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A CHARACTERISTIC CLASS IN ALGEBRAIC K-THEORY 

Robert M. FOSSUM 

O. INTRODUCTION 

This lecture reports on work done jointly with H.-B. FOXBY and B. IVERSEN. 

Details are found in [FFI]. The interest in this work began when we tried to 

formalize the following problem : let A be a noetherian local ring. Consider 

bounded complexes of projective A-modules of finite type which have homology 

of finite length and maps from this category to abelian groups that are additive 

over exact sequences of complexes and one equal on complexes that are homo to­

pically equivalent. Find a universal group for these maps and generators (and 

relations) for this group. While studying this problem we rediscovered some 

relative K-groups of Bass [B], found a generalization of Mennicke symbols and 

used some of our techniques to calculate anew some groups of divisors. Since 

the details are available in preprint form and may he available soon in 

published form, this report will attempt only to give the highlight of our 

work. This report is divided into three parts that are described below. 

§1. ^)-Theory. This section contains definitions and alludes to some 

basic properties of family of abelian groups that FOXBY and I denote by (̂ ) 

(a Danish vowel that is close, in most languages, to t fa M or , fe , f or somewhere 

in between, that has the sound of e in the english "bed", and that is phone­

tically written 11 e") . One of the groups in the family is the group mentioned 

in the paragraph above. 

§2. Characteristic classes and Mennicke symbols. This section contains 

some mention of the relations between groups in the family above and relative 

K-groups. There is also an indication of the construction of relative Mennicke 

symbols. 
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§3. Examples. In this section examples are mentioned of calculations 

of some of the groups involved. 

Again I want to emphasize that this is work done together with FOXBY 

and IVERSEN. I thank my wife Barbara for her inspiration. This research was 

partially supported by the United States National Science Foundation. 

§ 1. (^-THEORY 

Let A be a commutative ring. Let(?.(A) denote the category of complexes 

of projective A-modules of finite type. 

Recall that a morphism f. : P. — > Q. in (A) is a family of homo-

morphisms f^ : — > such that 

d P 

P i Pi-1 

f. f. . 
y d ? v/ 
Q. - > Q. , 

commutes for each i. Such a map induces a homomorphism H.(f.) : H. (?.)—> H. (Q.) 

on homology. A morphism f. is a quasi-isomorphism if H.(f.) is an isomorphism. 

k sequence 

0 > P. > Q. — ^ — > R. > 0 

of complexes is exact if the sequences 

f i *i 
0 — > P > Q > R_ — > 

1 
are split exact for each i. 

Let *^?(A) denote the category of bounded complexes in Jf. (A) . 

Of P. € )S^(A), the length of P. is defined by 

lenght(P.) = sup {i : ?i $ 0} - inf {i | ? i + 0 } . 

Let s& be a Serre subcategory of the category of A-modules. We denote by 
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g. (A^) and byg!?(A,4) the subcategories of g. (A) a n d ^ ( A ) consisting of 

those complexes whose homology modules are objects in>&. (For example i f ^ 

is the category of A-modules, then (A^) * (A) . I f ^ = {0}, then {8. (A,*5) 

is the category of exact complexes, that is H.(P.) = 0 ) . 

Note that (A,/$ and ̂ ?(A,^) are Serre subcategories in that if 

0 > P. > Q. > R. > 0 

is an exact sequence of complexes and any two of the complexes are in (A^4) , 

then the third is also. Note also that by using quasi-isomorphisms or the 

homology category, we can get triangulated categories in the sense of Verdier 

[V]. 

Either using triangulated categories or ab initio we define an abelian 

group (^)(A,^) to be a certain Grothendieck group. 

THEOREM 1.1. There is an abelian group (SpCA,-^) and an assignment 

< g ) : ^ ( A , ^ ) > ® ( A ^ ) such that : 

1.2. if 0 — > P. — > Q. — > R. — > 0 is exact in ^ ( A , ^ ) 

(g)(Q.) - @ L (P.) + © ( R . ) . 

