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ON INTEGRATION WITH RESPECT TO MEASURES WITH VALUES IN
ARBITRARY TOPOLOGICAL VECTOR SPACES

D. BUTKOVIC, ZAGREB

Abstract. Completions of measures with values in arbitrary topological vector
spaces are discussed and applied to the integral of Ph.Turpin. By the completion
of Z. Lipecki, integrability is reduced to integrability with respect to measures
with values in metric vector spaces. Using this result we are able to compare
integration theories for Borel and Radon measures, extending analogous results

obtained by the author in the locally convex case.

This note concernes integration with respect to measures m with values in
topological vector spaces X which are not necessarily locally conves. A Lgbesgua-
~type integration theory in such a geperal sefting is developed by Ph,Tyzpin [4}.
The natural framework for this theory is given by classes of functions which are
measurable with respect to complete measures. On the other hand, considering X as
a projective limit of metric vector spaces, from every m we cptain a family (mi)ieI
of metric space valued measures. Now, it turns out that integrability withk respect'
to the Lebesgue completion m of m is not equivalent to'integrﬂbility with xespect

to m, of measures mi. We find that in order to obtain an equivalence-theorem it

suffice to apply a Lebesgue-type completion which exists for every additive X-valued
set function; in case of measures this completion I coincides Qith the completion
introduced by Z. Lipecki [2]. In Sect;on 1 #afious types of extensions and of weasu-
rability are studied. In Section 2 we prove that a function is integrable with
respect to m if and only if it is ihtegrable with respect to E; for eveLy i€I. In
particular, for locally compact spaces this implies that the iﬁtegration theory of
regular "L®-bounded" Borel measures completed in such a way is equivalent to the E.

Thomas integration theory of "globally extendible” Radon measures fB].

AMS (MOS) subject classifications (1970): 28a45, 46G10.

Key words and phrases: completions of set functions, integration with respect to

vector measures, measures with values in arbitrary topological vector spaces.



-~

1. Completions and measurability. Everywhere in the sequel X denotes a Hausdorff

topological vector space i.e. a vector space endowed with a Hausdorff topology which
makes continuous the operations (x}y) > X+y (XXX + X) and (r,x) - rx (R{or C€)xX - X).

The topology of X is always determined by a family !'!i of F-seminorms i.e. of

€x
applications l'!i : X > R_ such that ]x+y§i < !xii + [y]i, [rx]i £ lxiilif {r!’s 1,

ol

and lrxli~* 0 if r >~ 0. X denotes the completion of X, xi denotes (X/{x: Ix[i=0})“,
and ﬂi denotes the quotient map X > Xi. X denotes the quasi-completion of X.
In all that follows A denotes an algebra of subsets of some set T C A and m an

additive set function m:A + X (m(@)=0). m is called a quasi-measure if it is exhaustive,

i.e. if m(An) -+ 0 for any sequence (An)n of pairwiée disjoint sets in A. m is a

€w
measure if A is a 0-algebra and m is O-additive i.e. if m([}jﬁn) = ZTQ(An) for a
sequence as above. m, denotes ﬂicm. N(m) denotes a family of m-null sets i.e. of A
such that m(S)=0 for every S C A, S € A. Via N(m) we define m-essential boundedness,
m-almost ézsszzggégw(m~a.e.), etc. A" genotes the algebra of all A ¢ T such that &here
existe M,N, € A wi&? pfoperties M CA CN and N-M € N(m); the set function AT > x
defined by m(A) = m(M) 15 called the Lebesgue (or null-) ggépletion of m.

Examples show that(]ielxpi {dencted by Km) can be larger than A (cE. [l, 1.1,
p.ZSﬂ). The following theorgm gives an additive extension m:A- - ; of m such that
(ﬂi° EB(A) = (EZZ_EB(A) for every i:g I and A € A", We call E‘(which is cbviocusly
unique) the projec;izg_le}jcompletiog of m; ™ is a quasi-measure ({resp., a measure)

P i S N

if and only if so is m.
1.1. THEOREM. - For every m there exists the projective null-completion m i.e.

for every A € x

o
m(a) = ﬂiu m T ((em) (A))

e
determines an element of X or, more precisely, of X.



