@article{PSMIR_1992-1993___1_A2_0, author = {Cheverry, C.}, title = {Oscillations de faible amplitude pour les syst\`emes 2 x 2 de lois de conservation}, journal = {Publications de l'Institut de recherche math\'ematiques de Rennes}, note = {talk:2}, pages = {1--29}, publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes}, number = {1}, year = {1992-1993}, language = {fr}, url = {http://archive.numdam.org/item/PSMIR_1992-1993___1_A2_0/} }
TY - JOUR AU - Cheverry, C. TI - Oscillations de faible amplitude pour les systèmes 2 x 2 de lois de conservation JO - Publications de l'Institut de recherche mathématiques de Rennes N1 - talk:2 PY - 1992-1993 SP - 1 EP - 29 IS - 1 PB - Département de Mathématiques et Informatique, Université de Rennes UR - http://archive.numdam.org/item/PSMIR_1992-1993___1_A2_0/ LA - fr ID - PSMIR_1992-1993___1_A2_0 ER -
%0 Journal Article %A Cheverry, C. %T Oscillations de faible amplitude pour les systèmes 2 x 2 de lois de conservation %J Publications de l'Institut de recherche mathématiques de Rennes %Z talk:2 %D 1992-1993 %P 1-29 %N 1 %I Département de Mathématiques et Informatique, Université de Rennes %U http://archive.numdam.org/item/PSMIR_1992-1993___1_A2_0/ %G fr %F PSMIR_1992-1993___1_A2_0
Cheverry, C. Oscillations de faible amplitude pour les systèmes 2 x 2 de lois de conservation. Publications de l'Institut de recherche mathématiques de Rennes, Fascicule d'équations aux dérivées partielles, no. 1 (1992-1993), Exposé no. 2, 29 p. http://archive.numdam.org/item/PSMIR_1992-1993___1_A2_0/
[1] Le probleme de Goursat hyperbolique en dimension deux, Comm. In Partial Differential Equations. 3 (1976), 231-282. | MR | Zbl
.[2] Introduction to the theory of linear partial differential equations, Studies in Mathematics and its applications. | Zbl
& .[3] Justification de l'optique geometrique pour une loi de conservation scalaire, fascicule d'équations aux dérivées partielles. Institut de Recherche Mathématique de Rennes. (1992), 55-84.
.[4] The validity of nonlinear geometric optics for weak solutions of conservation laws, Comm. Math. Physics. (1985), 1-80. | MR | Zbl
& .[5] Measure-valued solutions to conservation laws, Arch. Rat. Mech. Anal. (1985), 223-270. | MR | Zbl
.[6] Solutions in the large for Nonlinear Hyperbolic Systems of Equations, Comm. On Pure And Applied Mathematics 18 (1965), 697-715. | MR | Zbl
.[7] weakly non linear high frequency waves, Comm. On Pure And Applied Mathematics 36 (1983), 547-645. | MR | Zbl
, .[8] Resonantly interacting weakly non linear hyperbolic waves, Stud. Appl. Math 71 (1984), 149-179. | MR | Zbl
, , .[9] Resonant one dimensional non linear geometric optics, J. of. Functional. Analysis (1993 à paraître). | Zbl
, , .[10] Focusing and absorbtion of nonlinear oscillations, preprint Rennes 1993. | Numdam | MR | Zbl
, , .[11] Resonant Nonlinear geometric optics for weak solutions of conservation laws, preprintTel Aviv University 1992. | MR | Zbl
[12] Compensated Compactness and Applications to PDEs, Nonlinear Analysis and Mechanics, Herriot Watt Symposium (1979). | Zbl
[13] The spaces BV and quasilinear equations, Math. USSR. Sbornik 2 (1967), 225-267. | MR | Zbl
.[14] Homogenization of Linear and Nonlinear Transport Equations, Comm. On Pure And Applied Mathematics XLV (1992), 301-326. | MR | Zbl
.