1.3. If P. is in^.(k,A) and H.(P.) = 0, then®(?.) = 0. 

1.4. The pair (@(A,/£) , @ ) is universal for such assignments. 

(This means, of course, that if < > : jS^(k9/0 — > L is such an assignment 

to an abelian groupe L, then there is a unique (œj): (^)(A^) é—> L such that 

commutes). 

Recall that a complex can be shifted, if P. 6 if. (A), then for n € Z we 

define a new complex P.[n] by 
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<P.[»D. : = P n + i 

with differential d ? [ n ] = (-l) n d P . . 
i 7 n+i 

Using mapping cones and an inductive definition of the total complex of 

a double complex, a very useful result concerning the classes of a total 

complex is obtained. While no direct use is made in this report, the result 

is, in some sense, critical in making calculations. 

THEOREM 1.5. Let P.. be a bounded double complex such that P^. € j ^ ( A ^ ) 

for each i. Then the total complex 

Tot. (P. .) € ^ ( A ^ 6 ) 
and 

(g)(Tot.(P..)) - I (-1)1 (g)(P..) 
in L 

COROLLARY 1.6. Of P . € ^ ? ( A , ^ , then 

(g)(P.[n]) = (-l)n (g)(P.) . 

COROLLARY 1.7. Of P.. is a bounded complex and ?.,€ ^?(A,^) and 

P..€ j^(A,xO for all i and j , t/zen 

£ (-l) i©(P i.) - I (-l)j © ( P . . ) t n @ ( A U ) 
i J J 

This last result is particularly useful when considering a square of 

A-modules, 
di 

Pl > P o 
1 o V e v 
Qi > • 

Suppose the four complexes are i n ^ . ( A ^ ) . Then, denoteng the class of 

the complex by @ ( f ) , where f is the map, we obtain 

-<g)(fj) +<g)(f0) = -<g(d,) + @ ( e , ) , 

(g)(fo) + <£><<!,) = @ ( e , ) . © ( f j ) , 

® ( f 0 . d , ) = (gXej.f,) 
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where *i°*\> fQ°d] : Pj > Q Q . 

We have in mind two categories^. Let fl denote the category of A-modules 

of finite length. Then P. £^?(A,fl) if and only if IL(P.).has finite lenght 

for each i. There is an obvious map x : {*k(A,Jl) — > 2 given by 

X(P.) : = Z(-l) 1 length (H.(P.)) 

and this clearly factors through (3j^(A,fl) . In some special cases we can 

determine the kernel of this homomorphism (cf. § 3). 

Let S be a multiplicative subset of A. We can consider those modules H 

for which S M = (0). Then^.(A,^) consists of those complexes P. such that 

S *P. is exact. The associated group is denoted by (^)(A,S *A). In § 3 we will 

indicate how useful this group is for classifying singularities. 

We introduce another family of abelian groups. Let F \Q > ^3 be an 

additive functor form the additive category GL to the additive category 

Define two categories Co(F) and Hot(#,F) as follows : 

The category Co(F) consists of triples 

71 = ( P l ' P ) P o ) 

as objects, where P^ € GL and p : F(Pj) — > F(P ) is an isomorphism in $ • 

Morphisms in Co(F) are pairs 

f. = ( f r f Q ) : J L — > P. ' - ( V r ' P o } 

where f. : P. — > R. and the diagram i l l & 

FP. 2 > FP 
1 o 

Ff f Ff 1 o 

FR. ^ > FR 
I o 

is commutative. 

