Boundary Value Problems for Higher Order Operators in Lipschitz and C 1 Domains
Publications de l'Institut de recherche mathématiques de Rennes, Fascicule d'équations aux dérivées partielles, no. 1 (1992-1993), Exposé no. 6, 11 p.
@article{PSMIR_1992-1993___1_A6_0,
     author = {Pipher, Jill},
     title = {Boundary {Value} {Problems} for {Higher} {Order} {Operators} in {Lipschitz} and $C^1$ {Domains}},
     journal = {Publications de l'Institut de recherche math\'ematiques de Rennes},
     note = {talk:6},
     pages = {1--11},
     publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes},
     number = {1},
     year = {1992-1993},
     language = {en},
     url = {http://archive.numdam.org/item/PSMIR_1992-1993___1_A6_0/}
}
TY  - JOUR
AU  - Pipher, Jill
TI  - Boundary Value Problems for Higher Order Operators in Lipschitz and $C^1$ Domains
JO  - Publications de l'Institut de recherche mathématiques de Rennes
N1  - talk:6
PY  - 1992-1993
SP  - 1
EP  - 11
IS  - 1
PB  - Département de Mathématiques et Informatique, Université de Rennes
UR  - http://archive.numdam.org/item/PSMIR_1992-1993___1_A6_0/
LA  - en
ID  - PSMIR_1992-1993___1_A6_0
ER  - 
%0 Journal Article
%A Pipher, Jill
%T Boundary Value Problems for Higher Order Operators in Lipschitz and $C^1$ Domains
%J Publications de l'Institut de recherche mathématiques de Rennes
%Z talk:6
%D 1992-1993
%P 1-11
%N 1
%I Département de Mathématiques et Informatique, Université de Rennes
%U http://archive.numdam.org/item/PSMIR_1992-1993___1_A6_0/
%G en
%F PSMIR_1992-1993___1_A6_0
Pipher, Jill. Boundary Value Problems for Higher Order Operators in Lipschitz and $C^1$ Domains. Publications de l'Institut de recherche mathématiques de Rennes, Fascicule d'équations aux dérivées partielles, no. 1 (1992-1993), Exposé no. 6, 11 p. http://archive.numdam.org/item/PSMIR_1992-1993___1_A6_0/

[A] S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand, 1965. | MR | Zbl

[ADN1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959), 623 - 727. | MR | Zbl

[ADN2] S. Agmon, A. Douglis and L. Nirenberg, ibid II, Comm. Pure Appl. Math. 22 (1964), 35 - 92. | MR | Zbl

[B] F. Browder, On the regularity of properties of solutions of elliptic boundary value problems, Comm. Pure Appl. Math. 9 (1956), 351 - 361. | MR | Zbl

[C] J. Cohen, BMO estimates for biharmonic multiple layer potentials, Studia Math. XCI (1988), 109 - 123. | MR | Zbl

[CGI] J. Cohen and J. Gosselin, The Dirichlet problem for the biharmonic equation in a Cl domain in the plane, Ind. U. Math. J. 32 (1983), 635 - 685. | MR | Zbl

[CG2] J. Cohen and J. Gosselin, Stress potentials on Cl domains, Jour. Math. Anal. Appl 125 (1987), no. 1, 22 - 46. | MR | Zbl

[CMM] R. Coifman, A. Mcintrosh and Y. Meyer, L'integrale de Cauchy definit un Operateur borne sur L2 pour les courbes lipschitziennes, Ann. of Math. 116 (1982), 361 - 387. | MR | Zbl

[Da] M. Dauge, Elliptic boundary value problems on corner domains, Lecture Notes in Math. 1341, Springer-Verlag, 1988. | MR | Zbl

[D] B. E. J. Dahlberg, On estimates for harmonic measure, Arch. Rat. Mech, Anal. 65 (1977), 272 - 288. | MR | Zbl

[DK] B. E. J. Dahlberg and C. Kenig, Hardy spaces and the Lp - Neumann problem for Laplace's equation in a Lipschitz domain, Annals, of Math. 125 (1987), 437 - 465. | MR | Zbl

[DKV] B. Dahlberg, C. Kenig and G. Verchota, The Dirichlet problem for the biharmonic equation in a Lipschitz domain, Ann. de l'Inst. Fourier 36 (1986), 109 - 134. | Numdam | MR | Zbl

[G] P. Garabedian, A partial differential equation arising in conformal mapping., Pac. J. Math. 1 (1951), 485 - 524. | MR | Zbl

[Gr] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman Publishing, 1985. | MR | Zbl

[JK1] D. Jerison and C. Kenig, The Dirichlet problem in non-smooth domains, Ann. of Math. 113 (1981), 367 - 382. | MR | Zbl

