^ I 1 1 ^ I h i ­
proof. By [4, 2,9, p.8.8] and t h e denseness of S(A) in ^ { m > , for f £ (mj , 

sup |/f h taken with respect t o h € l°°(mj, J l h j j^l, is the sane as taken with 

respect to h £ S(A) , maxjh ( t ) j <1. For f 6L*(m) and h^i^fm) we have fh £ (m) and 

j/fh - l/^*1 dm^J.Now we can take the supremum with respect to hfel^fan), resp. 

h 6 L*(m ) (||h|w< 1 ) , or for both integrals with respect to h £ S ( A ) , max(h(t) j<1. 

By 2.2, for f 6 L'(m) ( o r f € L (m)) , jjfj! . with respect to m coincides with 

|jf|j . with respect to ml 
1 , 1 

As an application, we compare integration theories for bounded measures. In the 

following T will be a locally compact (Hausdorff) space, K(T) the linear space of 

continuous functions with compact support, (T) the space of continuous functions 

tending to zero at infinity. A bjounded Ration map on T i s a linear nap y:K(T) X 

which is continuous if we endow K(T) with the topology of uniform convergence. If y, 

extended to an X-valued map on C^(T) ( c f . [ 3 , P - 3 7 J ) , transforms weakly compact 

subsets of Cq(T) into relatively compact sets of X, it will be called a globally 

extendible Radon -measure on T [ 3 . 3.4, p.40J. y #, L 1 (y) , l°(y), etc. are as in [3] ; 

= ^^y* Firstly, we formulate a Riesz-type proposition ( by regularity arguments, 

j and ra bellow are uniquelly determined by y(L)=/l dy and m(L) with L crossing all 

compact subsets of T)-
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2 . 3 . PROPOSITION. - Let T be locally cccpact and let X be quasi-complete. Then 

there exists a linear bijection W between all X-valued globally extendible Radon 
00 

measures P and all X-valued L -bounded inneriy regular Borel measures m on T such 

that y and W(y) coincide on compact subsets of T; m = W(y) is obtained from y via 

m(A) - /l Ady 
for Borel sets A C T , and with this m, y: fc(T) + X is represented by 

y($) dm, 0 6 K(T) . 

Proof. Let y be globally extendible and let m be defined by nfAj - J i^dy as above, 

m is countably additive [3, 4 , 3 ( 4 ) , p.53], and therefore a Borel measure. Let r « 

= ^ ^ r ^ l with pairwise disjoint A ^ c A be a simple function on T (with respect to 

the Borel field)- By the estimate 

IIk=ork m ( V L = ! / r ML i £ < M > 

we have J|m̂ || (A) < y*(A) and | e m ij[(T) < y*(el ). By [ 3 , 2.5, p.23], we have that m 

is innerly regular. On the other hand, by [ 4 , 2.2(ii), p . 8 . 5 ] , we have that 

-boundedness is equivalent to lim^^jj £mj[ (T) = 0 for every i £ I , and therefore, by 

[ 3 , 1 . 2(d), P« 7]/ m i s L°°-bounded. Notice, that m and p coincide on compact subsets 

of T. 
CO 

Conversely, let m be an innerly regular L -bounded Borel measure on T.Define y 

by y((j>)= /<j> dm, <f)€K(T) .{y(<{>) : j j * ! ^ ! } is a bounded set, being in the closure of the 

unit ball in 5 ( A ) , and therefore y is a bounded map. To show that y is globally 

extendible we have to prove 1 6 . L*(y) for every compact L C T [3, 2 . 1 , p . 2 0 ] and 

1 T € (y) [ 3 , 3.3(2), p.38]. Now, for every i € I and e>0 there exists a relatively 

compact open o O L such that ||m || (m-L)Se (regularity) and a function $€K(T) such that 

4>(t)~l, t £ L , and <j>(t)~0, t£T~w. <{>~1 is lower semi-continuous, and therefore there 
L 

exists ^€K(T), (JtHL^l/ S u P P ^Cto-L, such that 
Pi ( (f >~ 1L ) l± + e s l / 1 ^ H i + e i 2 e 

[3, 1.3, p . 7 ] , which proves the integrability of 1 . l^^l/fy) is obtained analogously 

taking a compact KC.T such that j | m ± jj (T~K) <e, and noticing that 1 T ~ 1 K is lower 

semi-continuous. 
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To end the proof we have to show that for p constructed in such a way from m we 

lave W(p) - This would be the case if Jl dp and m(L) coincide on compact L C T . By 

:he above construction of 4>, |p(<}>) - fldp|.< U # ( < | ) - 1 T ) < 2e#|/cf»dm - m (L) j . <^m. | (a>-L) 
L X X L» X X ' 

md the result follows. 

Notice, that the conditions on Borel measures in 2 . 3 are independent. In fact, 

the non-atomic Borel measure in' [ 4 . 4 . 1 , p. 8 . 1 2 ] is innerly regular, but it is not 
CO CO 

L -bounded; conversely, locally convex space-valued measures are 1» -bounded, regard­

less regularity. 

Two measures p and m from 2 . 3 , such that m = W(p) , we call corresponding (to_ 

each other); cf. [l, 3 . 1 , p. 2 6 6 ] . 

2 . 4 . THEOREM. - Let p and m be corresponding quasi-complete space valued measures 

Dn a locally compact T. Then i-°(p) = L°(m) , L1 (p) e L 1 (m) and, for integrable f, 

/f dp - /f dm 

and *i*(|f|) - ||f|L . (i€l) (cf. [l, 3 . 5 , p . 2 6 9 ] ) . 
X X , X 

Proof. By 2 . 3 and [ 3 , 2 .16(Cor.), p . 3 3 ] , for every i £ I , [jja^Jj and p* coincide 

D n Borel sets. Therefore the space of Luzin n^-measurable functions coincide with 

L°(V±) [ 3 , 1 . 8 , p. 1 3 ] ; by 1.5 we have i°(y ) L° (m ) and L°(p) - i°(m ) ( [ 3 , p . 49] 

and 1 . 4 ) . The class of p_̂ - (resp. p~) negligible sets consists of measurable members, 

and coincides with M(mJ (resp. with W(m)). 

To prove L1 (p) = L1 (m) , by 2 . 1 and [ 3 , p . 4 9 ] , it suffice to show L 1 (pj = L 1 ( m ^ ) , 

L£I. A bounded p.-a.e. defined function is in ̂ ( p j iff it is in L°(p . ) [ 3 , 1 . 9 , p . > 1 4 ] , 
X X X ** J 

ind therefore iff it is in L ° ( e O. In the general case, f is in L* (pj iff 
-im 7 g f dp exists for every bounded Borel g, where f are defined as in the proof 

n-* 0 0 n n 

>f 2 . 1 [ 3 , 2 . 1 4 , p . 3 1 j ; instead of the set of g € JL ( n O we can take the set L (m^) 

is well. But / 9 ^ 3 ^ 2 5 Jgfn«3nx.# a n ^ t 5 i e convergence for n - * 3 0 is necessary and suffici-

mt for fCl^dn^). By an argument similar to that of the proof of [ 3 , 2 . 1 6(Cor-), p-33], 

*(|f|) in [ 3 , 1 . 4(d), p . i o ] writes as sup j/hf dp | , h£ S ( A ) and maxjh(t) | < 1 , which 

ives pj(|f|)= llfli^. by 2 . 2 . 
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