Bo Stenström

Maximal Orders in an Azumaya Algebra over a Von Neumann Regular Ring

Publications des séminaires de mathématiques et informatique de Rennes, 1980, fascicule S3
<Colloque d'algèbre », , p. 39-60
http://www.numdam.org/item?id=PSMIR_1980___S3_39_0
© Département de mathématiques et informatique, université de Rennes, 1980, tous droits réservés.

L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

BO STENSTRÖM

1. Introduction

The classical theory of maximal orders over a Dedekind domain R was generalized by Auslander and Goldman [1] to the case of a noetherian integrally closed domain R, and further by Fossum [10] to a Krull domain R. The methods used for these generalizations depend heavily on a reduction to the classical case by localization at the prime ideals of height 1 in R, and they are not practicable in the case of a more general ground-ring R. More recently, Kirkman and Kuzmanovich [14] have studied maximal orders over a hereditary ring R, using the Pierce representation of R as a sheaf of Dedekind domains to obtain a reduction to the classical case.

Our aim in this paper is to use the methods of [14] to study maximal orders over a commutative ring R whose total ring of fractions K is von Neumann regular. When Q is an Azumaya algebra over K, we shall define an R-order in Q to be full R-subalgebra A of Q such that every element of A is integral over R. Besides the development of the basic results of maximal orders, we shall obtain a characterization of Dedekind orders (cf. Robson [20]) as maximal orders over (generalized) Dedekind rings (Theorem 12.1).

Part I. General theory of maximal orders

2. Preliminaries

Let R be a commutative ring with total ring of fractions K, and let Σ be the set of non-zero-divisors of R. Throughout this paper we shall assume that K is von Neumann regular and that R is completely integrally closed in K, i.e. if $x \in K$ and there exists $s \in \mathbb{E}$ such that $s x^{i} \in R$ for all $i \geqslant 0$, then $x \in R$. Since R is then integrally closed in K, every idempotent of K lies in R, so R is a p.p. ring, i.e. the principal ideals of R are projective modules [3].

The rings R and K thus have the same boolean algebra B of idempotents. Let \underline{X} denote the boolean space of maximal ideals of \underline{B}. The stalk at $x \in \underline{X}$ of the Pierce sheaf associated to the ring R is $R_{x}=R / x R$; where $x R$ is the ideal of R generated by the set x of idempotents. R_{x} is an indecomposable ring, i.e. its only idempotents are 0 and 1 . More generally, the stalk at x for an R-module M is

$$
M_{x}=R_{x} \otimes_{R} M \cong M / X M
$$

There is a canonical surjection $M \rightarrow M_{x}$, written as $m \mapsto m_{x}$. If $m_{x}=0$ for some $x \in \underline{X}$, then $m_{y}=0$ for all y in some closed--and-open neighborhood of x in \underline{X}, and me $=0$ for some idempotent e of R. Furthermore, $\underset{x \in X}{\oplus} R_{X}$ is faithfully flat as an R-module. (See [18] or [22] for details on the Pierce sheaf).

Since K is von Neumann regular, K_{x} is a field for each $x \in \underline{X}$. The ring R_{x} is an integral domain with K_{x} as its field of fractions.

We shall throughout the paper assume that Q is an Azumaya algebra over K. Then for each $x \in \underline{X}$ we have that Q_{X} is a central simple K_{x}-algebra [14]. In [14] it is shown how tho reauced trace can be defined as a K-linear mapping $\operatorname{Tr} d: Q \rightarrow K$. :Ic shall need the following two results:

Lemma 2.1 The mapping $\Psi: Q \rightarrow \operatorname{Hom}_{K}(Q, K)$ given by $\Psi(a)=\operatorname{Trd}(a-)$ is a K-isomorphism.

Proof. See [14] (Lemma 2.3) for details. The essential point is that $\Psi_{X}: Q_{X} \rightarrow \operatorname{Hom}_{K_{X}}\left(Q_{X}, K_{X}\right)$ is classically known to be an isomorphism for each $x \in \mathbb{X}$. \square

Lemma 2.2 If $a \in Q$ is integral over R, then $\operatorname{Trd}(a) \in R$. Proof. It suffices to show this pointwise for each $x \in \mathbb{X}$. As is shown in [14], one is then reduced to the case when R_{x} is an integral domain, which is treated in [2]. $]$

3. R-lattices

Let V be a finitely generated projective K-module. An R-submodule L of V is called an R-lattice in V if

1) L is full in V, i.e. $L K=V$;
2) L is contained in a finitely generated R-submodule of V.

Note that since K is $R-f l a t$, one has for every $R-s u b m o d u l e$ I of V that

$$
L \otimes_{R} K \cong L K \cong L\left[\Sigma^{-1}\right],
$$

where $L\left[\Sigma^{-1}\right]$ denotes the module of fractions of L with respect to Σ.

Lemma 3.1 If L is an R-lattice in V and M is a full
R-submodule of V, then $s L C M$ for some $s \in \Sigma$.
Proof. L is contained in an R-submodule of V generated by $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$. Since M is full, each x_{i} can be written as $\mathrm{x}_{\mathrm{i}}=$ $=\sum_{j} k_{i j} x_{i j}$ with $x_{i j} \in M$. Choose $s \in \sum$ such that all $s k_{i j} \in R$. Then sLCM. \square

Proposition 3.2 An R-submodule L of V is an R-lattice in V if and only if there exist finitely generated projective R-submodules P_{1}, P_{2} of V such that $P_{1} \subset L \subset P_{2}$ and $\operatorname{rank}_{R} P_{1}=\operatorname{rank}_{K} V$.