The category Hot((2,F) consists of bounded complexes P. of objects in £ L 

such that the transforms under F are contractible in 13 ; morphisms are maps 

of complexes. (Recall that a bounded complex Q. in *0 is contractible if there 
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are morphisms : — > Q ^ + J such that 

Si-l° di + d i + l ° S i * I d Q . 

for each i. Call S. the contraction) 

Suppose P. e Hot(£,F) with contraction S. We construct an object 

(1.6) jr(P.,S.) in Co(F) 

by ,(P.,S.) « ( P o d d , P , P e v e n ) 

where 

P2i-1 P2i 
Podd : = 4- p

2 i + , % * ^ Peven : ^ P 2 i " * 
1 2i+l 1 P2i+2 

• » 

and p : F ( P o d d ) — > F ( P e v e n ) is given by 

F(d 2 i_,) 0 0 

S2i-1 F ( d 2 i + 1 > 0 

0 S2i+1 F ( d 2 i + 3 > 

Since f ... S 2 n _ 2
 p ( d 2 n ) 0 1 f I d 0 

0 S2n F ( d 2 n + 2 } ° P = I d 

1 * 
v J \ J 

it follows that p is an isomorphism and that we have determined an element 

in Co(F). 

Now define two groups denoted respectively by K Q ( ^ , F ) and K Q(Hot(£,F )) 

whose existences are guaranteed by the following theorems. 
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THEOREM 1.7. Let F : <2 — > £?as afccwe. TTzere is an abelian group K Q ( £ , F ) and 

an assigment [ ] : Co(F) — > K Q ( # , F ) satisfying. 

1.8. _If IT and p are composible in the sense that- P q = Rj, and denoting 

by PIT the composition then 

[p*-] = [p] + [TT] . 

1.9. _If 0 > £ — > £ — ^ — > £ > 0 is exact (which means that 

f i «i 
P. — > R. — > S. 
i l l 

are split exact in GL), then 

[ p ] = b ] + [ a ] • 

1.10. The pair ( K Q ( # , F ) , [ ]) is universal for assignments satisfying 

1.8 and 1.9. 

THEOREM 1.11. There is an abelian group K Q(Hot(#,F)) and an assignment 

< >: Hot(#,F) — > K Q(Hot(<?,F)) satisfying. 

1.12. _If P. is contractible in then <P.> = 0. 

\.\3. If 0 — > P. — > Q. — > R. — > 0 is exact Hot(&,F) , then 

<Q.> = <P.> + <R.> . 

1.14. The pair (K q(Hot(Û,F) ,< >) is universal for maps from Hot(£L,F) 

to abelian groups satisfying 1.12 and 1.13. 

We note that the triple TT_(P.,S.) for P. in Hot(#,F) gives an element in 

Co(F) and hence in K Q(Q,F). The main theorem in this part of theory is that 

this element is indépendant of the contraction S. 

THEOREM 1.15. Suppose P. is in Hot(#,F). The element £ ( P . , S . ) is indépendant 

of the contraction S. That is to say, if t. is another contraction 3 then 

[ff(P.,S.)l = b(P.,t.)] . 
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DEFINITION 1.16. The map induced from Hot(Q,F) to K Q ( # , F ) is denoted by wh 

and is called the whitehead maps, in order to indicate the influence of 

whitehead on this subject. The whitehead map satisfies 1.12 and 1.13 and 

therefore there is a unique map 

wh : K o(Hot(0,F)) > K Q ( a , F ) 

satisfying wh<P.> - [TT(P.,S.)] . 

In case F is localizing in the sense of Gabriel, then it can be shown 

that wh is an isomorphism. In particular, when this is the case, then 

KQ(Hot(fl,F)) is generated by complexes of length 1. We return later to this 

remark. 

It is not the intention here to list all the functorial properties of there 

groups (2)(A,^[), KQ(Hot((2,F)) and K Q(Q,F) . Some of them are obvious. One 

question that comes immediately to mind is the relation that might exist 

between @ ( A ^ ) and some K Q(Hot(#,F)) . For example, let (X be the additive 

category generated by the projective A-modules of finite type. Is there a 
b 

fonctor F : CL — > 13 such that Hot(#,F) - V». ( A , ^ ? Is there an F that is 

localizing ? 

§ 2. CHAPvACTERISTIC CLASSES AND GENERALIZED MENNICKE SYMBOLS. 

