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Intersection Multiplicities in Commutative Algebra 

Paul Roberts 

In this paper we discuss some recent developments in Intersection 

Theory and their relation to problems in Commutative Algebra. After a 

short discussion on how the problem of defining intersection multiplicities 

originally gave rise to questions in Algebra, we describe some recent 

results, due mostly to W. Fulton, which enable one to do intersection 

theory in an algebraic setting, and we show how this makes it possible 

to give a new definition of intersection multiplicities which has 

several advantages over the old one. Finally, we show how this can 

then be used to answer some of the algebraic questions. 

tfe consider the following situation: let Y be a Noetherian 

scheme, let X and V/ be subschemes of Y, and let p be an 

isolated point of Xf\W. A classical problem has been to give a 

good definition of the intersection multiplicity of X and W at p; 

we denote this as of yet undefined number by m(X,W). This definition 

should satisy certain properties, and although there are many such 

properties which a good definition should satisfy, we mention here only 

three which are of particular interest in this paper: 

1 . (Additivity). If X = X'1 «• X", then m(X,W) = m(X\tf) + 

m(XVrf). 
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2. (Vanishing). If dim(x) + dim(W) < dim(Y), then 

m(X,W) = 0. 

3 . (Positivity). If dim(x) + dlm(W) = dim(Y), then 

m(X,tf) > 0. 

Since we are basically interested in the local situation around p, 

we will assume throughout this paper that Y is 3pec(A), where A 

is a commutative Noetherian local ring, and p is the closed point 

of Y. Then X and tf will correspond to ideals of A. It should 

be mentioned at the outset that it is not in general possible to define 

m(X tW) for all subschemes X and W, and that the aim is to define 

it in as general a situation as possible. 

We begin by recalling a simple case: let A be a two-dimensional 

Cohen-Macaulay ring, and suppose that X and W are defined by 

principal ideals (f) and (g). Then the ideal generated by f and g 

will be primary to the maximal ideal of A, and one defines 

m(X,W) = length(A/(f,g)) - length(A/(f) ® A/(g)). 

It is easy to verify the three properties above (and many others); 

in property 1, addition of subschemes is defined by multiplication of 

the generators of the corresponding principal ideals. 

If A is an arbitrary local ring, and if X and \u are defined 

by ideals I and J respectively, then the fact that p is an 

isolated point of the intersection means that the ideal I + J is 

again primary to the maximal ideal of A. The obvious generalization 
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of the above is to define 

a(X fW) = length(A/(l+j)) = length(A/l g) A/j). 

However, this definition does not work; it is easy to see, for example, 

that it does not satisfy either of the first two properties. Serre [9] 

showed how to repair this by correcting it using higher Tors; he 

defines 

m(X,W) = 21 (-DHengthCTor.CA/l.A/j)), 
i> 0 1 

and, more generally, for finitely generated A-modules M and N for 

which M ® A N is a module of finite length, he defines 

( - 1 ) HengthCTor. (M, N)). 
i* 0 1 

For this definition to make sense, it is necessary that Tor^(M,N) = 0 

for i large; this will be true, for example, if either M or N 

has finite projective dimension. If A is regular (that is, if 

the maximal ideal of A is generated by n elements, where n is 

the dimension of A ) , then every module has finite projective dimension, 

and this gives a good definition of intersection multiplicities. This 

definition satisfies Property 1 where one defines addition of modules, 

modulo an appropriate equivalence relation, so that M = M f + M" 

whenever there is a short exact sequence 

0 —> M' -—* M — > M M — > 0. 

In addition, Serre proved that if A is an equicharacteristic regular 

local ring, then properties 2 and 3 hold as well, and he conjectured 

that they hold for arbitrary regular local rings. 



- 28 -

Shortly thereafter, the question arose whether the dimension 

properties 2 and 3 were not merely properties of regular local rings, 

"but were, in fact, properties of modules of finite projective dimension 

over arbitrary local rings. In this setting the multiplicity X(M»N) 

can be defined and is additive. We give three examples connected with 

this question. 

Example 1. Properties 2 and 3 implyt at least implicitly, 

that the case in which dim(M) + dim(N) > dim(A) can never occur. 

There are, on the other hand, many examples where M®^N has finite 

length but dim(M) + dim(N) > dim(A). For instance, let A = 

k[[XfY]]/(XY), M » A/(X), and N = A/(Y). However, it is still 

not known whether such an example exists where M has finite projective 

dimension. 