Proof. Suppose L is an R-lattice. Since K is regular, we may write $V=\oplus K u_{i}$, where each $K u_{i}$ is isomorphic toa principal ideal of K, i.e. $K u_{i}$ is isomorphic to $K e_{i}$ for some idempotent $e_{i} \in R$. Since L is full, we may assume that $u_{i} \in L$. Then $P_{1}=\oplus R u_{i}$ is a finitely generated projective R-roodule in L and of same rank as V. By Lemma 3.1 there exists $s \in \Sigma$ such that $s L \subset P_{1}$, and then $L \subset s^{-1} P_{1}=P_{2}$.

The converse is clear, for if P_{1} is a finitely generated projective R-module of same rank as V, then P_{1} is full in V. \square Remark Similar arguments show that if M is an R-latice in V, then an R-submodule L of V is an R-lattice if and only if $M \in L \subset s^{-1} M$ for some $r, s \in \Sigma$.

4. R-orders

An R-subalgebra A of the Azumaya K-algebra Q is an R-order in Q if A is full in Q and every $a \in A$ is intecral over R.

Lemma 4.1 If A is an R-order in Q, then A is a contral P-algebra.
Proof. If $a \in \operatorname{cen}(A)$, then $a \in \operatorname{cen}(A K)=\operatorname{cen}(Q)=K$. Since a. is integral over R, and R is integrally closed in K, it follows that $a \in R . \square$

The rine Q may thus be described as the ring $A\left[\Sigma^{-1}\right]$ of central fractions of A. Of course Q is also the total loft and right ring of fractions of A, since every non-zero-uivicor is invertible in an Azumaya algebra.

Proposition 4.2 There exists an R-order in Q.
Proof. As in the proof of Prop. 3.2 we may writc $Q=\oplus K u_{i}$, with
$u_{1}=1$. Then $u_{i} u_{j}=\sum_{k} a_{i j k} u_{k}$ for some $a_{i j k} \in K$. Let $s \in \sum$ with all $s a_{i j k} \in R$. Put $v_{1}=1, v_{i}=s u_{i}$ for $i \neq 1$. Then $R v_{1}+\sum R v_{i}$ is a full R-algebra, and it is an R-order since i.t is a finitely generated R-module . प

Proposition 4.3 An R-subalgebra A of Q is an R-order in Q if and only if A_{x} is an R_{x}-order in Q_{x} for each $x \in X$. Proof. A is full in Q if and only if A_{x} is full in Q_{x} for each $x \in \underline{X}$, since $\oplus_{X}^{\oplus} R_{x}$ is faithfully flat. If an element $a \in A$ is integral over R, then of course $a_{x} \in A_{x}$ is integral over R_{x} at each $x \in X$. Suppose on the other hand that A_{X} is an R_{X}-order for all $x \in X$. For each $a \in A$ and $x \in X$ there is then an equation of integral dependence for a holding at all y in a neighborhood of x. Because of the compactness of \underline{X} one can multiply together finitely many of these equations to get an equation of integral dependence for a holding at all $y \in X$, i.e. holding globally for a. . \square

Theorem 4.4 An R-subalgebra A of Q is an R-order in Q if and only if A is an R-lattice.
Proof. Suppose A is an R-order in Q. Write $Q=\oplus K u_{i}$ with $K u_{i}=K e_{i}$ for idempotents $e_{i} \in R$, and with $u_{i} \in A$. Define $g_{i}: Q \rightarrow K$ as $g_{i}\left(u_{i}\right)=e_{i}, E_{i}\left(u_{j}\right)=0$ for $i \neq j$. By Lemma 2.1 there exist $v_{i} \in Q$ such that $\delta_{i}(a)=\operatorname{Trd}\left(v_{i} a\right)$ for all $a \in Q$. Since the g_{i} "s generate the $K-m o d u l e ~ \operatorname{Hom}_{K}(Q, K)$, the v_{i} "s Eenerate Q over K. Similarly $e_{i} g_{i}=\sigma_{i}$ implies $e_{i} v_{i}=v_{i}$. For each $a \in A$ we write $a=\Sigma k_{j} v_{j}$ with $k_{j} \in K$. Then

$$
\operatorname{Trd}\left(a_{i}\right)=\operatorname{Trd}\left(\sum_{j} k_{j} v_{j} u_{i}\right)=\sum_{j} k_{j} g_{j}\left(u_{i}\right)=k_{i} e_{i},
$$

so $k_{i} e_{i} \in R$ by Lemma 2.2. Then

$$
a=\Sigma k_{i} v_{i}=\Sigma k_{i} e_{i} v_{i} \in \Sigma R v_{i}
$$

and hence A is contained in the finitely generated $n=m o d u l e ~ \sum R v_{i}$

Suppose conversely that the R-algebra A is an R-lattice in Q. By Prop. 4.3 it suffices to show that A_{x} is an R_{x}-order for each $x \in X$. We may therefore assume that R is an integral domain with field of fractions K. Let B be any R-order in Q (it exists by Prop. 4.2). By Lemma 3.1 there exists $s \in \sum$ such that $s A C B$. One may now proceed by arguing as in the proof of Prop. 1.2 of [7], and one obtains that a is integral over R. \square

Remarks. 1. By Schelter [21](p. 253) there exists a noetherian R-order over a Krull domain R, such that A is not a finitely generated R-modulc.
2. Kirkman and Kuzmanovich [14] show that if R is hereditary, then every R-order in Q is finitely generated as an R-module, but that this no longer holds if R is only semihereditary.