In this section A denotes a ring with 1 (not necessarily commutative). 

We work with right A-modules. 

DEFINITION 2.1. A pair (F,f) is a based krmodule if F is a free module with 

ordered basis f = (fj,...,f ) . If (FJ:f),(G,£) is a pair of based k-moduless 

r F f 
then the direct sum (e , J is a based k-module with basis 

G 8 

- fl f n 0 0 

( £ ) = ( 0 )»•••»(() W 81 gnJ • 

A homomorphism f : (F,f) — > (G,£) of based modules is a homomorphism of 

the underlying A-modules. 



- 71 -

9 

A bounded complex of based A-modules F. is exact if the complex of 

underlying A-modules is exact and 

I (-1)1 rk(F.) - 0. 
i 

Suppose F. is exact. Construct based A-modules 

F2i-1 F2i-2 
F ,, - e and F = s odd r even 

F2i+1 F2i 
e 

and a matrix W(S.) : F — > F defined by this complex as follows : 
odd even J 

let S. be a contraction of F. (which exists because the complex is exact and 

consists of free modules). Then each S^ has a matrix with respect to the bases 

of F. and F... Then set 1 l+l 

d2n-l 

W ( S - > = S2n-1 d2n+l 0 

0 S2n+1 0 

0 

As before, it follows that W(S.) e GL^(A). Using a proof similar to that used 

to show the independence of the Whitehead map in the previous section, we can 

show that the class of W(S.) in K^(A) is independent of the contraction. 

THEOREM 2.2. The class of W(S.) in Kj(A) is independent of S. . 

DEFINITION 2.3. Call the element obtained in K^(A) the whitehead torsion of 

the complex F. and denote it by wt(F.). 

Using techniques developed in examing the properties for wh, it possible 

to write formulas for wt(F.[n]) and wt(Tot.(F..) wich are similar to those 
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found in 1.6. and 1.7. 

This construction is used to define generalized Mennicke symbols. For 

the remainder of this section we suppose A is a commutative ring. 

If (EjfJ is a based module, then the exterior powers (A^E,Ae) become 

based modules by ordering the tensors e.' A e . A ... A e. lexiographically. 
Ll X 2 L p 

Suppose (a,,...,a ) € A n and that this row in unimodular. Then the Koszul 1 n 
complex K.(aj,...,an) becomes a based complex which is exact. 

DEFINITION 2.4. If (ap...,a f l) is a unimodular row in An., the the generalized 

n t h order Mennicke symbol, denoted by [a^,...,a ], is defined by 

[aj a Q ] : - wt(K. (aj,. .. ,a n)) . 

THEOREM 2.5. The n t h order Mennicke symbol is 

i) symmetric, 

ii) multilinear, and 

iii) unimodular. 

It is clear what it means to be symmetric. To be multilinear means 

[ab,3.^y • • • ya^ ] — [a,a.^,...,a^] [b,a2» • • • >a^ ] . 

While to be unimodular means 

tal + X l a n , - - , , a n - l + X n - l a n , a n ] = [a 1,...,a n] 

for any (Xp...,X j) G A n 1 . 

Examples. For n = 2, we obtain 

1 X 2 

where a j X 2 " a2 Xl = 1 # 

For n = 3, suppose a j X
3 " a

2
X 2 + a 3 X l = 1 # T h e n 



- 73 -

11 

aj a 2 a^ 0 

X 2 X 3 0 a 3 

[a ,a 2,a. ] = 

-Xj 0 X 3 -a 2 

_ [ 0 -X ] -X 2 a,J _ 

When n=4, then for a, X,-a 0X 0+a 0X 0-a,X. = 1 we obtain 
' 1 4 2 3 3 2 4 1 

f(a. a« a« a,) J 0 0 0 0 ) 
1 2 3 -j 

X 3 X 4 0 0 j a 3 a 4 0 0 

-X n 0 -X, 0 i -a 0 0 -a, 0 
2 4 2 4 

X. 0 0 X, j 0 - a 0 -a~ 0 
r I -

 1 * 2 3 1*1,a2,a3,a^ j - j 
0 - X 2 -X 3 0 j a ] 0 0 a^ 

0 X ] 0 -X 3 ¡ 0 a 1 0 - a 3 

0 0 X ] X 2 j 0 0 a ] a ? 

