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ON THE SURVIVAL PROBABILITY OF 

A BRANCHING PROCESS IN A RANDOM ENVIRONMENT 

Quanshang LIU 

Institut de Recherche Mathématique de Rennes, Université de Rennes I 

Campus de Beaulieu, 35042 Rennes, France 

ABSTRACT. - We determine the decay rate of the survival probability of a 

branching process in an independent and identically distributed random 

environment with a countable state space. 

RÉSUMÉ. — Nous déterminons la vitesse de décroissance de la probabilité de 

survie d'un processus de branchement dans un environnement aléatoire 

indépendant et identiquement distribué avec l'espace d'états dénombrable. 

1. Introduction 

Let (Z ) (n£0) be a branching process in a random environment (BPRE), i.e. 
n 

we are given an environment sequence (ÇQ#Ç^#---) whose realization determines 

a sequence of generational probability generating functions f (s) (n£0), 
^n 

where Z Q s 1 stands for the single initial population number at the 0~th 

generation, Z represents the population size at the n-th generation, and, 
n 

given Ç , all members of this generation reproduce independently each other 

according to the probability generating function f^ (s) . We assume that the 
n 

environment stochastic process Ç: = (ÇQ#Ç^#.--) is stationnary and ergodic and 

we shall especially consider the case where it is a sequence of independent 

and identically distributed random variables. As usual, we assume that m ( Ç ) < + o o 
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almost surely (a.s.)/ where m(£) : = E(Z|0 denotes the conditional 

expectation of the offspring of the single object at the 0-th generation, 

given the environment We note that m(<) = f' (1), where the later denotes 

the left hand derivative of f (s) at s = 1. 

The process is called to be of a countable state random environment if 

the state space of the environment process is countable. It is called 

subcritical, critical or supercritical according to whether E ( Log m(£) ) is 

negative, zero or positive, and it is called strongly subcritical if 

E ( m(<) Log m(£) ) 3 0 and P[m(£)=1]<1. Then a strongly subcritical process is 

obviously subcritical according to Jensen's inequality. We shall exclude the 

degenerate process with m(£) - 0 a.s. 

it is well known that P(Z > 0) tends to zero as n tends to infinity if and 
n 

only if (Z ) is critical or subcritical, see for example [2] or [7] . For an n 
ordinary branching process, the rate at which P(Z >0) tends to zero is known: 

n 
lim P(Z > 0 ) 1 / n = E(ZJ if E(Z.,Log+Z,) < +oo. In 1987 [3], F.M. Dekking n->oo n i l l 
established a similar result for a BPRE in a two state random environment, 

which was extended in 1988 [4] to the case of finite state random environment, 
2 

under the assumption E(Z^ ) < +oo. The study of this problem is interesting not 

only for its theoretical aspects, but also for its applications, such as to 

the study of some fractal sets (see for example [5]) or to some percolation 

problems on trees [3]. 

The purpose of this paper is to extend Dekking's results to the case of 

countable state environment under weaker conditions. We shall prove the 

following 

Theorem 1.1 Let (Z ) be a branching process in an independent and 
n 

identically distributed random environment with E{Z^) < +oo, then 
lim P(Z > 0 ) 1 / n = p: = inf E[m(<) t], (1.1) n~*oo n . t€[ 0 , 1] 
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where p=l if (Z ) is supercritical or critical, p=EZ if (Z ) is strongly n i n 
subcritical, and p<min(l,EZ ) if (Z ) is subcritical but not strongly 

l n 
subcritical. 

Remark. Dekking (1988) obtained the same conclusion in the case of finite 
2 

state environment under the additional assumption E(Z^ ) < +oo, and then 
+ 

conjectured that the second moment condition would be relaxed to E(Z^Log Z^) < 

oo [5, Remark 1]. Our result here shows that this is indeed the case, and that 

it can even be relaxed to E(Z^) < +<». This shows in particular that for a 

subcritical Galton-Watson process (Z ) the condition E(Z.Log+Z_)<co is not 
n 1 1 1 / n n. necessary for lim P(Z >0) =E(Z ) (but is necessary for lim P(Z >0)/(EZ ) n->oo n l n-*oo n l 

=c for some constant c>0). 