5. The left and right orders of a lattice

Lemma 5.1 If I is a full R-submodule of Q, then In $\Sigma \neq \varnothing$. Proof. We have $1=\Sigma x_{i} k_{i}$ with $x_{i} \in I, k_{i} \in K$. Choose $s \in \Sigma$ with all $s k_{i} \in R$. Then $s=\sum x_{i} s k_{i} \in I$. $]$

For the converse we have:
Lemma 5.2 If A is an R-order in Q and I is a left A-submodule of Q such that $I \cap \Sigma \neq \varnothing$, then I is full in 2 . Proof. Suppose $s \in \operatorname{In\Sigma }$. If $q \in Q$, then $q=\Sigma a_{i} k_{i}$ with $a_{i} \in A, k_{i} \in K$. But then $q=\sum a_{i} k_{i}=\sum a_{i} s \cdot s^{-1} k_{i} \in I K$. Hence I is full. \square

Let A be an R-order in Q. A left $A-s u b m o d u l e ~ I ~ o f ~ Q, ~$ such that I also is an R-lattice, is called a left R-lattice. Similarly richt Λ-lattices and (two-sided) Λ-B-lattices aro derined.

If I and J are R-submodules of Q, put

$$
I \cdot J=\{q \in Q \mid q J \subset I\}, I \cdot \cdot J=\left\{q \in Q \mid J_{q} \subset I\right\} .
$$

Lemma 5.3. If I and J are R-lattices, then also I•J and I.•J are R-lattices.

Proof. I contains elements x_{1}, \ldots, x_{n} which generatc Q over K, and $J \subset R q_{1}+\ldots+R q_{m}$. We nay write $x_{i} q_{j}=\sum_{k} c_{i j k} x_{k}$ with $c_{i j k} \in K$. Choose $s \in \mathcal{E}$ with all $s c_{i j k} \in R$. Then $s x_{i} q_{j} \in I$, so $s x_{i} \in I \cdot J$ for $i=1, \ldots, n$, and $i t$ follows that $I \cdot . J$ is rull.

If $t \in J \cap \Sigma$ (Lemma 5.1), then (I:.J)tCI, so I•.JCtict, which is contained in a finitely generaied $R-s u b m o d u l c$ of Q. Hence $I \quad J$ is an R-lattice. 0

For each R-lattice I we define the left, resp. rigit, order of I as

$$
o_{1}(I)=\{q \mid q I \subset I\}, \quad o_{r}(I)=\{q \mid I q \subset I\},
$$

which by Lenma 5.3 and Theoren $H_{5} 4$ are R-orders. We also put

$$
I^{-1}=\{q \mid I q I C I\}=o_{I}(I) \cdot \cdot I=o_{r}(I) \cdot I
$$

which by Lema 5.3 also is an R-lattice. Note that while I is an $O_{1}(I)-o_{r}(I)$-lattice, I^{-1} is an $o_{r}(I)-o_{I}(I)$-latiticc. In the usual way one shows:

Proposition 5.4 Let A be an R-order in Q. II I and \bar{u} are left A-subnodules of Q and J isfull, then

$$
I \cdot \cdot J \cong \operatorname{Hom}_{A}(J, I)
$$

In particular one obtains for every R-lattice I in Q that

$$
\begin{aligned}
& \operatorname{Hom}_{O_{I}}(I)(I, I) \cong o_{r}(I) \\
& \operatorname{Hom}_{O_{I}}(I)\left(I, O_{I}(I)\right) \cong I^{-1}
\end{aligned}
$$

6. Maximal orders

An R-order A in Q is maximal if there is no R-orior B in Q such that $A \subset F$. It js innediate from tho definition of orciors, and Zorn's lema, that overy R-order in Q is contained in a naximal R-order.

Proposition 6.1 An R-order A in Q is maximal if anci only if A_{X} is a maximal R_{x}-order in Q_{x} for each $x \in \underline{X}$.
Proof. Suppose each A_{X} is a maximal R_{X}-order. If B is an R-order containine A, then $A_{X}=B_{x}$ for all $: \in X$ by Lenma 4. 3 , and the faithfulness of $\underset{X}{\oplus} R_{X}$ implies that $A=B$. Hericc A is a naxinal R-order.

Suppose on the other hand that A is a maximal R-order, and consider any $x \in \underline{X}$. Suppose $A_{x} \subset C$ for some R_{x}-order C. Put $B=\varphi^{-1}[C]$ under the mapping $\varphi: Q \rightarrow Q_{X}$. So B is an R-algebra containing A. Let $b \in B$. Then $b_{x} \in C$ is intecral over R_{X}, so $e\left(b^{n}+r_{n-1} b^{n-1}+\ldots+r_{0}\right)=0$ for some idempotent e of R, and hence $e b$ is integral over R. It follows that ollenents of $A+e B=(1-e) A \oplus e B$ are intocral over R, and hence $A+O E$ is an R-order. The maximality of A implies $B=A$ and thus $C=$ $=A_{X}$, so also A_{X} is maximal. \square

Proposition 6.2 The following properties of an R-order A in σ_{∞} arc equivalent:
(a) A is a maximal R-order.
(i) $O_{I}(I)=A$ for every loft A-lattice I, and $O_{r}(J)=A$ for overy right A-lattice J.
(c) $O_{1}(I)=o_{r}(I)=A$ fon cvery A-A-lattice I.
(d) If J isan $A-A-l a t t i c o$ and there existe $s \in \sum$ gucin wat $s J^{n} \subset A$ for all $n \geqslant 1$, then JCA.