a 

_ I 0 0 0 0 ! (xi x

2

 x

3 V ' -

k k+1 
Example. Let $ denote the k-sphere IR given as the locus of 

2 2 2 

Xj+X 2+..«
+ x£_j = !• Let denote the ring of complex valued continuous 

functions on S . From [M] and the periodicity theorem it follows that 

j 2 k - 3,5,7,... 

SK 1(A k) = j 
y 0 otherwise. 

Suppose k is odd, say k = 2n-l. Then R k + 1 = (En with coordinate functions 

Z.,...Z . Furthermore 1 is the locus of Z.Z. + ...+Z = 1. Hence 
1' n l i n n 

(Zj,...,Z ) is a unimodular row in A 2 n_j (where we restrict the Z^). 

THEOREM 2.6. For n > 2 , fcfte Mennicke symbol [Zp...,Z ] generates S Ki( A2n-P* 

Let B k = C[X 1,X 2,...,X k + 1]/(X^+X 2+...+X^ + 1 = 1). When k+1 = 2n, set 

Z = X n , + iX 0 and Z = X 0 i ~ i X 0 for m = l,2,...,n. 
m 2m-1 2m m 2m-1 2m 
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Then B 2 n_j - €[Z],Z]
 Z

n > \ ]/(ZjZj + .. , + Z ^ - l ) . 

There is an injection %2n-\ c — > A^n-l a n ( * hence a homomorphism 

The generalized Mennicke symbol [Zp...,Z Q] lives in SK 1 (B2n— 1 ̂  a n c i h e n c e w e 

conclude that 

for n 5,2. 

The interseted reader is referred to [FFI ] for further computations and 

the demonstrations of there results. 

§ 3. EXAMPLES. 

In this last section we indicate how sensitive the group (M)(A.f 1) is to 

the properties of A. We assume that A is noetherian. Suppose xf is a Serre 

subcategory of the category of A-modules of finite type. Let G Q(^) denote the 

Grothendieck group on ?̂ . 

DEFINITION 3.1. The Euler characteristic of a complex P. in Jf^(A,^) is defined 

to be 

X(P.) : - I (-0 1 [^(P.)] , 
i 

where [EL(P.)1 denotes the class of H^(P.) is Gq(a£) * 

There is induced a unique homomorphism 

X : ® ( A ^ ) — > G q U ) 

such that 

X(@(P.)) - X(P-). 

THEOREM 3.2. Let A be a regular local ring. Then 

X : ® ( A , f l ) — > I = G Q(fl) 

is an isomorphism. 

Problem 3.3. 
a) Compute (2e)(A,I1) for A a regular, but not necessarily local, ring. 
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b) Compute ©(A,fl) for all local rings. 

We mention at this point a problem suggested by L. SZPIRO. If P. is a 

bounded complex with finite length homology, where we assume A is a local 

ring, then the same is true of its dual Hom^(P.,A) = : PY . 

If P. is exact then so is P. . Also if 

0 — > P. — > Q. — > R. — > 0 

is exact, then 

0 — > R* — > — > P T — > 0 

is exact. We get induced an involution v : (S)(A,fl) — > (^?)(A,fl). satisfying 

@(pr) =<§)(P.) V. 

Problem 3.4. (Szpiro). Let ^ be as in definition 3.1. What is the relation 

between x(P«) and x(P- V) ? More generally what properties does v have as a 

homomorphism of (^s)(A«fl) ? (Cf [PS] ) where a formula is discussed in the 

graded case). 

Consider now the case where S is a multiplicatively closed subset of A. 

