PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

H.-M. MAIRE

Existence et régularité des solutions de systèmes différentiels surdéterminés

Publications des séminaires de mathématiques et informatique de Rennes, 1981-1982, fascicule 3

« Séminaire « Équations aux dérivées partielles » », , p. 1-17

http://www.numdam.org/item?id=PSMIR_1981-1982___3_A4_0

© Département de mathématiques et informatique, université de Rennes, 1981-1982, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

EXISTENCE ET REGULARITE DES SOLUTIONS DE SYSTEMES DIFFERENTIELS SURDETERMINES

par H.-M. Maire, Rennes les 11, 18 et 25 juin 1981

Dans cette suite d'exposés, nous présentons les résultats obtenus dans Treves [16], Maire [11], [12] et Baouendi-Treves [2], principalement pour les systèmes du type

$$L_{j} = i(D_{t_{j}} + ib_{j}(t,D_{x})) , j = 1,...,p, t \in \mathbb{R}^{p}, x \in \mathbb{R}^{n},$$
 et mentionnons au passage les problèmes ouverts et les liens avec les travaux d'Helffer-Nourrigat [7],[8].

1. Le cadre général.

Les systèmes étudiés seront du type

(1.1)
$$L_j = \frac{\partial}{\partial t_j} - b_j(t, D_x)$$
, $j = 1, ..., p$, $t \in \Omega_t$, $x \in \Omega_x$

où $\Omega_{\rm t} {\it CR}^{\rm p}$ et $\Omega_{\rm x} {\it CR}^{\rm n}$ sont ouverts, b sont des fonctions réelles , ${\it C}^{\infty}$ en t, positivement homogènes de degré 1 en \S et de plus,

(1.2)
$$\left[L_{j}, L_{k}\right] = 0$$
, pour tous j, $k \in [1, p]$.

Cette dernière propriété permet de supposer que localement (b_1,\ldots,b_p) est un gradient, i. e.

(1.3)
$$b_{j}(t,\xi) = \partial B/\partial t_{j}(t,\xi), j = 1,...,p,$$

avec B réelle, c^{∞} en t, positivement homogène de degré 1 en \S .

Le système (1.1) s'écrit aussi:

$$L_{j} = \frac{\partial}{\partial t_{j}} + ib_{j}(t, \frac{\partial}{\partial x}) = i(D_{t_{j}} + ib_{j}(t, D_{x})) ;$$

en abrégé:

(1.4)
$$L = (L_j) = d_t - b(t,D_x) = i(D_t + ib(t,D_x)).$$
Si "^" désigne la transformation de Fourier en x, il vient:

(1.5)
$$\hat{L} = d_t - b(t,\xi) = e^{B(t,\xi)} d_t e^{-B(t,\xi)}$$
.

D'après (1.2), si Lju = fj et u $\in E'(\Omega_t \times \Omega_x)$ par exemple, on doit avoir:

(*)
$$L_k f_j = L_j f_k$$
, j, k = 1,...,p; ce sont les conditions de compatibilité.

EXEMPLE. Le système (1.1) pour $B(t,\xi) = \sum_{1}^{p} t_{j}\xi_{j} + g(t)\xi_{p+1}$ et n = p+1, n'est autre que l'opérateur de Cauchy-Riemann induit $\overline{\partial}_{\ell}$ sur l'hypersurface Re $z_{0} = g(\text{Re }z_{1}, \dots, \text{Re }z_{p})$ dans C^{p+1} , cf. Boutet de Monvel [5] .

2. Questions diverses.

Nous présentons ci-dessous une liste de questions pour le système (1.1); les réponses escomptées sont biensûr des propriétés de la fonction B.

- (1) Caractériser la <u>résolubilité locale</u> (RL) de L: $\forall \ \omega_{\mathsf{t}} \times \omega_{\mathsf{x}} \text{ ouvert de } \Omega_{\mathsf{t}} \times \Omega_{\mathsf{x}}, \ \forall \mathsf{f} = (\mathsf{f}_{\mathsf{j}}) \in (\mathsf{C}_{\mathsf{o}}^{\infty}(\Omega_{\mathsf{t}} \times \Omega_{\mathsf{x}}))^{\mathsf{p}} \text{ satisfaisant (*), il existe } \mathsf{u} \in \mathcal{D}'(\Omega_{\mathsf{t}} \times \Omega_{\mathsf{x}}) \text{ telle que Lu = } \mathsf{f} \big| \ \omega_{\mathsf{t}} \times \omega_{\mathsf{x}} \ .$
- (2) Caractériser l'hypoellipticité (H) de L: $\forall \ w_{t} \times \omega_{x} \text{ ouvert de } \Omega_{t} \times \Omega_{x}, \ \forall \ u \in \mathcal{D} ' (\Omega_{t} \times \Omega_{x}), \ \operatorname{Lu} \epsilon (\mathtt{C}^{\varpi} (\omega_{t} \times \omega_{x}))^{p} \\ \Rightarrow \ u \in \mathtt{C}^{\varpi} (\omega_{t} \times \omega_{x}).$