Example 2 . In the particularly simple case of a module of 

finite projective dimension where M has a resolution of the form 

0 A A — > M — > 0 

for some non-zero-divisor a in A, the dimension properties follow 

from Krull's Principal Ideal Theorem. Several other cases can be 

reduced to this one; for instance, if M has a resolution of the form 

0 -» A n 1^4 A n — » M —> 0, 

the multiplicity properties of M can be reduced to those of 

A/(the determinant of (a^)). 
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Example 3« Another question concerning modules of finite projective 

dimension is the following: suppose A is a Cohen-Macaulay ring and 

M is a module of finite length and finite projective dimension. Then 

the only integer i for which Ext^M.A) does not vanish is i = n, 

where n - dim(A), and Ext n( M,A) is a module of finite length. 

It was asked whether one always had the equality length(Extn(M,A)) = 

length(M). This is true, for example, for regular (or Gorenstein) rings. 

Several cases of the dimension conjectures were proven under the 

sole hypothesis that M had finite projective dimension. For example, 

they were proven by Dutta [2] and Foxby [k] if N has dimension 1 , 

and by Peskine and Szpiro [ 7 j if all modules are graded over a graded 

ring. The methods used in these proofs led to the conjecture that 

these theorems could be proven in general by constructing appropriate 

invariants of the modules under consideration (see Szpiro llO]). 

The idea was as follows. If E # is a free resolution of M, one 

constructs invariants ch^E^) for i = 0 , 1 , . . . , and if N is any 

finitely generated module, one constructs invariants T ^ N ) , all 

satisfying the following properties. 

(a)- If \® N has homology of finite length, then 
def. . x r 

X ( E ^ ® N ) = £ (-D l e n g t h ^ E ^ N ) ) = 2- c h ^ E j T ^ N ) . 
c 

(b). If i > dim(N), then T ^ N ) = 0. 

(c). If i < codim(H), then ch^E^) = 0, where codlm(M) = dim(A) -

dim(M). 
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If invariants satisfying all of this can be defined, then it is 

easy to prove Property 2 for X(Mf*0 if M has finite projective 

dimension. In fact, if dim(M) + dim(N) < dim(A), then, using properties 

(b) and (c), we see that all the terms in the sum 2- ch.(E.) T.(N) 
i * 0 1 1 

vanish, so that X(MtN) = °* 
Several years ago, Baum, Pulton, and MacPherson [l] (see also 

Fulton [5]t Chapter 18), constructed invariants ch^ and as above 

for schemes of finite type over a field, and these satisfy property (b). 

More recently, Fulton ([5]t Chapter 20) showed that the definitions 

can be extended to an arbitrary scheme of finite type over a regular 

scheme, and that property (a) also holds. However, shortly thereafter, 

Dutta, Hochster, and McLaughlin [ 3 ] produced an example which showed 

that the dimension properties are false if only M is assumed to 

have finite projective dimension. In their example, A = 

k[[X,Y, Z,W]]/(XY-ZW), where k is an arbitrary field, N = A/(X,Z), 

and M is a module of finite projective dimension, of Krull dimension 

zero, and of length 15t withX(M,N) = - 1 . 

In the remainder of the paper, we show that in spite of this 

apparent failure, these invariants can be used to answer a number of 

the questions discussed above. We first describe ch^(E^) and 

T ^ N ) in a little more detail. We assume that A is a homomorphic 

image of a regular local ring R. 

Let A* Y = A QY © AjY © ... be the (rational) Chow group of 

Y; A^Y is the free Q-module on integral subschemes of Y of 

dimension k (or, equivalently, on prime ideals P of A with 
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dim(A/P) = k) modulo rational equivalence. Rational equivalence can 

be defined in this situation as follows: if Q is a prime ideal with 

dim(A/Q) = k + 1, and if x is a aon-zero element of A/Q, then the cycle 

H. length (A/(Q,x ) ) P [A/p] 
P 2 Q R 

dim(A/P)=k 

is defined to be rationally equivalent to zero; rational equivalence is the 

equivalence relation generated by this relation. The class of an 

integral subscheme V corresponding to a prime ideal P will be 

denoted [ V ] or [A/P]. If N is a finitely generated A-module, 

there is a cycle class [N] in A F Y defined as follows: 
[N] = H lenffth(Np) [A/Pj. 

P minimal 
in Supp(N) 