Proof. The index set I can always be taken such that it is directed under "s"

defined by "i £ j if !xli < {x[j for every x €X ". Denoting by ﬁi'j the canonical
map 7, :X, * X; (1 £ 3), X can be identified with Lim(x,,m, ). Take i £ j and A ¢ T,

Then A = Bkuck with Bke A and Cké N(mk) for k=i,3j. Also, A = ByC with
B = BiUBjeA, C = CincjéN(mk) and consequently mk(A-)=mk(B) {k=i,3j). But mk(B} =

= Trk(m(B)) and so we have Ei (&) = mi(B) = T?ij(nig(B)) = Trij (Ej {A)). Therefore,

> identified wi t . m (B) =T
(mi (A))ieI can be identified with an element of X, say Xy We have m, (a) J_(xA),

and the required extension is obtained by Q(A) = xA. The proof works also with X

~ .

and (x/{x: lx|i=0})h instead of X and X,.

We relate this extension with two other completions of m.

Denote by A" the algebra of all ACT for which, for every neighborhood V of

+

zero in X there exist M,N€ A, MCACN, such that m(S)€ V if N-MOS €& A.R ™ coincides
with A e.g. in case that the topology of X is discrete [2, Remark 2, p.ZO], or in
case that X is metrizable and A is a o-algebra [2, Prop.2, p.21]. m is F—%ﬁ on

FC Aif for any A € A and any zero neighborhood V in X there exists BCA, B & F ,

suchthat m(S) € V for every S€ A, SCA-B. If m is a quasi-measure, it has a unique

A A ~

A-tight extension m:Am—+ X [2, Th.2, p.23] (the Lipecki or topological completion

of m).

1.2. PROPOSITION. - For every gquasi-measure m the projective null-completion
© is a restriction of the topological completion m, and these extensions are

~

generally not equal; if m is defined on a O-algebra, m and m coincide.

A -~ -

Proof. We easily check Am = ﬂiGIA * and, by the A-tightness of m and mi,

el ”~ A
m (m(a})) = mi(A) for every A ¢ Am. Therefore,
~ _1 A
ma) = [} 7 (memnmn,
and to end the proof we have to compare ('T('ia m) ™ and (Trio m) {the later is clearly also

A-tight). m and @ are generally not equal even in case of scalar m [2, Ex.1, p.21] .
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The second completion which we relate to m is defined in case of X being a
locally convex Hausdorff space. Let X' denote the topological and X* the algebraic

dual of X. Then, by the same argument as in 1.1,(] ‘-1((x%:m)(A)) determines

x'eX'x

-— s to ~.
A*°M 1¢ for all Ae_ém the elements

. ~m
an element of X'* for every A from A =f}x'ex'

of X'* determined in such a way are in ;, denote them by m(A). We call m the scalar
EElifE?EElEEiSE of m. By [1, 1.7, p.259), m exists for every gquasi-measure m. But if
m is a quasi-measure, by {1, 1.11, p.260], ;m just coincides with A and m coincides
with m.

In the following m will»be an X-valued measure, and therefore m = Q. We take X
to be a real vector space, but the statements are valid for the complex c#se as well.

By f we always denote a anction £:7 > R. £ is m~measurable if f~1(B) € A for
every Borel Bc:ﬁl The vector space of m-measurable f is denoted by Lo(m). Lw(m)
denotes the space of m-essentially bounded £ from Lo(m), endowed with the F-seminorm

”.4w of the essential upper bound. S(A) denotes the space of simple f i.e. the

space spanned by £ of the form IA, A¢A (S(A) is dense in L{m)).

1.3. LEMMA. - A scalar function f is m-measurable if and only if it differs

from an m-measurable function by an m-null function.

Proof. For f=gt+h with g ¢ Lo(m) and h an m-null function, £ is obviously from
0,~ 0 - . -1 —m . .
L (m). Conversely, £€ L (m) iff £ (B)€ A~ for every B=[-w, a], a being rational.
-1 . s :
But £ "(B) = A yN_., B € A, N (M €Nm); taking g(t)=0 if t €lJaMa. and g(t)=£(t)

otherwise, we have g ¢ Lo(m) and f-g is an m- (and m-) null function.