- (3) Caractériser la sous-ellipticité (SE) de L: $\forall \, \omega_{\mathsf{t}} \mathsf{x} \, \omega_{\mathsf{x}} \, \text{ouvert de } \Omega_{\mathsf{t}} \mathsf{x} \, \Omega_{\mathsf{x}} \, , \, \forall \, \mathsf{u} \in \mathsf{H}^{\mathsf{S}}(\omega_{\mathsf{t}} \mathsf{x} \, \omega_{\mathsf{x}}), \, \mathsf{Lu} \in (\mathsf{H}^{\mathsf{S}}(\omega_{\mathsf{t}} \mathsf{x} \, \omega_{\mathsf{x}}))^{\mathsf{p}}$ $\Rightarrow \, \mathsf{u} \in \mathsf{H}^{\mathsf{S}+1-\delta}(\omega_{\mathsf{t}} \mathsf{x} \, \omega_{\mathsf{x}}) \, \text{avec } 0 \leqslant \delta < 1.$
- (4) Quand la condition de Hörmander (cf. [8]) qui devient ici:
- $$\begin{split} &(\operatorname{CH})_{\mathbf{r}} \quad \forall \, \operatorname{t}_0 \in \Omega_{\mathbf{t}}, \, \forall \, \xi_0 \in \mathbb{R}^n \setminus 0, \quad \alpha \in \mathbb{N}^p, \quad |\alpha| \leqslant \mathbf{r} \, \operatorname{tel \, que \,} \partial_{\mathbf{t}}^\alpha \mathbb{B}(\mathbf{t}_0, \xi_0) \neq 0, \\ &\text{est satisfaite, caractériser l'} \\ & \text{hypoellipticité \, } \underbrace{\operatorname{maximale}}_{\mathbf{t}} \left(\operatorname{HM} \right) \, \operatorname{de} \, \mathbf{L} : \\ & \text{how}_{\mathbf{t}} \times \mathbf{w}_{\mathbf{x}} \, \operatorname{ouvert \, de} \, \Omega_{\mathbf{t}} \times \Omega_{\mathbf{x}}, \, \forall \, \mathbf{u} \in \operatorname{H}^0(\Omega_{\mathbf{t}} \times \Omega_{\mathbf{x}}), \, \operatorname{Lu} \in \left(\operatorname{H}^0(\omega_{\mathbf{t}} \times \omega_{\mathbf{x}}) \right)^p \\ & \Rightarrow \quad \operatorname{d}_{\mathbf{t}} \mathbf{u} \, \operatorname{et} \, \operatorname{b}(\mathbf{t}, \mathbf{D}_{\mathbf{x}}) \mathbf{u} \in \operatorname{H}^0(\omega_{\mathbf{t}} \times \omega_{\mathbf{x}}). \end{split}$$
- (5) Caractériser l'hypoellipticité analytique (HA) de L quand B est analytique réelle en t: $\forall \ \omega_{\mathsf{t}^{\mathsf{X}}} \omega_{\mathsf{x}} \text{ ouvert de } \Omega_{\mathsf{t}^{\mathsf{X}}} \Omega_{\mathsf{x}}, \ \forall \ \mathsf{u} \in \mathcal{D}'(\omega_{\mathsf{t}^{\mathsf{X}}} \omega_{\mathsf{x}}), \ \mathsf{Lu} \in (\mathcal{U}(\omega_{\mathsf{t}^{\mathsf{X}}} \omega_{\mathsf{x}}))^{\mathsf{p}}$ $\Rightarrow \mathsf{u} \in \mathcal{U}(\omega_{\mathsf{t}^{\mathsf{X}}} \omega_{\mathsf{x}}).$
- (6) Mêmes questions pour l'opérateur L*L = $\sum L_j*L_j = |D_t|^2 + |\text{grad } B(t,D_x)|^2 + \Delta B(t,D_x)$.
- (7) Généraliser à des systèmes "quelconques" de la forme $L_j = X_j + iY_j \text{ , avec } X_j, Y_j \text{ champs de vecteurs réels.}$
 - 3. Quelques réponses.

Lorsque p = 1, i. e. il n'y a qu'une équation, "tout" est connu. Nous renvoyons à Nirenberg-Treves [13] et Hörmander [9] . Citons pour mémoire:

- (IR) en $(t_0,x_0;0,\xi_0) \iff t \mapsto B(t,\xi_0)$ sans minimum local en t_0 .
- (H) en $(t_0,x_0;0,\xi_0) \iff t \mapsto B(t,\xi_0)$ sans maximum local en t_0 ,
- (SE) en $(t_0,x_0;0,\xi_0)$ \Longrightarrow $\frac{\partial^k b}{\partial t^k}(t_0,\xi_0)\neq 0$ pour un k et >0 si le plus

petit entier ayant cette propriété est pair.

NB. Les notions rappelées ici ont leurs correspondantes microlocales que nous employons dans la suite sans les détailler (cf. Hörmander [9]).

En particulier, lorsque $b(t,\xi)$ est analytique réelle en t, les propriétés (H), (HA), (SE), (HM) sont toutes équivalentes.

Revenons au cas général $p \ge 1$. La réponse à (5) a été donnée par Baouendi-Treves [2] :

THEOREME (3.1). Le système $L = D_t + i(dB)(t,D_x)$ est analytique-hypoelliptique en $(t_0,x_0;0,\xi_0)$ si et seulement si $t \mapsto B(t,\xi_0)$ n'a pas de maximum local en t_0 .

On sait, cf. Rothschild-Stein [14] ou Camus-Bolley-Nourrigat

[[1] que (HM) \Rightarrow (SE) avec perte de $\delta = 1-(1/r)$ dérivées.

En ce qui concerne (6) et (7), on bien sûr:

L*L satisfait (H) [resp. (HA)] \Rightarrow L satisfait (H) [resp. (HA)].

La réciproque n'est pas connue pour (H) et est fausse pour (HA),

d'après l'exemple de Baouendi-Goulaouic [1]. Par contre, le
résultat suivant est valable, cf. Maire [12]:

THEOREME (3.2). Le système L = $(X_j + iY_j)$ est δ -sous-elliptique en (x_0, ξ_0) si et seulement si l'opérateur L*L est hypoelliptique avec perte de 2δ -dérivées en (x_0, ξ_0) .