Now let E^ be a bounded complex of finitely generated free 

modules, and let X be the support of E^; that is, we have 

X = £ P j ( E # ) p is not exact } • The local Chern character ch(E^) = 

ch Q(E^) + ch^(E^) + ... is defined as an intersection operator on 

A^Y by means of the "graph construction"5 we give here a very brief description 

of this construction, details of wliich can be found in Fulton [5Jt 

Chapter 18. The basic idea is to take the graphs of the maps d^:£^-> ^ 

of the complex Ê ., which are free submodules of E^ © ^i-i °^ T 3 1 ^ 

e^ = rank(E^) and thus define sections of the Grassmann^ans 

Grass (E. © E. ). One then deforms these sections to cycles lying e^ x i —i 
over the support of E # and operates on these with the Chern characters 

of the canonical bundles of the Grassmannians. The resulting cycle 

class can be pushed down to X and is defined to be the result of 
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applying the operator ch(E^) to the cycle [Y] . If V is an 

inte gral subscheme of Y f one defines the action of ch(E^) on [V] 

by restricting the complex E^ to V and proceeding as before; the 

result is then an element of A^(VOX). In this way operators ch^(E^) 

are defined for each integer i, and ch^E^) gives, for every 

subscheme Z of Y and for every integer k, an "intersection" 

map from A f c ( z ) to A ^ ^ Z f l X ) . The invariants T\(N) are defined 

using the local Ghern character as follows: let A be a homomorphic 

image of the regular local ring R of dimension m, and let 

be a free resolution of the module N over R. Then 

T i ( N ) 8 8 <Vi(G.)(l BD-

We note that the cycle class [R] is in A^(Spec(R)), and, since 

Supp(Gw) = Supp(N), operating on this class by ch .(G) gives * m-i * 

an element of A^(Supp(N)). Since Supp(N) £ Y, this can be pushed 

forward to give an element of AjY f which we will also denote T^(N). 

We now have two elements of A^Y canonically associated to the module 

N, namely [N] as defined above and T(N) = ^ T,(N). These are 

in general not the same, but one always has 

T ( N ) - [N] + (terms of dimension < dim(N)). 

We now state several properties of these invariants. 

(a). (The local Riemann-Roch formula). If E^®N has homology 

of finite length, then 
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In this formula, we take (N) in A,. (Supp(N)). The condition 

that E^®N has homology of finite length implies that (Supp(E^) 0 (Supp(N)) 

= p (the closed point of Y), so chj(E#)( T^(N)) is an element 

of A0(Supp(N)Pl Supp(S^)) = A 0 ^ p ^ ~ ^» 3 1 1 ( 1 i < f c c a n ^ 

identified with a number. A more precise statement of this formula 

would be: 

(X(E*®N))[p] = ^ch i ( E ^ ) ( T i ( N ) ) . 

(b). If i > dim(N), then T±W = 0, 

This is clear, since T^(N) is in A^SuppN), which is zero 

for i > dim(N). 

(c). (Multiplicativity). If E # and F^ are bounded complexes of 

free modules with supports X and W respectively, then for each 

integer k we have 

ch.(E #® F j = ch.(Ejch.(Fj. 
K i+j=k 1 J 

The multiplication here is composition of operators. This can be 

stated more concisely: 

ch(E^® Fj = ch(E #)ch(Fj. 

(d). (Commutativity). For all i and j, we have 

chi(E^)ch (F #) = chj(F #)ch i(E 4 f). 

Before returning to the questions raised above concerning modules 

of finite projective dimension, we would like to introduce another 

possible definition of intersection multiplicity. Let a be an 
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element of A^X for X a closed subscheme of Y. We say that a has 

finite projective dimension if there is a bounded complex of free 

modules E^ with support contained in X such that a = ch(E^)([Y]). 

If § = ch(F#)([Y]) in A^W is another cycle class of finite projective 

dimension, and if XOW = p, we define the intersection multiplicity 

of a and /3 by the formula 

( » ( < I , 0 ) ) I P] = ch(Ej((3) in A Q(p). 

From the multiplicativity of local Ghern characters, we have 

ch(Sj(|3) = ch(E^)ch(F^)([Y]) = ch(E #g>F^ ) ( l Y ] ) = ch(Fj(d). 

and this definition is in fact symmetric. The same kind of argument 

shows that it does not depend on the choice of the complex E^ with 

ch(E^ ) ( [ Y ] ) = <Z , since if E£ were another one, we would have 

ch(Ej(0) - ch(Ejch(Fj ( [ Y ] ) = ch(F #)ch(E # ) ( l Y l ) = 

= ch(Fj(a) = ch(F^)ch(E;)(LY]) = ch(E ; ) ( |8) . 

This definition is clearly additive, and we now show that it 

satisfies the vanishing property (Property 2 ) , For simplicity, we 

assume that all components of Y have dimension n; otherwise the 

statement must be modified slightly. 

Theorem. Let & and /3 be cycle classes of finite projective 

dimension in A^X and Â tf respectively. Assume that Xf\W = p 

and that dim(x) + dira(w) < dim(Y) = n. Then m( 0L9 |8 ) = 0 . 