Proof. (a) $\Rightarrow(b)$ is clear since $O_{I}(I)$ and $O_{r}(J)$ are R-orders containing A, while $(b) \Rightarrow(c)$ is trivial.
(c) $\Rightarrow(d):$ If $s J^{n} \subset A$ for all $n \geqslant 1$, put $J^{\prime}=\sum_{n \geqslant 1} J^{n}$. Then also J° is an $A-A-l a t t i c e$, and we have $J \subset o_{1}\left(J^{\prime}\right)=A$. (d) $\Rightarrow(a)$: Suppoise $A \subset B$, where B is an R-orcior in Q. Then B is an A-A-latice by Theoren 4.4, and by Lema 3.1 there existe $s \in \sum$ such that $s B C A$. Since B is a ring, condition (d) therefore gives $B \subset A$. \square

Ue give two examples of naxinal orders:
Example 1 If A is an Azunaya alebeba over R, then A is a maximal R-order in the Azuajya K-algebra $\Lambda \otimes_{R} K$. Proof: See e.z. [1/], Prop. 1.0. \square

Exampe 2 If A is a naximal R-order in Q, then $A_{i}(A)$ is a naximal R-ordor in $\mathrm{H}_{\mathrm{n}}(2)$.
Proof (cf. [19], p. 110). Suppose B is an P-order in $i_{n}(Q)$ with $H_{n}(A) \subset B$. Let C be the set of elenents $q \in Q$ such that there exists a matrix $M=\left(n_{i j}\right)$ in B with sonc ontry $n_{i j}=q$. In that case also the natrix $\mathrm{I}_{1 \mathrm{i}} \mathrm{HE}_{\mathrm{j} 1}=\mathrm{q} \mathrm{B}_{11}$ belones to B , where $E_{i j}$ denote the matrix units. Hence $C=\left\{q \mid q \sum_{11} \in \equiv\right\}$, and thereiore C is an R-order in Q with $A \subset C$. nonco $A=C$, arci it rollows that $3=i_{n}(A) \cdot \square$

Note that both these examples imply that $i_{n}(R)$ is a naximal R-order in $\mathrm{in}_{\mathrm{n}}(\mathrm{K})$.

7. The rroupoid of divisorial latices

We shall uriefly indicate how the usual foundaions for a mitiplicative iccal thoory can bo deve?oped in this genoral contant. Ai: R-latitico I is nomal if $O_{I}(J)$ anci $O_{n}(I)$ aro marimal R-orders. In that caso also I^{-1} is normal, wit $o_{I}\left(I^{-1}\right)=o_{n}(I)$
and $o_{r}\left(I^{-1}\right)=O_{1}(I)$. A normal R-lattice I is divisorial if $I=\left(I^{-1}\right)^{-1}$. The operation $I \mapsto\left(I^{-1}\right)^{-1}$ is a closure operation on normal R-lattices. Every normal R-lattice I is contained in a smallest divisorial R-lattice, namely $\left(I^{-1}\right)^{-1}$. For any maximal R-orders A and B in Q we let $\mathbb{N}(A, B)$ denote the set of R-lattices I with $O_{l}(I)=A$ and $\circ_{r}(I)=B$. If $I \in \mathbb{N}(A, B)$ and $J \in \mathbb{N}(B, C)$, then $I J \in \mathbb{N}(A, C)$. Wj.th this "proper multiplication", i.e. with IJ defined definod when $\circ_{r}(I)=O_{I}(J)$, the set \underline{N} of all normal R-lattices becomes an abstract category.
If $I, J \in \mathbb{H}(A, B)$, we put. $I \prec J$ when $I^{-1} \subset J^{-1}$, and wo call I and J Artin equivalent if $I^{-1}=J^{-1}$. The proordering \prec is compatible with proper multiplication in N , and

$$
\underline{D}=\underline{N} / \text { Artin equivalence }
$$

becomes an ordered category under the relation \leqslant induced from The image of $I \in \mathbb{N}$ in \underline{D} will be denoted by [I]. Each equivalence class contains precisely one divisorial kaxkixx R-lattice. Actually D is a groupoid, where the inverse of $[I]$ is $\left[I^{-1}\right]$.

For each maximal R-order A we put

$$
\underline{D}(A)=\{[I] \mid I \in \mathbb{N}(A, A)\},
$$

which is a subgroup ("vertex group") of the groupoid D. As usual one concludes (by a theorem of Iwasawa) that the crow g (a) is comnutative ($[4], \mathrm{p} .317$). If A and B are naximal R-ovders, then $\underline{D}(A)$ and $\underline{D}(B)$ arc isomorphic groups; the isomornisen is given by $[J] \mapsto\left[I^{-1} J I\right]$ for any $I \in \mathbb{I}(A, B)$, e.E. $I=A \cdot \cdot 3$, and it is independent of the choice of I since the vertex sroupe are commutative.

Me note:
Proposition 7.1 Every maxinal proper divisorial ideal oi a
maximal R-order A is a minimal full prime itcol oi A.

Proof. (Cf. [8], Th. 1.6). Let P be a maximal divisorial ideal of A. Suppose I, J are ideals \mathcal{P}. with IJ C P. We must have $I^{-1}=A$, for $\left(I^{-1}\right)^{-1}$ is a divisorial ideal properly containins P . Likewise we have $J^{-1}=A$. For each $q \in P^{-1}$ wo havc $q I J \subset q P \subset A$, so $q I C J^{-1}=A$ and $q \in I^{-1}=A$. Hence $P^{-1} C$ C A , which is impossible. This shows that P is prime.