Pour répondre aux questions (1) et (2), on utilise des biais en définissant la notion de <u>résolubilité semi-globale</u> (RSG): $\forall \ \omega_t \ cc \ \Omega_t \ , \ \forall \ f \in (\operatorname{C}^\infty(\Omega_t;\operatorname{H}^\infty_x))^p \ \text{satisfaisant (*), il existe}$ $u \in \mathcal{D}'(\omega_t;\operatorname{H}^{-\infty}_x) \ \text{telle que Lu = f}(\omega_t \ ,$ $d' \underline{hypoellipticité \underline{semi-globale}} \ (\operatorname{HSG}):$ $\forall \ \omega_t \ c \ \Omega_t, \ \forall \ u \in \mathcal{D}'(\omega_t;\operatorname{H}^{-\infty}_x), \ \underline{Lu} \in (\operatorname{C}^\infty(\omega_t;\operatorname{H}^\infty_x))^p \Rightarrow u \in \operatorname{C}^\infty(\omega_t;\operatorname{H}^{co}_x),$

et enfin de sous-ellipticité semi-globale (SESG):

$$\forall \omega_{t} \in \Omega_{t}, \forall u \in C^{\infty}(\omega_{t}; H_{x}^{s}), \text{ Lu} \in (C^{\infty}(\omega_{t}; H_{x}^{s}))^{p} \Rightarrow u \in C^{\infty}(\omega_{t}; H_{x}^{s+1-\delta})$$

$$(0 \leqslant \delta \leqslant 1).$$

On peut aussi définir une notion d'hypoellipticité analytique semi-globale (HASG) comme Treves [16], définition III.2.3.

PROPOSITION (3.3). Les implications suivantes pour le système $L = D_t + ib(t,D_x)$ ont lieu:

- a) $(RSG) \Rightarrow (RL);$
- b) (SE) \Rightarrow (SESG) \Rightarrow (H) \Rightarrow (HSG);
- c) (HA) \iff (HASG).

Démonstration. a) est immédiat; la première implication de b) aussi. La deuxième découle de $u \in C^{\infty}(\omega_t; H^S_{loc})$ et $Lu \in (C^{\infty}(\omega_t; H^S_{loc}))^F \Rightarrow \alpha u \in C^{\infty}(\omega_t; H^S)$ et $L(\alpha u) = (L\alpha)u + \alpha Lu \in C^{\infty}(\omega_t; H^S)$ pour $\alpha \in C^{\infty}(\mathbb{R}^n)$. La dernière implication de b) sera montrée à la proposition (6.3) . Finalement c) provient du théorème (3.1) ci-dessus et du corollaire 19 de Maire [11] .

Dans l'état actuel, on sait caractériser (RSG) par la condition (Y) de Treves [16], cf. le théorème (5.1) et (HSG) par la condition (R) de Maire [11], cf. la définition (6.6). Des conditions nécessaires et des conditions suffisantes sont données pour (SESG) dans [11]. L'introduction des notions semi-globales est justifiée par le fait qu'elles coïncident généralement avec les notions ordinaires de résolubilité et régularité et qu'elles sont plus faciles à manier. (*)

NB. Il n'y a pas, pour l'instant de contre-exemples aux flèches non mentionnées dans la proposition ci-dessus.

^(*) J. Mourriget a caractérisé (HM), cf. ce séminaire.

- 4. Des exemples instructifs.
- a) t \longrightarrow B(t, ξ_0) n'a pas de point critique en $t_0 \in \Omega_t$. Dans ce cas, b(t_0 , ξ_0) \neq 0 et le système est elliptique en (t_0 , x_0 ;0, ξ_0). Seuls les covecteurs (0, ξ_0) sont intéressants puisque le système est toujours elliptique quand $\xi \neq 0$.
- b) t \longrightarrow B(t, \S_0) n'a pas de point critique dégénéré en t₀ $\in \Omega_{\rm t}$. D'après le lemme de Morse avec paramètres, cf. [16] p. 300, on sait qu'il existe un difféomorphisme t = ϕ (t') défini au voisinage de t₀ tel que:

 $B(\Phi(t'),\xi) = B(t_0,\xi) + Q(t'-t_0).|\xi|$

où Q est une forme quadratique non dégénérée. On peut ainsi supposer que:

(4.1) $B(t,\xi) = (t_1^2 + ... + t_y^2 - t_{y+1}^2 - ... - t_p^2) |\xi|$, $t_0 = 0$. Pour résoudre l'équation Lu = f, dans un ouvert ω_t , il suffit de prendre

(4.2) $\hat{a}(t,\xi) = \int_{s_0,t}^{e^{B(t,\xi)-B(s,\xi)}} \hat{f}(s,\xi)ds$

où s_o est un point de $\Omega_{\rm t}$ \ \w_{\rm t} et $\gamma_{\rm s_o}$, tun chemin reliant s_o à t \(\epsilon_{\text{t}}\). Mais, comme on désire que û soit une transformée de Fourier, il faudra s'arranger pour que $\gamma_{\rm s_o}$, to \(\{s \in \Omega_{\text{t}}; \ B(s,\xi) > B(t,\xi) \\ \}. Il est facile de voir que, d'après (4.1) ceci est possible si et seulement si

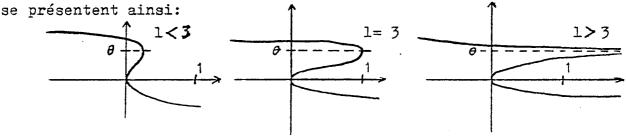
(4.3) $\forall r \in \mathbb{R}$, $\{s \in \Omega_t; B(s,\xi) > r\}$ est connexe. Comme dans Treves [16] , p. 299, on montre que (4.3) est équivalent à