[JK2] D. Jerison and C. Kenig, Boundary value problems on Lipschitz domains, MAA Studies in Math. 23 (1982). | MR | Zbl

[KO] V. Kondratiev and O. Oleinik, Estimates near the boundary for 2nd order derivatives of solutions of the Dirichlet problem for the biharmonic equation, Att. Accad. Naz. Lincei Rend. Cl. Sei. Fis. Mat. Natur. 80 (8) (1986), 525 529. | MR | Zbl

[Ko1] V. Kozlov, The strong zero theorem for an elliptic boundary value problem in a corner, Dokl. Akad. nauk. SSSR 309 (6) (1989), 1299 - 1301. | MR | Zbl

[Ko2] V. Kozlov, The Dirichlet problem for elliptic equations in domains with conical points, Diff. Eq. 26 (1990), 739 - 747. | MR | Zbl

[KoM1] V. Kozlov and V. Maz'Ya, Estimates of the Lp means and asymptotic behavior of solutions of elliptic boundary value problems in a cone, I, Seminar analysis, Akad. Wiss. DDR, Berlin (1986), 55- 91. | MR | Zbl

[KoM2] V. Kozlov and V. Maz'Ya, ibid, II, Math. Nachr. 137 (1988), 113 - 139. | MR | Zbl

[KoM3] V. Kozlov and V. Maz'Ya, Spectral properties of operator pencils generated by elliptic boundary value problems in a cone, Funct. Anal. Appl. 22 (1988), 114 - 121. | MR | Zbl

[KrM] G. Kresin and V. Maz'Ya, A sharp constant in a Miranda-Agmon type inequality for solutions to elliptic equations, Soviet Math. 32 (1988), 49 -59. | MR | Zbl

[MN] V. Maz'Ya and S. Nazarov, The apex of a cone can be irregular in Wiener's sense for a fourth-order elliptic equation, Mat. Zametki 39 (1986), 24 - 28. | MR | Zbl

[MNP] V. Maz'Ya, S. Nazarov and B. Plamenevskii, On the singularities of solutions of the Dirichlet problem in the exterior of a slender cone, Math. Sb. 50 (1980), 415 - 437. | Zbl

[MP] V. G. Maz'Ya and B. A. Plamenevskii, Estimates in Lp and in Holder classes and the Mir and a-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary, Amer. Math. Soc. Transl. (2) 123 (1984), 1 - 56; Transl. from Math. Nachr. 81 (1978), 25 - 82. | MR | Zbl

[MNP1] V. Maz'Ya, S. Nazarov and B. Lamenevskii, Asymptotische Theorie Elliptischer Randwertaufgaben in singular gestorten Gebieten I, Mathematische Lehrbrucher und Monographien, Akademie- Verlag, Berlin, 1991. | MR

[MR] V. Maz'Ya and J. Rossman, On the Miranda-Agmon maximum principle for solutions of elliptic equations in polyhedral and polygonal domains, preprint. | MR | Zbl

[O] S. Osher, On Green's function for the biharmonic equation in a right angle wedge, J. Math. Anal. Appl. 43 (1973), 705-716. | MR | Zbl

[PV1] J. Pipher and G. Verchota, The Dirichlet problem in Lp for the biharmonic operator on Lipschitz domains, Amer. J. Math. 114 (1992), 923 -972. | MR | Zbl

[PV2] J. Pipher and G. Verchota, Area integral estimates for the biharmonic operator in Lipschitz domains, Trans. Amer. Math. Soc. 327 (2) (1991), 903-917. | MR | Zbl

[PV3] J. Pipher and G. Verchota, A maximum principle for biharmonic functions in non-smooth domains, Comm. Math. Helv., to appear. | MR | Zbl

[PV4] J. Pipher and G. Verchota, Maximum principles for the polyharmonic equation on Lipschitz domains, preprint. | MR | Zbl

[PV5] J. Pipher and G. Verchota, Dilation invariant estimates and the boundary Garding inequality for higher order elliptic operators, preprint. | MR | Zbl

[S] V. Slobodin, Homogeneous boundary value problems for a polyharmonic operator with boundary conditions on thin sets, Izv. Vyssh. Vchebn. Zaved. Mat. 10 (1989), 57 - 63. | MR | Zbl

[V1] G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation, J.of Punct. Anal. 59 (1984), 572 - 611. | MR | Zbl

[V2] G. Verchota, the Dirichlet problem for the biharmonic equation in Cl domains, Ind. U. Math. J. 36 (1987), 867 - 895. | MR | Zbl

[V3] G. Verchota, The Dirichlet problem for the polyharmonic equation in Lipschitz domains, Ind. U. Math. J. 39 (1990), 671 702. | MR | Zbl