Similarly, £ € L”(m) iff it differs from an L™ (m)-function by an m-null function;
therefore, S(A) is also dense in LQREB. Because m and mi are defined on A, Lo(m) =

= Lo(mi) for any i € I. On the other hand, by 1.1, for thé completions we have



1.4. PROPOSITION. - For any X-valued measure m,
0 0 -
L@ = {}ieIL (mi).
The semivariations Hmiﬂ of measures m, (or i-semivariations ﬂmﬂi of m) on sets

‘rom A are defined by

Im @ =n] ) = sup{|]}_x=m a)]: n20, sup, |r, |1, mA €A, kil 5 A na $83.

a2 case ©f an m on a Hausdorff topological space T and with_A containing all compact
ibsets of T, by Hmiﬂ we define the so called "Luzin measurability” (cf. [3, 1.8, p.13]).
is 55535 m-measurable if, for every i€ I, compact KCT, and €>0, there exists a compact
'y K'CK, such that ﬁmiﬂ(K—K')<€ and £|K' is continuous. On the other hand, for such

we define regularity again in terms of H min: m is innerly regular if, for every i€1,
€A, and £>0, there exists a compact KC A such that ﬂmiﬂ(A~K)<é. Both notions apply

> the Borel measures (i.e. measures defined on the algebra of Borel subsets of T) and

5 their extensions.

1.5. COROLLARY. - Let m be an innerly regular X-valued Borel measure. Then the

. . . R . 0
space of Luzin m-measurable functions coincides with L~ (m). .

Proof. By 1.4, we have to prove that E;—measurability and Luzin mi-measurability
o
coincide. For a Luzin mi-measurable f there exists a partition T=N+21Kn with NG&N(mi)

and Kh a compact set such that f]Kn is continuous [3, 2.7 {proof), p.24J. With fo(t) =
= £(t) for t€K , and £7(t) = 0 for tE&N, we have £° € Lo(mi) and f € LO(E{i) (1.3).
Conversely, for £ € LO(E;), there exists an S(A)-segquence mi-a.e.wconverging to f.

By inner regularity, S(A) are Lusin mi*measurable functions, and the property is

preserved by an m -a.e. limit (cf. the proofs of [3, 2.8, p.ZS] and [3, 2.6, p.23]).



2. _1Integration. The integration theory in [4] is developed for the class of

w0
L -bou_qgeg measures, that is for measures mw having bounded a convex ballanced hull of

RN

~

the range m(A). The integral, as an element of X, is defined in an obvious way for

<O
simple functions, and is extended by continuity from S(A) to L (m). In the general

oo
case, { is integrable (f ¢ L1 {(n)) if there exists a sequence (fn € L (m))nem such

(=]
that (f rges m-a.e. £ {f h ém converges for every h € L (m);
( n)neN converqg mae.to and (fn w)nefN nverges 5% € (n)

ff dn is defined as limnémffn dm. Following the lines of the proof of 2.! below it

turns out that 1.1 (m) = ﬂ Ll(mi) - As a matter of fact, for any m, integrability

i€Y
and measurability in [4) are defined with respect to E, and in that setting the next

”~

theorem holds true (notice that ('r;)—. =m ; also, instead of X we can take ')?) H

= o]
2.1. THEOREM. - Let m:A > X be an L -bounded measure. Then £ is E‘-—integrable if

and only if it is Hi—integrable for every i €I, and for such f we have

m, [ dn= [f du..
ifdm f£ am,

Proof. Fixst, notice that Trioxrr? and Ei are consecutive extensions of m, and that
S(A) is dense in Lm(TTie m) as well as in Lm(;ﬂi). Therefore, Lm(“ﬂ’iorz;)c Lw(ai) ,and we
have fg d(‘ﬁia;) = fg dEi for every g € Lm(ﬁia};). On the other hand, Lm(g) CLOO(TrioE),
and by continuity, ﬂ’ifg dm = fg d(ﬁio m for every g € Lm(g). Therefore we have
Trifg dm = [g d;i as fahr as the class L (@) is concerned.