 $p-y = indice de (4.1) \neq 1.$

PROPOSITION (4.4). Supposons que B(., ξ) n'a pas de point critique dégénéré dans Ω_{t} , $\forall \xi \in \mathbb{R}^{n} \setminus 0$; alors L est (RSG) dans Ω_{t} si et seulement si l'indice de chaque point critique de B(., ξ) est $\neq 1$.

c) Cas instable. Pour p = n = 2, on considère la famille d'exemples suivants:

(4.5) $B(t,\xi) = g(\theta^1 t_1 - \theta t_2^2 + t_2^3)$, $1 \ge 1$, $\xi = g(\cos\theta, \sin\theta)$. Ici $\Omega_t = \mathbb{R}^2$. Les courbes de niveau de $B(.,\xi)$, pour $\theta > 0$ petit



On verra par la suite que:

$$(RSG) \iff 1 < 3$$

(HSG)
$$\iff$$
 (H) \iff 1 \leqslant 3

(SESG)
$$\iff$$
 1<3

- (HA) pour tout 1.
- 5. Condition (Υ) de Treves.

Dans la suite, on pose $\Omega = \Omega_{t}$. Pour $r \in \mathbb{R}$, ω ouvert de Ω , la notation suivante est utile: $\omega(\xi;r) = \{t \in \omega; B(t,\xi) > r\}$.

THEOREME (5.1) (Treves [16]). Les conditions suivantes sont écuivalentes:

- (i) (RSG) dans Ω ;
- (ii) (Ψ) dans Ω , i. e. $\Psi\omega \subset \Omega$, il existe $\omega'\subset \Omega$ tel que $\Psi \xi \in \mathbb{R}^n \setminus 0$, $\Psi r \in \mathbb{R}$, Ψt_1 , $t_2 \in \omega(\xi, r)$, on peut relier $t_1 \ge t_2$ dans $\omega'(\xi, r)$.

La nécessité de (Y) se démontre en niant une inégalité. Sa suffisance est obtenue, après transformation de Fourier, par intégration de $\partial_{\pm}v=g$ le long de chemins convenables.

Remarque. Une condition du même type, portant sur l'homologie des sur-niveaux de B(., ξ) existe pour caractériser la résolubilité semi-globale de L agissant dans l'espace des formes à coefficients $C^{\infty}(\Omega; \mathbb{H}^{\pm\infty})$:

$$0 \longrightarrow \bigwedge^{0} C^{\infty} (\Omega; H^{\pm \infty}) \longrightarrow \bigwedge^{1} C^{\infty} (\Omega; H^{\pm \infty}) \longrightarrow \bigwedge^{2} C^{\infty} (\Omega; H^{\pm \infty})$$

6. Hypoellipticité semi-globale et condition (R).

Dès maintenant, on suppose, pour simplifier que $B(t,\xi)$ est analytique (réelle) en t. Pour ω ouvert $\subset \Omega$, on introduit encore la notion d'hypoellipticité globale:

(HG)
$$u \in C^{\infty}(\omega; H^{-\infty})$$
, $Lu \in (C^{\infty}(\omega, H^{\infty}))^{p} \implies u \in C^{\infty}(\omega; H^{\infty})$.

La caractérisation de (HSG) qui va suivre provient d'une caractérisation de (HG) pour $\omega \times \mathbb{R}^n$. Introduisons des normes: pour K compact ω , m entier 0, $\xi \in \mathbb{R}^n \setminus 0$ et $v \in \mathbb{C}^\infty(\omega)$, soit

$$\|v\|_{K,m}(\xi) = \sum_{|\alpha| \leqslant m} |\xi|^{m-|\alpha|} \sup_{t \in K} |\partial_{t}^{\alpha} e^{B(t,\xi)} v(t)|.$$

PROPOSITION (6.1). Lest (HG) dans $w \times IR^n$ si et seulement si \forall K compact Cw, il existe K' compact Cw, $m \in N$ et C > 0 tels que:

(6.2)
$$\|v\|_{K,1}(\xi) \leq C(\|d_t v\|_{K',m}(\xi) + \|v\|_{K',0}(\xi)), \quad \forall v \in C^{\infty}(\omega)$$

 $\forall \xi \in \mathbb{R}^n \setminus 0.$

Ce résultat provient du théorème du graphe fermé et de l'expression (1.5) de L.

Remarque. Dans le même ordre d'idées, l'inégalité

(6.3)
$$\|v\|_{K,1-\delta}(\xi) \leqslant C(\|d_tv\|_{K',0}(\xi) + \|v\|_{K',0}(\xi)$$
 avec les mêmes quantificateurs est une condition nécessaire et suffisante pour (SESG).

La formulation de la condition (R) nécessite quelques notations. Pour K compact $c \omega$, $t \in K$, $\xi \in S^{n-1}$ et $r \in R_+$, on pose:

$$K(t,\xi;r) = \{s \in K; B(s,\xi) \geqslant B(t,\xi) - r \},$$

$$K(t,\xi) = K(t,\xi;0),$$

 $K_0(t,\xi;r) = composante connexe de t dans <math>K(t,\xi;r)$,

$$F_{K}(t,\xi;r) = \sup \left\{ B(s,\xi) - B(t,\xi); s \in K_{o}(t,\xi;r) \right\},$$

$$F_{K}(t,\xi) = F_{K}(t,\xi;0).$$

Géométriquement, $F_K(t,\xi)$ est l'accroissement maximal de $B(.,\xi)$ le long de chemins issus de t, entièrement contenus dans K. On s'intéresse à $F_K(t,\xi)>0$ puisque

$$e^{B(t,\xi)}v(t) = \int_{\mathcal{X}} e^{B(t,\xi)-B(s,\xi)} \cdot e^{B(s,\xi)} dv(s) + e^{B(t,\xi)-B(s_0,\xi)} \cdot e^{B(s_0,\xi)} v(s_0),$$

où % est un chemin de so à t.