Proof. We have 

(m(a , /3))p = ch(Ej ( /3) = c h ( E # ® F # ) A Y ] ) . 
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Since all components of Y have dimension n, this simplifies 

to become 

(m(a , 0))p = c h J B ^ F J U Y I ) = £ chi(E#)ch.(P.)([Y]). 
i+j=n 1 J 

Suppose that j < codim(W) ( = dim(Y) - dim(tf)). Then 

ch.(F*)([Y]) is an element of A .(W), and, since the dimension of 

W is less that n - j, A .(tf) = 0. Hence the term ch. (Ejch . ( F J ( [ Y ] ) 
n-J i * J * 

is equal to zero. Similarly, if i < codim(X), using the commutativity 

of the local Chern characters, we have that c h i ( E ^ ) c h ^ ( F ^ ) ( [ Y ] ) = 0 

in this case as well. The hypothesis that dim(X) + dim(tf) <. dim ( Y ) 

implies that one of these two cases must hold for every i and j 

with i + j = n, so we deduce that m( <X , (3 ) = 0. 

We now wish to apply this to the questions concerning intersection 

multiplicities for modules. By the local Riemann-Roch formula, we have, 

if M and N are modules of finite projective dimension with 

resolutions E^ and F^ respectively, 

X(M,N) = X^*®?*) s c h ( E * ® F ^ ) ( T ( Y ) ) , 

where T ( Y ) = T(the A-module A). From the Theorem just proven, 

we can deduce the vanishing property for ~X(M,N) whenever we have 

ch(E^® F ^ ) ( T ( Y ) ) = ch(3 #® F ^ ) ( [ Y ] ) ; for example, this will hold 

when T O O = LY]« This can be shown to be true, for instance, when 

A is a complete intersection, which includes the case when A is 

regular conjectured by Serre. This case of the vanishing property 

has also been proven by K-theoretic methods by Gillet and Soule [6]. 

One can show that if Y is an isolated singularity, or, more generally, 

if the singular locus of Y has dimension less than or equal to one, 
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then the hypothesis that dim(X) + dim(W) < dim(Y) implies that 

ch(E^®F^) = 0, so that one can prove the vanishing property in 

this case also (see Roberts [8]). On the other hand, the positivity 

is not yet known, even in the case in which A is regular. 

The above discussion shows that to answer questions on intersection 

multiplicities for modules, it is important to know something about 

T(Y), and in particular, to know when it holds that T ( Y ) = [Y]. 

In fact, the crucial question is whether there exist bounded complexes 

E^ of free modules with homology of finite length with 

ch(Ej( T(Y) - lY] ) f 0. 

As mentioned above, such a complex cannot exist over a complete intersection, 

and there is at present no known example over a Gorenstein ring. We 

show, however, that the example of Dutta, Hochster, and McLaughlin 

referred to above makes it possible to construct a complex of this 

type over a Cohen-Maxaulay ring. 

Let B = k[[X,Y,Z,W]]/(XY-ZW), where k is a field of 

characteristic / 2 . Let I be the ideal (X,Z). Let A be the 

integral closure of B [ V~XW ] in its quotient field; it is quite easy 

to show that an element a + b^XW, with a and b in the quotient 

field of B, is integral over B (and thus over BffXW] ) if and 

only if a € B and b = V/X. with V € I. Thus A = B © I as 

a B-module. From the short exact sequence 

0 ^> I — ^ B B/l — > C 

and the fact that B/l = kLLY,W]J we deduce that depth(l) = 3t 
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and A is Cohen-Macaulay. Let E^ be a free resolution of the 

B-module of length 15 in the example, and let F # = E^® SA. Since 

B is a complete intersection, we have T(B) = [B] = T^(B). By the 

local Riemann-Roch formula, we have 

ch2(Ej ( T 2(B/l)) = -1. 

Using the additivity of T , we can conclude that 

T z ( A ) = T 2 ( I ) = - T 2 ( B / I ) , 

and, in fact, that 

ch 2(Fj( T 2(A)) = 1 . 

We conclude with an application to the question raised in 

Example J. Let A be the ring just constructed, and let F^ be 

E^&gA as above. We remark that the local Chern characters have the 

following property: if F^ = Hom(F^,A) is the dual complex, then 

ch^F^) = (-l^ch^F^) for each integer i. 

Taking into account the shift in degree, the statement that M and 

Extn(M,A) have the same length in Example 3 can be reformulated as follows: 

where F̂ . is a resolution of M. In terms of local Chern characters, 

we have 

X(F*) = I c h 1 ( P # ) ( T 1 ( Y ) ) = £ (-D^CF.Xr ^ Y ) ) , 

whereas X(*V) = £ chi(F^)( T ^ Y ) ) . 

Thus if TJ^CY) = 0 whenever n - k is odd, the formula 

holds, while in the example under consideration, where chgCF^X T^L)) = 1 
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and n = 3t it does not. In fact, computing using the above formulas, 

one finds that length(M) = 3 1 . while length(Extn(Mf A)) = 29. 
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