Next, for a given £, define fn, néml, by £(t)2 n -—>fn(t)=n, ~-n<f£(t)<n %’fn(t)=f(t),
£(t)<~n H £_(t)=-n. By [4, 2.12, p.8.10], £ ell@ if and only if £ € L&), new, and
ffnh dm converges for all h € L (@ .

Let now ‘f € Ll(gi) for every i € I. Then fn € LO (r;i) for every i€ I, which implies
fn € LO ('r-z?) , and therefore also fn € L°°<'En3 . If.h is an arbitrary function from Lm(a .

. v

we have ﬁiffnh dm = ffnh dm,, and when n**® the right-hand-side converges in Xi for

i
. R L , PR e - —
every i € I. Therefore ffnh dm converges in X, i.e. £ € L (m); also, ff dm]-_— Wiff dm.
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Conversely, let £ €[ (m), let 1 €I, and Jet h € f?gg). Then fn € [f?E;),
h = h1+h2 with h1 from Lo(mi) and bounded {(and therefore from E?ED), and h2 a
- . - L o~ .
m, ~null-function. Hence, ffnh dmi = ffnh1 d(“iom}« niffnhi ¢m. By the convergence

of Jen, dm, £ e Ll(@) follows.
n 1 i

We consider Ll(m) endowed with the topology determined by the family of
F-geminoxms
« . . s
_“f”l’i = sup{ [[fhae| :h €L w, B <1}, i€1
[4. 2.9(5), p. 8.8]; in case of £ = 1, A&A, this reduces to fm |(A).

1

2.2. COROLLARY. ~ For an mebounded measure m:A + X and £ € [ (w),
l£i, . = sup {|[En am |: b € S(A), max|n(t)]| <1}.
1,1 i 3
Proof. By [4, 2,9, p.a.e] and the denseness of S{A) in L“YE;), for £ € LI(E;),
sup |[£ h dﬁi} taken with respect to hGSLm(Eg), ”hﬂmgl, is the saze as taken with
o, 1 - © - . ' 1 e
respect to h € S(A), max]h(t){g]. For £ [ (m) and hel (m) we have fh € L™ (m) and
[ffn d;:ji = |ffn d;i;.Now we can take the supremum with respect to h€[ (m), resp.

hélﬁ%gi) (“hnws 1), or for both integrals with respect to h&S{A ), max[h(t)[gl.

. with respect to m coincides with

By 2.2, for £ € Ll(g) (or £ € Ll(m)), “fﬂl 5

nfﬁl i with respect to m.
L

As an application, we compare integration theories for bounded measures. In ﬁhe
following T will be a locally compact (Hausdorff) space, K(T) the linear space of
continuous functions with compact support, CO(T) the space of continuous functions
tending to zero at infinity. A bounded Radon map on T is a linear map u:K(T) - X
which is continuous if we endow K(T) with the topology of uniform convergence. If yu,
extended to an X-valued map on CO(T) (cf. {3, p.37]), transforms weakly compact
subsets of CO(T) into relatively compact sets of ﬁn it will be called a 3&9??%&2,
extendible Radon measure on T [3. 3.4, p.40]. u®, Ll(u), LO(U), etc. are as in [3];
ui = ﬂiou. Firstly, we formulate a Riesz~type proposition ( by regularity arguments,
4 and m bellow are uniquelly determined by u(L)=f1Ldp and m(L) with L crossing all

compact subsets of T).
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2.3. PROPOSITION. - Let T be locally compact and let X be quasi—gomplete. Then
there exists a linear bijection W between all X-valued globally extendible Radon
measures M and all X-valued L' -bounded innerly regular Borel measures m on T such
that y and W{y) coincide on compact subsets of T; n = W(y) is obtained freom y via

m(a) = [idy
for Borel sets ACT, and with this m, }:K(T) » X is represented by

u(¢) =f¢ dm, ¢eK(T).