Comme B(., \xi) est analytique, le "curve selecting lemma", cf. [3] donne:

LEMME (6.4). Pour $\xi_0 \in \mathbb{R}^n \setminus 0$, la fonction $B(.,\xi_0)$ n'a pas de maximum local en $t_0 \in \omega$ si et seulement s'il existe un voisinage compact K de t_0 tel que $F_K(t_0,\xi_0) > 0$.

NB. Ce lemme est faux pour $B \in C^{\infty}(\Omega \times \mathbb{R}^n)$.

Il est facile de donner une condition suffisante pour (HG):

PROPOSITION (6.5). Si, pour tout compact K $c \omega$, il existe K' $c \omega$ et contenent K tel que inf $_{KxS}^{n-1}$ $_{K'} > 0$, alors L est (HG) dans $\omega x \mathbb{R}^n$ avec perte d'au plus une dérivée, i. e. m=1 dans (6.2).

La preuve de ce résultat se fait en intégrant sur une courbe de $K_0(t,\xi)$ qui relie t à un point où $B(.,\xi)$ est maximum. Comme le montre l'exemple (4.5), l=3, la condition

(S)
$$\inf_{(t,\xi) \in \mathbb{K} \times S^{n-1}} F_{K}(t,\xi) > 0$$

n'est pas nécessaire pour (HG). Toutefois, nous ferons la conjecture suivante:

CONJECTURE. (S) est nécessaire et suffisante pour (SESG).

Un raffinement de la preuve de la proposition (6.5) permet en effet de montrer qu'on a une perte de moins de 1 dérivée quand (S) est satisfaite puisque B est analytique. La nécessité de (S) est moins claire.

Introduisons encore, pour $M \ge 0$, $j \in \mathbb{N}$, $t \in \mathbb{K} \subset \Omega$ et $\xi \in \mathbb{S}^{n-1}$:

$$E_{K,\mu}^{0}(t,\xi) = F_{K,\mu}(t,\xi),$$

$$E_{K,\mu}^{j}(t,\xi) = F_{K,\mu}(t,\xi;\mu E_{K,\mu}^{j-1}(t,\xi))$$

$$E_{K,\mu}(t,\xi) = \sup_{j} E_{K,\mu}^{j}(t,\xi).$$

DEFINITION (6.6). On dira oue B satisfait (R) dans ω , si, pour tout compact K C ω , il existe K' compact C ω , contenant K et μ ' > 0 tels que

$$\inf_{(t,\xi)\in\mathbb{K}\times\mathbb{S}^{n-1}}E_{K',\mathcal{A}'}(t,\xi)>0$$

THEOREME (6.7). L est (HG) dans ω si et seulement si B satisfait (R) dans ω .

NB. La condition (R) avec μ' permet de montrer que L perd au plus $(\mu'+1)$ -dérivées. Pour vérifier la nécessité, on verra qu'on emploie μ' = 16m, avec l'entier m de (6.2).

Le lemme suivant sera utile.

LEMME (6.8). Soient K', K" deux compacts de ω , K'C int K" et meN. Alors il existe A>0 (qui ne dépend que des compacts, des dérivées de B et de m) tels que, pour tous ε >0 et teK', il existe ε 0 ve ε 0 (ε 0 satisfaisant:

(i) $0 \le v \le 1$, suppv $\subset K''_{O}(t, \xi; \mathcal{E})$;

(ii) pour
$$s \in K' \cap supp \ dv$$
, $B(s,\xi) < B(t,\xi) - \varepsilon/4 \ et$ $\sum_{|\alpha| \leqslant m} \left| \partial_{t}^{\alpha} v(s) \right| \leqslant A/\varepsilon^{m}$.

Esquissons maintenant la preuve de la nécessité de la condition (R) dans le théorème (6.7).

On suppose que

$$\|v\|_{K,1} \le C (\|dv\|_{K',m} + \|v\|_{K',0}), \forall v \in C^{\infty}(\omega).$$

Si (R) n'est pas satisfaite pour K, alors pour tous μ , a>0 et K" il existe $(t,\xi) \in Kxs^{n-1}$ tel que $0 \in E_{K''}, \mu^{(t,\xi)} < a$. On en déduit, pour j convenable, que:

$$0 < \mathbb{E}_{K'',\mu}^{j}(t,\xi) \leqslant \mathbb{E}_{K'',\mu}^{j+1}(t,\xi) \leqslant 2a.$$

Dans le lemme (6.8), on choisit ensuite $\mathcal{E} = \mu \mathcal{E}_{K''}^{j}, \mu(t, \xi)$ et K' un voisinage compact de K'. Il vient:

$$S \leq C(e^{SF_{K''}(t,\xi;\varepsilon)} + A(S/\varepsilon)^{m'}e^{-S^{\varepsilon}/4}), \forall S.$$

Avec $\mu = 16m'$ et $\mathcal{E} = \mu \mathbb{E}_{K'',\mu}^{j}(t,\xi)$, on obtient:

$$\label{eq:second_seco$$

EXEMPLE (6.9). B(t, ξ) = $t_1^4 t_2 \xi_1 + t_1^3 \xi_1 - 3t_1 \xi_2$ ne satisfait pas (R). Le système L correspondant n'est donc pas (HSG), donc pas

(H) d'après la proposition (6.8). Mais il est (HA) d'après le théorème (3.1).

