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ON THE REAL SPECTRUM OF A RING OF 

GLOBAL A N A L Y T I C FUNCTIONS 

J e s u s M. Ruiz 

We present here some applications of the theory of real spectra of excellent rings to the 

ring of global analytic, functions on a compact real analytic manifold. Section 1 contains the facts 

of that theory that shall be used in the sequel. Section 2 describes the good relationship between 

global semianalytic subsets of the manifold and constructive subsets of the real spectrum of the 

ring of global analytic functions. This leads to the solution of Hilbert's 17th problem, to the real 

Nullstellensatz and to the finiteness theorems, all in this global analytic setting. Finally, Section 

3 gives a quick outlook on several questions related to connectedness, either of constructible sets 

or of global semianalytic sets. 

S I . Real spectra of exce l lent r ings 

Let A be an excellent ring (for excellent rings, regular 

homomorphisms and related notions, we refer to [Ml]). We denote by 

X=SpecRA its real spectrum. We shall use terminology and results from 

[CR], [LI ] and [BCR]. Let us remember some. 

A prime cone cx€X corresponds to a unique homomorphism A - * K ( O U , 

where K(<X) is a real closed field., whose kernel is denoted by supp(a). The 

image of an feA under that homomorphism is writ ten f(oc), which allows us 

a functionwise use of the elements of A. Thus we define a sub-basis of 

Harrison's topology as follows: all sets 

(f>0}={oceX: f(<x)>0) ( f €A) 

It is 3 l so useful to consider the constructible topology, whose standard 

basis consists of all constructible sets ScX: 

S=U U i < r { f i l >0, . . . > f l g >0,g j =0} Cf i r g,€A), 
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but unless otherwise explicitely stated, X is alwais endowed with 

Harrison's topology. The dimension is given by; 

dim a = dim(A/supp(a)), 

dim S = sup{dim (3; (3eS) 

(and dim 0 = - 1 ) . If oc€X we have the dimension at oc: 

dim aS = sup{dim |3: | 3 e S , &-*a), 

where p-*oc means that supp(j3)csupp(oc) and A/supp(p) -* A/supp(a) 

preserves signs. Of course, dim aS = - 1 is equivalent to <x£S. 

Finally, to state the main result, set: coda5 = dirn^S - dim a. 

Theorem 1.1 (Krull definition of real dimension, [Rz2], [Rz5]).- Let ScX 

be constructible and oceX such that codwS ^1. Then 

there is a chain 

cod aS = sup d a d -> a 1 -* a 

wi th a1r..,o<d€S 

The proof of 1 . 1 is done by induction on codaS. The argument combines 

the dimension result itself with an abstract curve selection lemma 

(existence of a suitable homomorphism A K[[t]]) and the computation of 

the image of the canonical map 5pec rA Spec rA in the case A is local 

and A its adic completion. The good property here is that the 

homomorphism A -* A is regular, because A is excellent. As a matter of 

fact, once 1 . 1 is available we can deduce; 

Theorem 1.2 (real going-down, [Rz6]).- Let i|»:A-*B be a regular 

homomorphism of noetherian rings, A excellent, and if* the corresponding 

map Y = Spec rB -+ 5pec rA = X. Then, for any prime cones <x'-* oc in X and p 

in Y with I|J*|3=<X, there is ¡3' in Y such that 

and ht(supp(f3 ,))=ht(supp(a')). 
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To prove this result one f irst reduces to the case A Is a domain of 

dimension 1, by means of Theorem 1.1. Then, by a standard basé change ' 

argument A is substituted by a localization D of its normalization. This D 

is a discrete valuation ring and the going-down is shown readily for it; 

Let us remark here that faithfully flat homomorphlsm do not have, in 

general, real going-down ([CR]: t-*t 2 ; cf. [Rz6]). 

The previous theorems are useful in dealing with cons t ruc ts l i t y 

problems in real spectra. Two most interesting of these are 

constructibility of closures and constructibility of connected components. 

We delay t i l l Section 3 a brief discussion of the latter, which appears to 

be far more involved. With respect to closures we can solve the question as 

follows: 

Theorem 1.3 (fRz7p.- Let A be an excellent ring and X its real spectra. If 

ScX is constructible, its closure is constructible too. 