We want to consider @ ( A , S *A) . The theory developed in § 1 can be used. 

Let P(A) = be the category of projective A-modules of finite type and let 3̂ 

- 1 Jrs -1 

be S A-modules, the functor S : P(A) — > 1? is just P — > S P. It is 

clearly localizing. Hence (j£)(k9S~
]k) = K (Hot(P(A) ,S)) = K o ( A , S

H A ) . There 

is a resulting exact sequence [B] of K-groups 

K.(A) > K.CS^A) > ® ( A , S ~ 1 A ) > K (A) > K ( S H A ) 
i l ^-^ o o 
I det Idet Idet det Idet 

V Í ^ i ^ ^ i 
U_(A) > £(S~ A) > Pic(A,S A) > Pic(A) > Pic(S A) 

which fits into the diagram above. (Let u_(A) be the group of units of A, 

let oKA) be the additive group of A ) . 

Apply this to the case 

- A is a reduced local ring of dimension 1 

- S is the set of non-zero divisors in A 
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- B is the normal closure of A in S ^ A , which we assume to be of finite 

type as an A-module. Then the exact sequences of K-theory become, respectively, 

1 > y (A) > yXS~ L A) > ® ( A , S - 1 A ) - > 0 

V V V 

1 > £ ( B ) > U ( S H A ) >(^)(B , S ~ 1 A ) > 0 

which yields an exact sequence 

0 > u(B ) / u ( A ) > @ ( A , S " 1 A ) > < g ) ( B , S ~ 1 B ) > 0 . 

Since B is a semi local regular ring, the local Euler maps induce an iso­

morphism . , 
@ ( B , S " B) 2l * 

where b is the number of branches of A , or the number of maximal ideals of B. 

THEOREM 3.5. Of the residue class field k of A is algebraically closeds then 

K ( A f S - 1 A ) - ( g k A . S ^ A ) - Q(k) x J* 

where Q(k) is an abelian group that is g divisible for all g with (g,chark) - 1 

and b is the number of branches of A . 

Let JE be the conductor from B to A . Then the diagram 

A > A/f 

B > B/f 

is cartesian and so there results an isomorphism 

y W / ^ C A ) ^y(B/f)/y (A/f) . 

Suppose A is a subsemi group of ]N - IN U {0}. Let = ]N - A_. Suppose further 

that AZ = 1 (i.e. the greatest common divisor of elements in A_ is 1). This is 

the same as to say A_ is finite. Let f+1 = min n : n ̂  A} . Suppose k is a 

field. Let A ^ = be the subring of k[[t ]] consisting of those power series 

a Q + a } t + a 2t +.. . = : p(t) such that a. = 0 if i A_. Set B = k[ [ t ] ] . Then B 

is the normal closure of A and the conductor f of A , in B is the principal 
~~ A. 

idal t f + 1 B = { p(t) : a Q = a} = .- = a f = 0} . Then B / f - k[t]/t f + I[t ] and 
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A ^ / ^ " is the subring consisting of those truncated polynomials whose coef­

ficients of t 1 are zero unless i € A . 

Let R be a commutative ring. For an integer n €1N, let ^ n(R) denote the 

set of n x n unipotent upper triangular matrice of the form 

' 1 al a 2 a 3 a n 
0 1 a, a 2 a n_, 

0 0 0 ... 1 a ] 

0 0 0 ... 0 1 

If (l,aj,,..,a ) dans (1,bj,... ,b^) are two such matrices, then the product 

is (1,Cj,...,c ) where 

ci = ai + bi 
c 2 ~ a 2 + al^l + ^2 

c = a + a . b t + a 0b 0+...+ a,b ,+b n n n-I 1 n-2 2 1 n-1 n 

Now note that f(t) € R[t]/(t n + 1) is a unit if and only if f(0) in R is a 

unit. Write such an element as 

a Qg(t) = a o(l+c 1t+...+c nt n) . 