REMARQUE. Quand n = 1, i. e. une seule variable d'espace, on a: (HSG) \iff (SESG) \iff (HA).

En effet, de (HSG), on déduit que B ne peut avoir de maximum local; puisque $B(t,\xi) = B(t)|\xi|$ est analytique, l'inégalité de Zojasiewicz suivante:

 $\left| \text{grad B}(t) \right| \geqslant \left| \text{B}(t) \right|^{\Theta} \text{, avec } 0 \leqslant \Theta \leqslant 1,$ pour t voisin de t_0 et $\text{B}(t_0) = 0$, montre (SESG) par intégration le long des courbes intégrales de grad B, car elle entraîne $\text{B}(\gamma(t)) - \text{B}(\gamma(\sigma)) \geqslant c(t-\sigma)^{1/1-\theta} \text{ si } \gamma \text{ désigne une courbe intégrale paramétrée par la longueur d'arc. Les autres implications ont lieu en général.}$

PROPOSITION (6.8). La condition (R) est nécessaire pour que L soit hypoelliptique dans $\Omega \times \mathbb{R}^n$.

Démonstration. D'après (H), on a, pour tous compacts $\text{KxL} \subset \omega_x \text{IR}^n$ et meN l'existence de K'xL' $\subset \omega_x \text{IR}^n$, m' et C>O tels que:

$$(6.9) \sup_{K \times L} \sum_{|\mathbf{x}| + |\mathbf{x}| = 0} |\mathbf{D}_{\mathbf{x}}^{\mathsf{A}} \mathbf{D}_{\mathbf{x}}^{\mathsf{A}} \mathbf{u}| \leqslant C(\sup_{K' \times L'} \mathbf{u}) + \sup_{K' \times L'} \sum_{|\mathbf{x}| + |\mathbf{x}| = 0} |\mathbf{D}_{\mathbf{x}}^{\mathsf{A}} \mathbf{D}_{\mathbf{x}}^{\mathsf{A}} \mathbf{u}|),$$

$$\mathbf{u} \in C^{\infty}(\omega \times \mathbf{R}^{n})$$
On choisit $\mathbf{u}(\mathbf{t}, \mathbf{x}) = e^{i\mathbf{x}\cdot \xi + \mathbf{B}(\mathbf{t}, \xi)} \mathbf{v}(\mathbf{t}), \ \mathbf{v} \in C^{\infty}(\omega).$ Comme Lu(\mathbf{t}, \mathbf{x}) = $e^{i\mathbf{x}\cdot \xi + \mathbf{B}(\mathbf{t}, \xi)} \mathbf{d}_{\mathbf{t}} \mathbf{v}$, $\mathbf{D}_{\mathbf{x}}^{\mathsf{A}} \mathbf{v} = \xi^{\mathsf{A}} \mathbf{u}(\mathbf{t}, \mathbf{x})$ et $\left[\mathbf{d}_{\mathbf{t}}, e^{\mathbf{B}(\mathbf{t}, \xi)}\right]$ est majoré par $|\xi| e^{\mathbf{B}(\mathbf{t}, \xi)}$, l'inégalité (6.9) entraîne (6.2).

7. Hypoellipticité analytique.

Le but de ce paragraphe est de donner une démonstration du théorème (3.1). Elle est directement inspirée de [2] .

Démonstration du théorème (3.1).

On se place en $(t_0,x_0) = 0$ et on suppose B linéaire en ξ , i.e. $B(t,\xi) = B(t).\xi$, avec $B:\Omega \longrightarrow \mathbb{R}^n$ et B(0) = 0.

Soit h une solution de classe C¹ de Lh = O définie au voisinage de 0; on veut montrer que si $t \mapsto B(t) \cdot \xi_0$ n'a pas de maximum en 0, alors $(0,\xi_0) \notin SS_Ah_0$, où $h_0(x) = h(0,x)$. On peut supposer que h est définie dans $\{(t,x); |t|, |x| < 2r\}$. Soit $g \in C_0^{\infty}(\mathbb{R}^n)$ telle que $g(x) = 1 \operatorname{si} |x| \leqslant r$, $g(x) = 0 \operatorname{si} |x| \geqslant 2r$.

D'après le "curve selecting lemma" il existe une courbe analytique * telle que:

$$\chi(0) = 0$$
,

$$B(\gamma(\xi)).\xi_0 > 0 \text{ si } 0 < \xi \leq \xi_*,$$

$$|B(\chi(c))| < r/2$$
 si $0 < c < c *$.

Considérons

(7.1)
$$I(x,\xi) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i(x-y+iB(t)).\xi -K(x-y+iB(t))^2|\xi|} L(g(y)h(t,y))$$
dtdy,

où $z^2 = \sum_{1}^{n} z_j^2$, $Lf(t,x)dt = \sum_{1}^{p} L_j f(t,x)dt_j^2$ et K > 0.