The proof is based, once again, in Theorem 1.1, plus the nice 

properties of the constructible topology. The result was already proved for 

rings of polynomials over a real closed field ([CR]), for rings of convergent 

power series over the reals ([L], [FRRz]) and, very recently, for rings of 

formal power series over a real closed field ([AA]). 

It is worth quoting an example in [DG]: let A be the ring of continuous 

functions [R-*IR; then, the closure of [ldR>0] in SpecpA is not 

constructible. 
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§2. Rings of global ana ly t ic funct ions 

Throughout this section M wi l l stand for a compact real analytic 

manifold, 0 for Its sheaf of germs of analytic functions and #M) for its 

ring of global analytic functions. Since M is compact, AM) is noetherian 

([Fr]). We define in the usual way the zero-set of an ideal I of tfM): 

Z(l) = (x€M: f(x)=0 for all 

and the ideal of a set Z c h : 

I(Z) = {f € AM): f(x)=0 for all X€Z). 

(2.1) Derivations on (XY\).- Fix a point x€h of, say, dimension n, and let 

m denote the corresponding maximal ideal: m = l((x]). Starting wi th C°° 

data and approximating, one easily obtains global analytic functions 

x l f . . . , x n : M 1R and analytic vector fields ^1,...,^n on M such that 

det f^XjXxteO. 

These x 1 , . . . ,x n are a regular system of parameters of the local ring # M ) m 

which turns out to be regular of dimension n. Furthermore, ^v-X-n induce 

derivations D , , . . . ^ of AM), and these D.'s form a basis of the module of 

derivations of 0(M) . Using Matsumura's jacobian criteria ([Ml], [M2]) it 

follows: 

(2.1.1) 6(M) is excellent, and 

(2.1.2) (XH) t\ is a regular homomorphism. 

Finally, we recall the isomorphism Ox = (R(x 1,...,x n), where (...) means 

convergent power series, induced by the Taylor expansion at x via te 

coordinate system ( x ^ . . . ^ ) . In particular, m x = { x K . . , x n } Ox is the 

maximal ideal of 0 . 
A 

The facts above enable us to apply all results in §1 to the ring CKM). 

On the other hand, convergent power series and, consequently, c\ behave 
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well from the viewpoint of real spectra (cf. [Rzl] , [FRRz]), so that we can 

combine both things to study Spec r AM). 

First of all we obtain: 

Theorem 2.2 (Artin-Lang for global analytic functions, [Rz2]).- Let I be 

an ideal of tf(M) and fv...,fmt £KM). If f,,...,^ are positive at a prime 

cone a wi th support I, then 

(x€M;f,(x)>O,...,fm(x)>O]nZ(l)*0. 

P r o o f - Suppose f 1(a)>0,...,fm(a)>0, supp(cc)=l, We have the 

homomorphism AM) -+ K(OC) that embeds [R into K(OC) and consider 

V = convex hull of IR in K(OC) = (u€K(oc): u 2<r for some reIR). 

This is a convex valuation ring of IR whose maximal ideal wi l l be denoted 

by nty (cf. [Br]). Obviously, its residue field V / m v is an arquimedian 

extension of tR and hence lR-»-V/rav is an isomorphism. 

Now, we notice that A M ) - * K(OC) factorizes through V. Indeed, if 

f 6 AM), as M is compact, there is a real number r >0 with f (x) 2 < r for 

all xeM; so g = / ( r - f 2 ) e AM), and r = f(oc)2+g(cx)2 >0. That is, f(oc) € V. 

We have so AM) -> V, and nty lies over a prime ideal mDSupp(oc)=l. But 

the compositum IR -> AM)/ra -• V / m v is an isomorphism and consequently 

m is maximal: m = { f € A M ) : f(x)=0), for a unique x€M. 

V/e turn to the homomorphism AM) -> 0 . It is regular and AM) is 

excellent, (2.1); hence, we can apply the going-down 1.2 with the data 

oc -> oc0=the unique prime cone of AM) with support m 

p 0=the unique prime cone of 0K with support m x , 

and find a prime cone |3->|30 such that 

lcsupp(^); f,(£)>0,...,fm(£)>0. 