Suppose now Q is a full prime ideal with $Q \subset P$. Then $Q P^{-1} C$ $\subset \mathrm{PP}^{-1} \subset A$. But we also have $Q P^{-1} \cdot P \subset Q$, and since Q is prime, this gives $Q P^{-1} \subset Q$. So $P^{-1} \subset o_{r}(Q)=A$, which is im: possible. $\mathbb{\square}$

8. Prime ideals

Since the Azumaya algebra Q is a PI-ring (it satisfies all polynomial identities holding in some matrix ring over a splitting algebra for Q), also every R-order is a PI-ring. Therefore there are available several results on the lifting of prime ideais. For the convenience of the reader we reproduce then here (see [5], [12], [13] for proois):

Pronosition 8.1 Let A oe an R-order in Q. Then:
(i) For every prime ideal p of R there exists a prime ideal P of A such that $P \cap R=\underline{p}$.
(ii) If $p \subset q$ are prime idcals of R and P is a prime ideal of A with $P \cap R=0$, then there exists a prime iveal Q of A with $P C Q$ and $Q \cap R=q$.
(iii) There cannot exist prime ideals $P_{1} \subset P_{2}$ in A witin $P_{1} \cap R=P_{2} \cap R$.

It follows in particular that if m is a maximal ideal of R and P is a prime ideal of A with $P \cap R=\underline{m}$, then P is a maximal icieal of A . Similarly it follows that if P is a maximal ineal of A, then $P \cap R$ is a maximal ideal of \mathbb{R}.

9. Invertible lattices

An R-latijce I in Q is called invertible if $I I^{-1}=O_{1}(I)$ and $I^{-1} I=o_{r}(I)$. In that casc there is a dorita context derived from the obvious mappines

$$
I \otimes_{O_{r}}(I)^{I^{-1}} \rightarrow o_{I}(I), I^{-1} \otimes_{O_{I}}(I) I \rightarrow o_{r}(I)
$$

Hencc an invertible R-lattice I is a finitely eenerated projective Eenerator for both left $O_{I}(I)$ modules and risht $\circ_{r}(I)$-modules, and the rines $O_{I}(I)$ and $o_{r}(I)$ are Morita equivalert. In particular one has as usual:

Lemma 2.1 Let I be an R-lattice in Q. Then $I^{-1} I=o_{r}(I)$ if and only if I is projective as a left o_{l} (I) module; in that case I is also a finitely cenerated left $O_{1}(I)$-nodule.

If I is an invertible R-lattice, then I^{-1} is invertiole with $o_{1}\left(I^{-1}\right)=o_{r}(I)$ and $o_{r}\left(I^{-1}\right)=o_{1}(I)$. If I and J are invertible R-lattices with $o_{r}(I)=o_{1}(J)$, then $I J$ is invertibie with $o_{I}(I J)=o_{1}(I), o_{r}(I J)=o_{r}(J)$. Henco the invertiule R-lattices form a groupoid under proper nultiplication.

Let A bc an R-order in Q. An R-lattice I is callec A-invertible if it is invertible and $o_{I}(I)=o_{r}(I)=A$. The A-invertible lattices form a multiplicative group I(A). IE A is a naxinal R-order, then $I(A)$ is a suberoup of $\underline{D}(A)$ sirce every invortible latice is divisorial.

The group $I(A)$ may be compared with the Picard groun Pic $\mathrm{c}_{\mathrm{a}}(A)$ of isonorphism classes over ir of invertiblo A-A-bimoduloc. Thome is the usual exact sequence of eroups

$$
1 \rightarrow R^{*} \rightarrow K^{*} \xrightarrow{\varphi} I(A) \xrightarrow{\Psi} \operatorname{Pic}_{R}(A) \xrightarrow{\tau} P_{i} c_{K}(Q)
$$

whers R^{*} and F^{*} are the subgroups of invertiolc oienente of $R \quad$ recp. K, and $\varphi(x)=A x, \psi(I)=[I], \tau([K])=[\because \otimes, K]$.

But Pic $_{K}(Q)=\operatorname{Pic}(K)$ since Z is an Azumaya F -alecira, and $\operatorname{Pic}(K)=0$ since K is von Noumann regular (iarot [17]). Hence:
$\underset{1 \rightarrow \mathbb{R}^{k} \rightarrow K^{k} \rightarrow I(A) \rightarrow P_{i c} C_{R}(A) \rightarrow 0}{\text { Pronosition sequence }}$
is exact.

Fart II. Maximal orders over Krull rings

10. Krull rines

The results on multiplicative ideal theory in $\$ 7$ aay io apyied to the case when the K-alecorra Q is equal to K. Cne then oitcains a generalization of the classical theor:; of divisors (as devoioped in [6], Chap. 7). In particular this leads to a study of Krull subrings of the vor Heumann regular rins K ; a stucty which has been undertaken by J. Harot [16], [17]6cf. aiso G.h. Bereran [3]). Since harots work is not easily availabie, we shall in this soction recapiculate rolovant parts of tit.

Let R be a completoly integrally closed subrine of tric yon :ounann rezular rine K. "lo shall always assume $R \neq R$. An R-subnodule \mathfrak{a} of K is full if and only if $\mathfrak{a} \cap \Sigma \neq \varnothing$. Le.ra 10.1 If $x \in R$. and $s \in \boldsymbol{\Sigma}$, then there oxistes $y \in R$ guch thai $x+y s \in \Sigma$.
Proon. There is an idempotent e such that $x=0 x$ and $e=x u$ for so:e $u \in K$. We assert that $x+(1-e) s \in \sum$. For suppose $z: \%$. $(1-e) s=0$ for some $z \in R$. Then $o z z=0$, so $z:=0$. But $z \in \sum$ then implios $z(1-0)=0$ and $z=40=z x u=0$. \square

Lemma 10.2 Every full R-sukmodulo of K is fenerated by

nun-zoromivisors.