Après intégration par parties en t et y dans (7.1), il vient:

$$I(x,\xi) = I^*(x,\xi) - I_o(x,\xi)$$
 où

$$I^*(x,\xi) = \int_{\mathbb{R}^n} e^{i(x-y+iB(t^*))\cdot\xi} - K(x-y+iB(t^*))^{2/\xi} g(y)h(t^*,y)dy,$$

$$I^{*}(x,\xi) = \int_{\mathbb{R}^{n}} e^{i(x-y+iB(t^{*})).\xi - K(x-y+iB(t^{*}))^{2}|\xi|} g(y)h(t^{*},y)dy,$$

$$I_{o}(x,\xi) = \int_{\mathbb{R}^{n}} e^{i(x-y).\xi - K(x-y)^{2}|\xi|} g(y)h_{o}(y)dy, \quad t^{*} = \mathcal{N}(\mathcal{E}^{*}).$$

D'après Sjöstrand [15] , pour obtenir $(0,\xi_0) \notin SS_Ah_0$, il suffit de montrer que :

$$\left|I_{o}(x,\xi)\right| \leq Ce^{-\left|\xi\right|c}$$
, pour $\left|x\right| < r_{o}$, $\left|\frac{\xi}{\left|\xi\right|} - \xi_{o}\right| < S_{o}$.

Posons
$$F(t,x,y,\xi) = B(t) \cdot \frac{\xi}{|\xi|} + K(|x-y|^2 - |B(t)|^2)$$
. Alors

$$(7.2) |x| < r_0, |y| < 2r, \left| \frac{\xi}{|\xi|} - \xi \right| < \beta_0 \implies$$

$$F(t,x,y,\xi) \ge B(t) \cdot \xi_0 + K(|y|^2 |B(t)|^2) - |B(t)| |\frac{\xi_0}{|\xi|} - \xi_0 |-4Kr|x|$$

$$\ge B(t) \cdot \xi_0 + K(|y|^2 - |B(t)|^2) - r(\frac{g_0}{2} + 4Kr_0).$$

En choisissant $K = \frac{1}{2}B(t^*). \le /|B(t^*)|^2$ et g_0 , r_0 assez petits, on obtient:

 $F(t^*,x,y,\xi) \geqslant c>0$ pour x, y, ξ comme dans (7.2).

D'autre part, si |y| ≥ r, alors les propriétés de n donnent:

$$F(t,x,y,) \ge K(r^2 - |B(t)|^2) - r(\frac{9}{2} + 4Kr_0)$$

$$\ge (3/4)Kr^2 - r(\frac{9}{2} + 4Kr_0) \ge c > 0 , \text{ si } t = j^c(t).$$

De ces deux dernières minorations, on déduit:

$$\left|\mathbb{I}_{o}(\mathbf{x},\xi)\right|\leqslant\left|\mathbb{I}(\mathbf{x},\xi)\right|+\left|\mathbb{I}^{*}(\mathbf{x},\xi)\right|\leqslant c\ e^{-|\xi|c}\ ,\ \mathrm{si}\ |\mathbb{x}|<\mathbf{r}_{o},\ \left|\frac{\xi}{|\xi|}-\xi_{o}\right|<\varepsilon$$

L'implication suivante est donc démontrée:

 $h \in C^1$, $Lh = 0 \implies h_0$ analytique.

Le théorème de Holmgren permet maintenant d'obtenir h analytique. Pour passer au cas

 $h \in C^1$, $Lh = f \in CL$ $\Rightarrow h \in CL$,

on résoud Lg = f d'après Cauchy-Kowalevska; d'où g $\in \mathcal{O}$ si bien que L(h-g) = 0. Pour passer à $h \in \mathcal{D}'$, on appelle \mathcal{K} l'inverse de Δ_x^q ; il est immédiat que $L\mathcal{K} = \mathcal{K}L$ et $g = \mathcal{K}h \in \mathcal{C}^1$ pour q grand. Donc $Lh = 0 \implies L(\mathcal{K}h) = 0 \implies \mathcal{K}h \in \mathcal{O}l \implies h \in \mathcal{O}l$.

8. Hypoellipticité pour des systèmes plus généraux.

On part de $L_j=X_j+iX_{p+j}$, $j=1,\ldots,p.$, où X_1,\ldots,X_{2p} sont des champs de vecteurs réels de classe C^∞ satisficant la condition de Hörmander d'ordre r. Dire que L est δ -sous-elliptique en (x_0,ξ_0)

signifie que:

u, $L_j u \in H^S$ en (x_0, ξ_0) pour $1 \leqslant j \leqslant p \implies u \in H^{S+1-\delta}$ en (x_0, ξ_0) . De manière équivalente, il existe des opérateurs pseudodifférentiels $\Upsilon_j(x,D)$ homogènes de degré 0, non caractéristiques en (x_0, ξ_0) tels que:

(8.1)
$$\| \psi_{j}(x,D)u \|_{1-\delta} \leqslant c_{K}(\|Lu\| + \|u\|), u \in C_{0}^{\infty}(K),$$

où K est un voisinage compact de x_0 . Pour l'hypoellipticité maximale, on a une caractérisation analogue. D'après Rothschild-Stein [14] , on a:

(HM) en
$$(x_0,\xi_0) \implies (1-\frac{1}{r})$$
-(SE) en (x_0,ξ_0) .

REMARQUE. Si L₁ est δ -sous-elliptique en (x_0,ξ_0) , alors L est δ -sous-elliptique en (x_0,ξ_0) . Ceci permet de montrer que le système

(8.2)
$$\begin{cases} L_1 = \partial_{x_1} - y_1(x_1^2 + y_1^2) \partial_t + i(\partial_{y_1} + x_1(x_1^2 + y_1^2) \partial_t) \\ L_2 = \partial_{x_2} - y_2(x_2^2 + y_2^2) \partial_t - i(\partial_{y_2} + x_2(x_2^2 + y_2^2) \partial_t). \end{cases}$$

est (3/4)-sous-elliptique partout.

Pour la preuve du théorème (3.2), on utilise le lemme suivant:

LEMME (8.3). (Kohn[10]). Soit Q un opérateur pseudodifférentiel d'ordre q tel que Q-Q* est d'ordre & q-1. Alors:

$$(\text{LQv},\text{LQv}) = \text{Re} (\text{L*Lv},\text{Q*Qv}) + O(\|v\|_q^2), \quad v \in C_0^{\infty}.$$

Preuve du théorème (3.2).