Since I is finitely generated, there is f€l with Z(l)=(x€M: f(x)=0). Finally, 

we know Artin-Lang holds for the ring tfx/supp(|3) (this is somehow 
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classical, and should be attributed to Risler-Lassalle, cf. [Rz 1 ]): there 

exists yeM, as close as needed to x, such that f(y)=0, f 1(y)>0,...,fm(y)>0. 

The proof of 2.2 is complete. 

C o r o l l a i r e 2.3 (Hubert's 17th problem, [Rz3]).- Let f:M-*IR be a 

non-negative real analytic function. Then f is a sum of squares of 

meromorphic functions: f = L 1 < i < P (V9 i^ ' 
where f,,g i e (XY\), int n {g i =O)=0. 

Proof - We can assume M is connected, so that the identity principle holds 

true and #M) is a domain. By the classical Art in-Schreier theory we only 

have to check that f is positive at any total ordering of 0(M), i.e. at any 

prime cone whose support is l=(0). This follows by applying 2.2 to -f, 

since the hypothesis is that - f is never positive. 

C o r o l l a r y 2.4 (real Nullstellensatz, [Rz3]).- Let I be an ideal of 0(W. 

Then: 

IZ(I) = real-radical(l), 

that is, felZ(l) if and only if f^+g^+^.+g^ 61 for some g, € 6?(M) and 

m >\. 

Proof - In the standard way one reduces to show I Z ( D c l for I real 

prime. Therefore l=supp(cc) for some prime cone a (A r t i n -Sch re ie r ) and 

from 2.2 we deduce: if W, then f(cx) 2>0 and ( f 2 > O ) n Z ( l ) * 0 . Thus, fglZ(l). 

These results il lustrate the way M and X = Specp #M) are related. 

To be more formal, let us remark f irst that 

x <- ocx=the unique prime cone whose support 

is the maximal ideal of the point x, 

gives a topological embedding M-*X. Then we can define a map that 
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reproduces in the global analytic context the well-known "tilda operator" 

of Coste-Roy (cf. [CR]): 

fconstructiblel /semianalytic] 
(2.5) I J ( : S -> SflM 

^ sets of X J I sets o f « J 

Here, it is important to distinguish the two notions: T c M is . 

semi analytic if 

(2.6.1) T = U U I < P { X € M : f | 1(x)>0 J...,f j s(x)>0 >g,(x)=0], f^g, € AM), 

and T c M is locally semianalytic if every point xeM has a nbhd U such 

that 

(2.6.2) TfiU = U 1 < U r { x e U : f, 1(x)>0 J...,f | s(x)>0 Jg |(x)=0} > f^g, € AM). 

The theory of locally semianalytic sets reduces to the one of 

semianalytic germs and is well developed (cf. [L], and for elementary 

proofs of the basic facts, [FRRz] and [Rz4]). On the contrary, we do not 

know any specific result on global semianalytic sets, and we want to show 

how the real spectrum can give some interesting information about them. 

As a consequence of Artin-Lang 2.2, we find that 2.5 is a lattice 

isomorphism (just reformulate 2.2 as: S=0 iff SDM=0), whose inverse is: 

(2.7) T - * T = U U i < r (oceX: f i ]((x)>0,...,f j s(a)>0,g i(a)=0), 

for a T given as in 2.6.1. 

A less immediate property is: 

Lemma 2.8 - The mapping: T -> T "preserves closures". 

Proof - The set S = c l x ( T ) c X is constructible (1.3 and 2.1.1) and closed, 

so that 

5 = U U L < R (<X€X: r j 1(a)>0,...,f i s«x)>0] (f(J € A M ) ) . 

Consequently, the semianalytic set SflM is closed. As S O M D T , we have 
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S D M D c y T ) . Conversely, let x€SDM and U be a nbhd of x in M. We may 

assume U = {x€M: h(x)>0) for some h e ¿XM). Since x€U, a x €U; since 

a x€(SDM) = c l x ( T ) we have U fTT*0 and so WTx0. Hence x€Cl M (T).This 

shows c l n ( T ) = cl x(T)nM. 