Froof. Let a be an R-submodule of K with $s \in \underline{Z} \boldsymbol{\Sigma}$. To rind non-zero-divisor generators for \underline{a}, it suffices to do so for Rs $+R x$ for each $x \in \underline{a}$, and this is easily done by Lemina 10.1. \square

An R-subnodule a of K is an R-lattice (also called a fractional R-ideal) if and only if there exist $s, t \in \Sigma$ with $s \in$ a and tac \mathcal{C}. A fractional R-ideal \mathfrak{a} is called divisorial if $\underline{a}=R:(R: \underline{a})$, where $\underline{\underline{a}}$ in ceneral denotes the set $\{x \in K \mid x a \subset \underline{b}\}$. Lemma 10.3 R:(R:a) is equal to the interscction $\tilde{\underline{a}}$ of all principal fractional ideals containing a Proof. Let $x \in K$. Then $x \in R:(R: a)$ if and only if $x \in \in R$ for every non-zero-divisor $y \in R: \underline{a}$ (by Lemma 10.2). Thus $x \in R:(R: a)$ if and only if $x \in R^{-1}$ for every y such that $a \subset R_{y}^{-1}$, i.e. if and only if $x \in$ a. \square

Two fractional ideals \underline{a} and \underline{b} are Artin equivalert if and only if $\tilde{a}=\underline{\tilde{b}}$; the equivalence class of $\underline{\underline{a}}$ is called the divisor of \mathfrak{a} and is denoted div a . The divisors form an ordered abolian group $\underline{D}(R)$, which is denoted additively so that

$$
\operatorname{div} \underline{a} \underline{b}=\operatorname{div} \underline{a}+\operatorname{div} \underline{b} \cdot
$$

One has div $\underline{a} \leqslant \operatorname{div} \underline{b}$ if and only if $\tilde{a} \supset \underline{\underline{b}}$.
A discrete valuation on K is a mapping $u: K \rightarrow Z \cup\{\infty\}$ such that

$$
v(x y)=v(x)+v(y),
$$

$$
v(x+y) \geqslant \inf \{v(x), v(y)\},
$$

$$
v(1)=0, \quad v(0)=\infty,
$$

$$
V(x)=1 \text { for somo non-zero-divisor } x \in K \text {. }
$$

The rins $V=\{x \in K \mid \nu(x) \geqslant 0\}$ je the (discroto) yoluation rine of ν, and $p=\{x \in K \mid \nu(x) \geqslant 1\}$ io a fuld prime jumal ui V.

Clearly K is the total ring of fractions of V, and V is conpletely integrally closed in K. All full ideals oi V are principal and of the forn $V p^{n}(n \geqslant 0)$ for a certain $p \in V$, anci $V p$ is the unique fill prime ideal of V.

More generally, a subring V of K, with K as its total ring of fractions, is a valuation ring in K if the full ideals of V are totally ordered under inclusion. As in the classical case one shows (cf. [6], Chap. 6, §4):

Lemma 10.4 Let V be a valuation ring in K. Then any over-ring of V in K is a valuation ring, and the over-rings of V in K are totally ordered under inclusion.
R is a Krull ring if there is a family $\left(\nu_{i}\right){ }_{i \in I}$ of discrete valuations on K such that

K 1) R is the intersection of the valuation rings of the U_{i}; K 2) For every $s \in \boldsymbol{\Sigma}, \quad \nu_{i}(s)=0$ except for finitely many i. Proposition 10.5 The following properties of the ring R are equivalent:
(a) R is a Krull ring.
(b) R satisfies ACC on divisorial ideals.
(c) R_{X} is a Krull donain for each $x \in X$, and for each $s \in \Sigma$, s_{x} is invertible in R_{x} for all but finitely many x. Proof. [3], Prop. 6.2. \square

Let R be a Krull ring. The group $D(R)$ is the free aboliar. group on the set of minimal divisors >0, cailed the prime divisors. The prime divisors correspond to the aaxian proper Qivisorial ideals in R. For each $x \in K$ we can write $\operatorname{div} R x=\sum U_{P}(x) P$,
with summation over the set of prime divisors P; here
ψ_{p} are discrete valuations satisfyine K 1-2, and are called the essential valuations of R.

For each full prime ideal $\underline{\underline{p}}$ of R we let $R_{\underline{\underline{p}}}$ denote the ring of fractions $S^{-1} R$ with $S=\sum \cap(R \backslash \underline{p})$.

The following three lemmas deal with a Krull ring R, and they are proved essentially as in the classical case ([6], Chap. 7, § 1). Lemma 10.6 Let $V_{i}(i \in I)$ be the essential valuations of R, and let R_{i} be the valuation ring of U_{i}. If S is a multiplicatively closed set in Σ, then $S^{-1} R=\bigcap_{j \in J} R_{j}$, where $J=\{i \in I \mid$ $U_{i}(s)=0$ for all $\left.s \in s\right\}$, and $S^{-1} R$ jeJ a Krull ring.

Lemia 10.7 Let \underline{p} be the divisorial ideal correspondine to a
 ideal of R, and $R_{\underline{p}}$ is the valuation ring of ν_{P}.

Lema 10.8 A full ideal $\underline{\underline{p}}$ is a maximal proper divisorial iued of R if and only if p is a minimal full prine ideal of R. There is thus a bijective correspondence between essential valuations on R and minimal full prime idcals of R.