2. The upper bound 

In this section we give a general upper bound on the survival probability 

of a BPRE, where the state space of the environment is not necessarily 

countable. The approach is direct and much simpler than that of Dekking 

[1987 and 1988]. 

Theorem 2.1. Let (Z ) be a BPRE. For all t€[0,l] and all n£0, we have 
n 

P(Z >0):S E[P t ] , n n 
where P = nn^ f ' (1) (n£l) . In particular, if the environment is independent 

1=0 l 

and identically distributed, then for all n£0, 

P(Zn>0) ^ p n . 

Proof. Fix t€[0,l]. By Markov's inequality and Jensen's inequality we have 
P(Z > 0) = P(Z > 1) S E(Z t ) n n n 

= E ^ E t Z ^ l o j ^ E ^ E(Z n l C ) j t j = EIP^l, 

where the last equality holds by the definition of the process. Noting that 

E[P t]= [ E(m(^) t)] n if the environment is • independent and 
n 

identically distributed, the conclusions follow. • 
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3. The lower bound 

This section is to give a lower bound on p ( z

n > 0) of a BPRE (Z^) with a 

countable state independent and identically distributed random environment in 

a special case. 

Theorem 3.1. Let (Z ) be a branching process in a countable state 
n 

independent and identically distributied random environment with P(m(<)=:0) = 0 

2 1 /n 
and E(Z„ ) < oo, then lim inf P(Z >0) £ p . 

1 n 
n-Xx> 

Before giving the proof, we first introduce some notations. With no 

restrictions, we suppose that the environmental state space is IN, the 

non-negative integers, such that 
eo 

P(t =i) = p. , where p. £ 0 and Y p. = 1. 
Ti l l . ̂  i 

1=0 

For fixed r£l and ncIN, Let K be the set of (k.,K_,...,k .)€Nr such that 
n,r 0 1 r-1 

r-1 
V k. = n. For k:= (k A /K, # ...,k „ ) €K , we denote by W , the subset of 
£ Q l - 0 1 r-1 n,r J n,r,k 

{0,1, ...,r-l} n consisting of those sequences that contain k^ occurences of the 

symbol i * ( Q»1*t#uv*! )t ?ht ea^ëinalifey ©§ W . is then 
n, r, K 

V k 'k, !...k ' ' 
- 0 1 r-1 

In the proof of theorem 3.1, we shall use the following lemma of Dekking 

(1988), which was based on a result of Agresti (1975, Lemma 2) about the 

lower bound of the survival probability of a branching process in a varying 

environment. 

Lemma 3.2. [5, Lemma 1] Let f^ be some offspring probability generating 

functions and set C(r)= max { f ̂  (1) It £ (1), 03i<r-l }. Suppose that 0 < f ' (1) 

< oo and f H (1) < oo for all i = 0,1,.. . ,r-l, then for any k = (k ,K , . . . ,k ) 
1 — 0 1 r-1 

€ K , the following holds for at least a fraction - of the sequences w in 
n, r n 

W . : 
n,r.k 

min {1,E(ZW)} 

P ( Z n

W > 0) * 2— , 
1 + nC(r) 
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w 
where w:= ŵ w,, . . .w „ and Z denotes the n-th generation of the process (Z ) 0 1 n-1 n n 
conditioned on the environment [w]:= t C 0 = W Q ' • ' " ' ^ n - l = W n - l ^ * 

Proof of theorem 3.1. Write F(t)= E(m(C) f c), then p= inf F(t). Note that 
t€[0,lj 

F(t) is convex, F(0)=1, F(l)=EZi# F'(0)= Elogm(<) and F'(U = Em(<)logm(<). So 

it is easily seen that p=l if (Z ) is supercritical or critical, p=EZ if 
n 1 

(Z ) is strongly subcritical, and p<min(l,EZ ) if (Z ) is subcritical but not n i n 
strongly subcritical. 