From 2.8 we deduce two global finiteness theorems for semianalytic 

sets: 

C o r o l l a r y 2.9 - Let T c M be semianalytic. Then c l M ( T ) (resp. intM(M)) is 

semianalytic too. 

C o r o l l a r y 2.10 - Let T c M be semianalytic. If T is closed (resp. open), it 

can be described wi th non-strict (resp. str ict) inequalities: 

T = U 1 < i < r { x€M: f | 1(x)>0,... lf | s(x)>0} 

(resp. T = U U i < r { x € M : f n(x)>0,. . . , f j s(x)>0}), 

for some global analytic functions fjj € #M). 

S3. Open problems on connectedness 

The question whether the connected components of a constructible set 

S in a real spectrum X = Spec rA are again constructible is, as was quoted 

earlier, quite more difficult than its analogue for closures. The most 

general result we know is: 

Theorem 3.1 ([Rz8]).- Let A be an excellent ring whose real spectrum has 

only finitely many closed points. Let B be a finitely generated A-algebra. 

Then, the connected components of any constructible set of Spec rB are 

constructible. 
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(3.2) Examples and remarks.- (1) The standard models for an A as in 3.1 are 

the excellent henselian semilocal rings whose residue fields have a finite 

number of different orderings. Indeed, in such rings, every prime cone 

makes convex some maximal ideal (cf. [L2] 3.16 i). 

On the other hand, for A henselian semilocal the hypothesis on its 

residue fields is not only sufficient but also necessary to get the 

constructibility conclusion of 3.1. The reason behind is that the real 

spectrum of a field is totally disconnected. 

(2) The following particular cases of 3.1 were known before: A a real 

closed field ([CR]); B=A a ring of convergent power series over the reals 

([L], [FRRz]), and B=A a ring of formal power series over a real closed 

field ([AA]). 

(3) As 3.2.1 suggests, the nature of 3.1 is essentially local, at least 

with respect to the ring of coefficients A. Thus many rings are not covered 

by that theorem. For instance: 

Problem I - Are the connected components of a constructive set 

construct ive in the (very fair) case 

A = R [ x 1 r . , x p ] [ [y 1 r . . ,y q ]L 

R a real closed field and x., y. indeterminates? 

We shall not enter here in the proof of 3.1. It is based heavily on the 

real going-down 1.2 and its streamline are done in the case A=R[[x l r . . ,x n ] ] , 

where R stands for a real cosed field (cf. [AA]). It is also remarkable that 

an abstract slicing procedure patterned on Coste's saucissonnage ([BCR]) 

is also used. 

We finish this short section by considering the case A = <XV\), where 

N is a real manifold as in §2. Of course, this A is not of the type described 
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in 3.1: the set of closed points of X = Spec rA is M itself (the proof of 2.1 

shows that for any aeX there is xeM wi th a - * a x ) . Nevertheless, we can 

prove: 

Propos i t ion 3.3 - Let 5 be a constructible set of X. Then the connected 

components of S are constructible. 

Proof - Let T=SflM be the associated semianalytic set. It is known that 

the connected components of T are locally semianalytic, and form a 

locally finite family ([L], or [Rz4]). Since M is compact, they must be 

finitely many, say r. 

Suppose now that the connected components of S are not 

constructible. Then S cannot be connected: S=WuW*, where W and W are 

non-empty, disjoint, open and closed subsets of S. Then, since 

constructible is equivalent to clopen in the constructible topoiogy ([L1 ]), 

we deduce that W and W are constructible. Now, both cannot be connected, 

say w" is not. Repeating again, we get two constructible, non-empty, 

closed and disjoint subsets W,, W 2 of W with W ^ W ^ W ^ Inductively, we 

obtain; 

S = SjiL.uSpUS^,, SjnSj =0 f o r a l l i ^ j , 

S, non-empty, constructible, closed in S for all i. 

We then set T. = S^M *0, so that 

(*) T = T ,u . . . uT p uT r + 1 , T.nT. =0 for all i * j , 

and, what is essential, the T, 's are closed in T by 2.8. We are done, 

because T having r connected components, the (") is not admissible. 

After 3.3 and 2.8, taking a step towards a result like 2.9 for 

connected components, the natural question is; 

Problem I I - Does the correspondence: T -» T preserve connected 
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components?. 
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