We shall write $\underset{\sim}{P}$ for the set of ninimal full princ ideals of i. Proposition 10.9 The iollowing properties oi the ring R are equivalent:
(a) Every full ideal of R is projective.
(b) R is a Krull ring where every full prime icieal is maxinal.
(c) R is a semihereditary Krull ring.
(d) R_{x} is a Deciekind domain for eacir $x \in \underline{X}$, and for eaci $s \in \Sigma$,
s_{X} is invertible in P_{X} for all but finitoly many x.
Proof. (a) $\Leftrightarrow(d):[3]$, Cor. 4.5.
(c) $\Leftrightarrow(d)$: Prop. 10.4 and [3], Th. 4.1.
$(\mathrm{i}) \Rightarrow(\mathrm{d})$ is clear.
$(c) \Rightarrow(b):$ Let $\underset{m}{m}$ be a full maximal ideal $o \hat{i} R$, and consider tho over-ring $R_{\underline{m}}$ of R. Since R is seminereditary, R_{r-} is a flat R-nodule ([9], Th. 5), and as in [15], Prop. 4 une shows that $R_{\underline{n}}$ is a valuation ring in K. But $R_{\text {n }}$ is the intersection of a fanily $\left(R_{j}\right)_{J}$ of valuation rings of essential valuations of R (Lemma 10.6). From Leinaa 10.4 follows that $R_{\underline{[}}=R_{j}$ for some $j J, ~ a n d i t$ follows that \underline{m} must be a minimal full prime ideal. \square

A ring satisfying the conditions of Prop. 10.9 is called a Dedekind ring (in K).

Proposition 10.10 If K is hereditary, then every Dodolirid rine R in K is hereditary.
Proof. Let a be an ideal in R. We can write $a K=\underset{I}{\varphi} \mathrm{Ke}_{i}$, where $\left(e_{i}\right)_{I}$ is a family of orthogonal idempotents. if a $a \in$, then $a=\Sigma k_{i} e_{i}$ with $k_{i} \in K$ and almost all $k_{i}=0$. Since $k_{i} e_{i}=a e_{i} \in \operatorname{Re}_{i} \cap \underline{a}=\underline{a}_{i}$, it follows that $a=\frac{\oplus}{I}{\underset{a}{i}}$.

Since $e_{i} \in a K$, we see that a contains an element $s_{i} e_{i}$ with $s_{i} \in \Sigma$, for each $i \in I$. Let $x \in a_{i}$. By Lemma 10.1 there exists $y \in R$ such that $z=x+y s_{i} \in \Sigma$. Then $x=x e_{i}=z e_{i}-r s_{i} e_{i} \in$ $\in R S_{i} e_{i}$, where $S_{i}=\left\{t \in \mathcal{E} \mid t e_{i} \in \underline{a}_{i}\right\}$, and so $a_{i}=R S_{i} e_{i}$. Since $R S_{i}$ is a full ideal of R, it is projective, and so is then also $a_{i} \cdot \square$

11. Krull orders

Lomma 11,1 Let R be a Krull ring and A an R-order in Q. If a is a non-zeromivisor in A, then a_{x} is invertiblcin A_{i} for all but ininitely many x.
Proof. One may write $a^{-1}=i s^{-1}$ with $b \in A$ and $s \in \Sigma$. Ence s_{x} in invortible in R_{x} for all out finitely many \because (Prop. 10.5), it fullows that $a_{x}{ }^{-1} \in A_{x}$ for all but finitely many $x \cdot \square$

Theorem 11.2 Let A be a maximal R-order in Q. The following conditions arc equivalent:
(a) A satisfies ACC on divisorial ideals.
(b) $\underline{D}(A)$ is a free abelian group with the set of maximal proper divisorial ideals as basis.
(c) R is a Krull ring.

A aaximal R-order A satisfying these conditions is called a Krutl order.

Proof. (a) $\Leftrightarrow(b)$ is standard.
(a) $\Rightarrow(c)$: Let a be divisorial ideal jn R, and put $I=$ $=\left((A \underline{a})^{-1}\right)^{-1}$. Then I is a divisorial ideal in A, and it surfices to show that $I \cap R=$ a , because then ACC for divisorial ideals in R will follow, and we can apply Prop. 10.4. How $(I \cap R) \cdot(R: a) \subset I \cdot(A \underline{a})^{-1} \cap K \subset A \cap K=R$.
Hence $I \cap R \subset R:(R: \underline{a})=\underline{a}$, so $I \cap R=\underline{a}$. (Cf. [7], Lema 1.3). (c) \Rightarrow (a): From Lemma 5.1 follows that A_{x} is a aximal order over the Krull domain R_{X}, for each $x \in X$. If I is a divisorial ideal of A, then $I_{X}=A_{x}$ for all but finitely many x, by Leman 11.1. Since each A_{x} satisfies $A C C$ on divisorial ideals ([2], n. 151), it follows that also A does so. \square

Let R be a Krull ring. An R-lattice in Q is said to ve P-divisorial if $I=\bigcap_{\underline{P}} I_{\underline{p}}$. Sinilarly to ([2], p 154) one has: Proposition 11.3 Let R be a Krull ring, and let A be an R-order in Q. Then A is a maximal R-order if and only if is

12. Dedelind orders

Theorem 12.1 The following properties are equivalent for a mainmal R-order A in Q :
(a) Every full ideal of A is invertible.
(b) Every full ideal of A is a projective left A-module.
(c) Every $\mathrm{A}-\mathrm{A}-1$ attice is invertible.
(d) The A-A-lattices forr under multiplication a free abelian group with the set of full maximal ideals as basis.
(c) A satisfies ACC on full ideals, and every full prime ideal of A is a naximal ideal.
(f) Every full left ideal of A is a finitely generated projective left A-nodule.
(c) R is a Dedekind ring.