Define a map 

y(R[T]/(t n + 1)) > vi(R) X W (R) 
, — — n by 

a Qg(t) > (a o,(l, C l,...,c n)) . 

(This looks like the matrix 

c a a, ... a ^ 
o 1 n 0 a a. a . o 1 n-1 

0 0 a a, o 1 
0 0 0 a 

^ o J 

where a^ = a
0

c i ^ • ̂ is map is clearly an isomorphism. If A_ in as above and 

(R[t]/(t f + 1)) A denotes those polynomials whose coefficients of t d are zero 



78 -

16 

for d in A , then W f A ( R ) , the subgroup of W f(R) for which a. = 0 if i e A , 

f+1 

is in the image of y(R[t]/(t ))^)* Hence 

y(R[t]/(t £ + 1)/ J i((R[t]/(t f + ,)) A) ^ W f ( R ) / W f ^ ( R ) . 

Note that multiplication by an element of the form 

(1,0,0,...,0,a r,a r +j,...,a^) leaves the first r coordinates of (1,bj,...,b^) 

unchanged. So given (1,bj,b2,...,b^) in W^(R), there is an element u in 

W f A ^ R ^ s u c h that u(1,bj,...,b^) = (1 ,Cj , c 2 , . . . , c p where c. = 0 if i ^ A ^ 

Let a^(R) : = W^(R)/W^ A ( R ) . Then is an algebraic group of dimension 
Card(jA) and = Spec(Z [X ],... ,X d ]) where Card ^A • d. 

Example 1. Take _A • {1,2,3,...,f}. So the semi-group is S = {0,f+1,f+2,...}. 

Then 
A A

 = Wf • 
Thus for A A — (a + a- , t f + 1 + a- 0 t f + 2 +...} we get 

A O r+1 f+Z 

(g)(AA,L) = W f(k) x Z . 

Example 2. The cusp. Take A_ - O h Then 

A A = k[[t 2,t 3]] = k[[X,Y]]/(y 2-X 3). 
Then ~~ 

® ( A A , L ) = a(k) x 2. 

Example 3. Take A_ = {1,3}. Then 

A A = k[[t 2,t 5]] = k[[X,y]]/(Y 2-X 5). 
Then 

(g)(AA,L) = 3 } ( k ) x 2 . 

Now j 3}(k) = k x k . We consider an element (a^a^) = (l,aj,0,a3) 

mod W 4 ^ ( k ) . So ( a p a 3 ) 9 ( b ^ b ^ = (1 ,a] ,0,a 3) (1 ,bj ,0,b3> mod A(k) . Then 

(l,a 1,0,a 3)(l,bj,0,b 3) = (1,a ]+b ], a }b {,a 3+b 3) . 

Mutiply this by (1,0,-ajbj,0) to get 
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= (l,a 1+b 1,0,a 3+b 3-(a 1b 1)(a 1+b 1)) « (a^b j ,a 3+b 3-a ]b 1 (a^bj)) . 

So in a^j w e have 

( a ] f a 3 ) ^(bj,b 3) = (aj+bj,a 3+b 3-a ]b 1(aj+bj)) 

(which is addition of 3-Witt vectors of length 2 ) . 

Example 4. Take = {1,3,5}. Then 

A A = k[[t 2,t 7I] = k[[X,Y]]/(Y 2-X 7) 
and 

® ( A A > L ) » o , { 1 > 3 j 5 } ( k ) x J . 

The multiplication in 3 5j( k) is 

(a ] , a 3 , a 5 ) . (bj ,b 3,b 5) - ( ai + b] »a 3+b 3-a 1b 1 (a^bj) ,a 5+b 5-a ]b 1 (a 3+b 3> 
+ [(a 1b ]) 2-(a ]b 3+a 3b 1)] (aj+bj) ) . 

The computations for the rational cases are the same. Then B f = k [ t ] ^ with 

field of fractions k(t) . Then B f-k[[t]] H k ( t ) . Let A^ = A ^ B ' . Then 

®(A^,k(t)) = a A(k) x Z . 