Pour simplifier, nous ne localisons pas. Si nous supposons que L est δ -sous-elliptique, nous obtenons:

$$\begin{split} \| \bigwedge^{2-2\delta_{\mathbf{u}}} \|^2 &\leqslant \ \mathbf{C} \ (\| \mathbf{L} \mathring{\Lambda}^{-\delta_{\mathbf{u}}} \|^2 + \| \bigwedge^{1-\delta_{\mathbf{u}}} \|^2 \) \\ &\leqslant \ \mathbf{C} \ (\| \mathbf{L}^* \mathbf{L} \mathbf{u} \| . \| \mathbf{u} \|_{2-2\delta} + \| \mathbf{u} \|_{1-\delta}^2) \\ &\leqslant \frac{1}{2} \| \mathbf{u} \|_{2-2\delta}^2 + \mathbf{C}' \ (\| \mathbf{L}^* \mathbf{L} \mathbf{u} \|^2 + \| \mathbf{u} \|_{1-\delta}^2), \ \mathbf{u} \in \mathbb{C}_0^{\infty} \,, \end{split}$$

où la première inégalité provient de (8.1) et la deuxième du lemme (8.3). D'autre part,

 $\|Lu\|^2 = (L*Lu,u) \leqslant \|L*Lu\|.\|u\| \leqslant \|L*Lu\|^2 + \|u\|^2,$ permet de majorer le terme $\|u\|_{1-\delta}^2 de \ l'inégalité précédente. Il en résulte$

 $\|\mathbf{u}\|_{2-2\delta} \le c (\|\mathbf{L} \cdot \mathbf{L} \mathbf{u}\|^2 + \|\mathbf{u}\|^2),$

qui entraı̂ne facilement que L*L est hypoelliptique avec perte de 2δ -dérivées.

Pour la réciproque, on part de

 $\|u\|_{2-2\delta}^2 \leqslant c^2(\|L^*Lu\|^2 + \|u\|^2) \leqslant 2c^2\|(L^*L^+L^2)u\|^2,$ qui s'écrit aussi

$$(\Lambda^{2-2\delta})^2 \leq 2C^2(L*L+I)^2.$$

En prenant la racine, cf. [6] , on en déduit $\|\mathbf{u}\|_{1-\delta}^2 \leqslant \sqrt{2} \mathbf{C} (\|\mathbf{L}\mathbf{u}\|^2 + \|\mathbf{u}\|^2),$

c'est-à-dire la sous-ellipticité de L.

EXEMPLE (8.4). Soit $g(z_1,z_2) = |z_1|^4 + |z_2|^4$. Alors le système d'opérateurs \Box_b induit par le laplacien sur $\{ \text{Re } z_0 = g(z_1,z_2) \}$ est hypoelliptique avec perte de (3/2)-dérivées sur les (0,1)-formes. Un calcul facile (cf. [12]) montre en effet que \Box_b est diagonal et que chacune de ses composantes se déduit du système (8.2); il suffit alors d'appliquer le théorème (3.2).

REMARQUE. Pour toutes les questions d'hypoellipticité maximale, nous renvoyons à l'étude de J. Nourrigat dans ce même séminaire.

BIBLIOGRAPHIE.

- [1] Baouendi S.M., Goulaouic C., Analyticity for degenerate elliptic equations and applications, Proceeding Symp. pure Math. XXIII, AMS 1973, 79-84.
- [2] Baouendi S.M., Treves F., A microlocal version of Bochner's tube theorem, to appear.
- [3] Bochnak J., Risler J.J., Sur les exposants de Zojasiewicz, Comment.

 Math. Helvetici 50 (1975), 493-507.
- [4] Bolley P., Camus J., Nourrigat J., La condition de Hörmander-Kohn pour les opérateurs pseudodifférentiels, Journées Equations aux dérivées partielles, S^t-Jean-de-Monts 1981.
- [5] Boutet de Monvel L., Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm.

 Pure Applied Math. 27 (1974), 585-639.
- [6] Dixmier J., Sur une inégalité de Heinz, Math. Ann. 126 (1953), 75-7
- [7] Helffer B., Mourrigat J., Hypoellipticité pour des opérateurs quasi-homogènes à coefficients polynomiaux, Journées Equations aux dérivées partielles, S^t Cast, 1979.
- [8] ______, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, C.R. Acad. Sci. Paris 289 (1979), 775-778.
- [9] Hörmander L., Subelliptic operators, in Seminar on Singularities of solutions of linear partial differential equations,
 Ann. Math. Stud. 91 (1978), 127-208.
- [10] Kohn J.J., Differential complexes, Séminaire de Math. Sup., Université de Montréal, 1972.
- [11] Maire H.-M., Hypoelliptic overdetermined systems of partial differential equations, Comm. in PDE 5 (1980), 331-380.
- [12] ————, Régularité optimale des solutions de systèmes différentiels et du Laplacien associé; application au D_b, Math. Ann. 258 (1981), 55-63.
- [13] Nirenberg L., Treves F., On local solvability of linear partial differential equations I, Comm. Pure Applied Math. 23 (1970), 1-38.
- [14] Rothschild L.P., Stein E.M., Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247-320.
- [15] Sjöstrand J., Propagations of analytic singularities for second order Dirichlet problem, Comm. in PDE 5 (1980), 41-94.
- [16] Treves F., Study of a model in the theory of complexes of pseudo-differential operators, Ann. Math. 104 (1976), 269-324.