A maximal R-orcier A satisfying these conditions is called a Dedckinà order.
Proof. (a) $\Rightarrow(c)$ is clear since for every $A-A-l a t i c e ~ I ~ t h e r e ~$ exists $s \in \sum$ such that $s I$ is a full ideal in A. $(c) \Rightarrow(C)$: The $A-A-l a t i c i c e s$ now form the group $D(A)$, since every A-A-lattice is divisorial, and this Eroup is free duelian on the set or maximal divisorial icieals.
 full ideal is a product of maxinal ideals, a full prime Edeai must be maximal.
(e) $\Rightarrow\left(\rho_{2}\right): R$ is a Krull rine by Theorem 11.2, and every iull prime ideal of R is maximal by Prop. 8.1, so R is Deciekind oy Pron. 10.9. $(\hat{E}) \Rightarrow(f):$ Each $R_{X}, x \in X$, is a Dedokinc donain by Prow. 10.9, and A_{x} is therefore a hereditary R_{x}-order (srop. 5. 1 mis [1], Th. 2.9). Evory full left ideal of A is finitoly fonorated projective by the argument used in the prooi of Lown j. \bar{j} or [14].
$(f) \Rightarrow(b)$ is trivial.
(b) $\Rightarrow(a)$: Let I be a full ideal of A. Then $I^{-1} I=A$ by Lema 9.1. This also Eives

$$
\left(I I^{-1}\right)^{-1} I=\left(I I^{-1}\right)^{-1} I I^{-1} I \subset I
$$

and hence $\left(I I^{-1}\right)^{-1} \subset O_{I}(I)=A$. But $I I^{-1} \subset A$ then implies $I I^{-1}=A \cdot D$

Proposition 12.2 Let A be a Dedekind R-order. If I is a left A-lattice, thon $O_{r}(I)$ is a Dedelind R-order, and I is inverible. Proof. Put $J=I I^{-1}$, which is a full ideal in A. Hence J is inverticle, and $J^{-1}=A$, i.e. $I I^{-1} J^{-1}=A$. It follows that $I^{-1} J^{-1} \subset I^{-1}$, so $J^{-1} \subset o_{r}\left(I^{-1}\right)=A$. Therefore $J=A$, and I is invertible. Also $O_{r}(I)$ is a Dedekind R-order, since it is Morita equivalent to A. \square

Remark 1. If R is hereditary ring, then every Denebind R-order is a left and richt heroditary ring by [14]. Remark 2. One may ask whether every Dedekind R-order is finitely gencrated as an R-module.

Reforcnces:

1. M. Auslander and O. Goldnan, Maximal orderis. Trans. Amer. Vath. Soc. 97 (1960), 1-24.
2. H. Bass, Algebraic K-theory. Benjamin 1963.
3. G. Bergan, Hereditary comutative rines and centers of hereditary rinfs. Proc. London ilath. Soc. 23 (1971), 214-236.
4. G. Birkhoff, Lattice theory. MilS Coll. Publ. vol 25 (3:rà ed.), Amer. Math. Soc. 1957.
5. W. D. Blair, Right noctherian rines integral over thoir center. J. Als. 27 (1973), 187-193.
6. I. Bourbaki, Alsebre comutative. Hermann.
7. K. Chamarie, Ordres maxinaux et R-ordres haxinaux. J. AIE. 58 (1979), 148-156.
8. J.H. Cozzons and F.L. Sandouierski, Maximal orders and locaIiration. J. AIf. 4.4 (1977), 319-338.
9. S. Enco, On semi-hereditary rings. J. hath. Soc. Jepan 13 (1961), 109-119.
10. R. Fossum, daminal orders over Krull domains. J. Ale. 10 (190̈) , 321-332.
11. O. Goldnan, Quasi-equality in maximal orders. J. Math. Joc. Japan 13 (1961), 371-375.
12. A.G. Heinick, A reank about noncomutative jntegrai sumasiono. Canad. Math. 3ull. 13 (1970), 359-361.
13. K. Hocchsman, Liftine ideals in noncomutative intecral extensions. Canad. Nath. Bull. 13 (1970), 129-130.

1\%. Z. Kirknan and J. Kuzmanovich, Ordors over hercitary ana. Ј. AI. . $55(1970), 1-27$.
 anc a note on flat ovorrinea. Dukc Nath. J. 34 (1967), ?
16. J. Marot, Extension de la notion d"anneau de valuation. Dcpt. de Math. Brest.
17. J. Marot, Une extension de la notion d"anneau de valuation et application $A^{\prime \prime}$ 'ftude des anneaux héréditaires commutatifs. Partie B de These, Universite de Paris-Sud, Orsay 1977.
18. R.S. Pierce, Modules over commutative regular rings. Memoirs Aner. Math. Soc. 70 (1967).
19. I. Reiner, Maximal orders. Academic Press 1975.
20. J.C. Robson, Non-comatative Dedekind rings. J. Als̃. 9 (1968), 249-265.
21. W. Schelter, Integral extensions of rines satisfyine a polynomial identity. J. Alg. 40 (1976), 245-257.
22. O.E. Villamayor and D. Zelinsky, Galois theory with infinitely many idempotents. Nagoya Math. J. 35 (1969), 83-98.