2 2 

Example 5. The node. This plane curve is the locus of y = X (X-l). We suppose 

( - D 1 / 2 £ k and that je k. In k[[X]] let t = ( X - l ) l / 2 = (-1) 1 / 2(1-x) 1 / 2. 

Then y 2-X 2(X-l) = y 2 - X 2 t 2 = (y-Xt)(y+Xt). Note that t is a unit. Let u=y-Xt, 
2 2 

v = y+Xt. Then k[[X,y]] = k[[u,v]]. The local ring at the origin of y = X (X-l) 

completed is then A = k[[u,v]]/(uv). The normal closure in the total ring of 

quotients is B = k[[r]] x k[[s]] with 

f(u,v) I > (f(r,0),f(0,s)) 

for f(u,v) G A. The conductor F - (r,s)B = (u,v)A. Hence B/£" = k x k and 

A / f"= k, the map k/P—> B//"being the diagonal. Hence 

M(B/F)/y(A/£) ^ E ( k ) , 

the map being 
(a,b) 1 > ab 1 
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for (a,b) G ji(k) x ji(k) - u(B/F). There fore 

(£)(A,L) = u(k) x l 2 . 

Example 6. Consider the homomorphism 

k[[X,y]] >k[[S 1]]xk[[S 2]]xk[[S 3]] » B 

given by X I > (Sj ,0,S 2) 

y i—> ( o , s 2 , s 3 ) . 

It is clear that Xy(X-y) is in the kernel. Since k[[X,y]] is factorial and 

the image ring is reduced of dimension 1, the kernel is the intersection of 

prime principal ideals. Hence the ideal generated by Xy(X-y) is the kernel. 

Also let A = k[[X,y]]/(Xy(X-y)). Then B is the normal closure of A in its 
2 2 2 2 

total quotient ring. The conductor is (Sj,S 2,S 3)B - (x,y) A. In this case 

y(B/£) = (u(k)xa(k)) x (u(k)xa(k)) x (u(k)xa(k)) 
and 

y (A/F) = u(k) x ct(k) x a ( k ) . 

The map is given by 

(u,a,b) I > ((u,a),(u,d),(u,a+b)) 

for u € £(k) , (a,b) € ô (k) x oKk). (The element (u,a,b) corresponds to the unit 

u( 1+ax+by) in A/JC , 
The element 

((u.,a.),(u 2,a 2),u 3,a 3)) 

corresponds to the unit 

(uj(1+ajSj),u 2(l+a 2s 2),u 3(l+a 3s 3)) 

in B/F) . Hence 

U (B/F) /y (A/jn ^ u (k) x y(k) x a(k) 

the map being given by 
((u 1,a ]),(u 2,a 2),(u 3,a 3)) \ > (u.u^ . u ^ U j + a ^ a ^ . 

Hence 

®(A,L) ^ y(k) xy(k) x a(k) x Z 3 . 

(This example was told to we by F. Orecchia) . 
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We constrast these local examples with the case of global example, again 

the cusp. 

2 3 

Example 7. Consider the cusp k[X,y]/(y -X ) * A with normal closure B = k[t]. 

We get exact sequences 
K j ( A ) > K,(k(t)) >(§)(A,k(t)) -> K Q A > K Q(k(t)) > 0 

x/ \y V >!/ 4/ 
K.(B) > K.(k(t)) >(g)(B,k(t)) > K (B) > K (k(t)) > 0 
1 1 o o 

as before. We obtain the isomorphism 

@ ( A , L ) - Div B x lT(A), 

where K Q ( A ) =* Ker(K Q(A) — ^ — > t). It follows that K Q ( A ) • PicA = a(k) . Thus 

(|i)(A,L) - Div B x a(k) , 

the a(k) corresponding to the one singular point. 

Concluding remarks : These calculations shoned give some indication of the 

role played by the groups @ ( A , f 1) , and the importance of considering 

complexes rather than modules. 
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