Proof. Let y be globélly extendible and let m be defined by n(A)=flAdp as above.
m is countably additive [3, 4.3(4), p.53], and therefére a Borel measure. Let r =
= E;zorkl with pairwise disjoint Akc:A be a simple function on T {with raspect to
the Borel field). By the estimate

iz;=0rk ma) |, = |fr du{i < u:([rt)
we have ”mi”(A) < p;(A) and [e mi”(T) < p:(ng). By [3, 2.5, p.23], we have that m
is innerly regular. On the other hand, by [4, 2.2{iiy, p.B.S}, we have that L”-
~boundedness is egquivalent to lim€+o”5mi”(T) = 0 for every i€ I, and therefore, by
[3, 1.2(a8), p.7], m is LaLbounded. Notice, that m and p coincide on compact subsets
of T.

Conversely, let m be an innerly regular Lmeounded Borel measure on T.Define p
by u(¢)= [ am, ¢€K(T).{n(d): |6 <1} is a bounded set, being in the closure of the
unit ball in S(A), and therefore U is a bounded map. To show that u is globally
extendible we have to prove IL & Llfu) for every compact LT {3, 2.1, p.ZO] and
1T € Li(u) [3, 3.3(2y, p.38}. Now, for every i&€I and £>0 there exists a relatively
compact open @ J L such that Hmiu(w~L)Se (regularity) and a function ¢€K(T) such that
d(t)=1, t€L, and ¢(t)=0, t& T-u. ¢~1L is lower semi-continuous, and therefore there
exists YEK(T), nw“msl, Supp U w~L, such that

Mg o-1) <lu@i |, +e = [fy an] +e <2
[3, 1.3, p.7], which proves the integrability of 1;- 1T€.L1(p) is obtained analogously
taking a compact K(CT such that.”miu(T—K) <g, and noticing that IT—l is lower

K

semi-~-continuous.



To end the proof we have to show that for i constructed in such a way from m we
1ave W(i) = m. This would be the case if flL dy and m(L) coincide on compact LCT. By
‘he above construction of ¢, [u(¢) - flLdu|is U;(@-lL)S 22,][¢dm - m(L)[isﬂmiﬂ(w~L) <€,

ind the result follows.

Notice,vthat the conditions on Borel measures in 2.3 are independent. In fact,
the non-atomic Borel measure in‘[4. 4,1, p.8.12J is innerly regular, but it is nét
Lw-bounded; conversely, locally convex space-valued measures are Lm—bounded, regard-
less regularity.

Two measures H and m from 2.3, such that m = W{J), we call cqg;gggggé}gg (to_

each other); cf. [1, 3.1, p.266}.

2.4. THEOREM. - Let U and m be corresponding quasi-complete space valued measures

>n a locally compact T. Then LO(U) = LO(EB, Ll(u) = Ll(ﬁﬁ and, for integrable £,

JEan = [£dno

ana Wl(leh) = el | (ien (er. [1, 3.5, p.2sa]).

Proof. By 2.3 and [3, 2.16{Cor.), p.33}, for every 1€1, umiﬂ and u: coincide
on Borel sets. Therefore the space of Luzin'mi«measurable functions coincide with
Lo(ui) [3, 1.8, p.13]; by 1.5 we have Lowi_) = LO(Ei) ana L% = 9@ ([3, p.49]
and 1.4). The class of ui- (resp. MU~} negligible sets consists of geasurable members,
and coincides with N(a;) (resp. with N(m)}.

To prove Ll(uy = L@, by 2.1 and {3, p.49], it suffice to show Ll(ui) = 1! (E:‘i),
LEI. A bounded M ,-a.e. defined function is in L}(pi) iff it is in Lo(ui)[B, 1.9, p.14],
ind therefore iff it is in LO(EA). In the general case, f is in Ll(ui) iff
-imn*mfgfndu exists for every bounded Borel g, where fn are defined as in the proof
f 2.1 [3, 2.14, p.31]; instead of the set of g € Lm(mi) we can take the set L“(E;)
1s well. But fgfndui = fgfndE;, and the convergence for n>® is necessary and suffici-—
int for fE.Ll(Ei). By an argument'similar to that of the proof of [3, 2.16(Cor.), p.33],
l;(lfl) in [3, 1.4(d), p.10] writes as sup |[hf au, | , h€S(A) and max|n(t) <1, which

‘ives u:(lf|)= ﬂfﬁl ; by 2.2.
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The author is indebted to Ph. Turpin for fruitfull conversatidns and suggestions

on the subject.
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