2 
Since P(m(O=0) =0 and E(Z^ )<co, we can suppose that 0<nu:= E(Z^| CQ^) S 

fi'(l) < co and f i
M(l) < » for all i € IN. Now 

P(Z >0) = T P(Z W > 0)P([w])fc T P(Z W > 0)P([w]) n *̂  n n 
w€lNn w€{0,1, . . . ,r-l} n 

= Z E P(Z™ >0)P<[w]) = £ I P(Z* >0) p-
k€K W€W , k€K W€W 
— n,r n , r , K — n , r n,r,K 

k Q k x k w 

where k= (k ,K ,...,k ), p- = p p . . .p r" and 0<r€lN. Noting that E(Z ) = - o' 1 r-l ~ *o * 1 r-l * n 
k k k o i r —l k m m . . .m =: m- if w € W . , by Lemma 3.2 we have then 
0 1 r-l - n,r,k 

min(l,n£) 
P(Z >0) > V i (J1) — — — p- . 

n u n k (1+ nC(r)) -
k€K 
— n, r 

We now divide the proof into two cases according as E m(£)logm(0 >0 o r -0 • 

Case I: E m(£) logm(£) >0. That is q p^m^logm^ >0. This contains exactly 

the supercritical processes, critical processes with P(m(<)=l)<l, and 

subcritical but not strongly subcritical processes. In this case we use the 

estimation 
P(Z >0) * T - (?) 7-=——-777—r-v p^ n u n k (1+ nC(r)) -

k€K : m- £1 
- n,r -

•n(l. nC(r)) ( P ^ > ' n I 0 IT<P<r» n 

k€K : m- fcl 
- n, r -
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- v * > • •> 

where X (r) , X (r), ... is a sequence of independent and identically 

distributed random variables defined by 

PfX^r) = log m ) = pCrJp^^ (i = 0,1, . . .,r-l), 
r-1 r-1 

P(r) = ( E P') a n (* r is a positive integer large enough such that E P.>0-
i=0 1 i=0 1 

By Chernoff-Cramer theorem, we have 
tX (r) 

lim P(J? 1 X (r) * Q ) 1 / n = inf E[e 1 ]. n-x» °i=l i _ 

(For the form that we need here, see for example [6,p. 129].) Thus 
1/ 1 tX (r) 

lim inf P(Z > 0 ) i / n > -±-. inf E[e ] 
n^co n p(r) t M 

= inf Er"i p. m t = i n f p^tt), 
**1=0 l i r 

tfcO t € [ 0 , l ] 
where F (t) := y r 1 p ̂  a n < j r > o is chosen sufficiently large such that 

F '(1):= 7̂  1 P m log m >0. The last step holds since the function F (t) r *^i=0 i i i r 

is convex in [0,oo) . Since F^(t) converges monotonically to F(t) (=E^ Q P^m^) / 

the convergence is uniform for t € [0,1] by Dini's theorem. So for all e>0, 

there exists r^=r^{c) sufficiently large such that F(t) £ F
r(t) - F(t)-e for 

all r^rQ and all t€[0,l]. Thus Vr£r Q 

p= inf F(t)> inf F (t) 2: inf F(t) -e =p-e. 
t€[0,l] t € [ 0 , l ] t€(0,l] 

Therefore lim inf F^(t) =p. The proof is then finished in the present case. 

t € [ 0 , l ] r 

Case II; E m(£) logm(^)^0. That is q p m logm 30. This contains exactly 

the critical processes with P(m(^)=l)=l, and the strongly subcritical 

processes. We have then p=E(Z^) and, either m^i for all i with p >0 # or 

Y° p.logm. <0. In this case we use the estimation 
1=0 l l 

P(V°» • I k sC'iincwirr-
k€K : m- <1 
— n, r — 

Define a sequence of independent and identically distributed random 
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variables Y^ (r) (i 1) by 

PfY^r) = -log m.) = 1 (rJp.nu/E^) (i = 0, 1, . . ., r-1), 
_r-l -1 

where l(r) = E(Z^)(£7_gP^nK ) and r is a positive integer large enough such 

that 5j?.m. >0, we have then *-i=0 l i 
P( E I

N

1 Y I

( R ) * °> = E k $»nr (l(r))n(E<Z ) ) " N 

1 _ k€K : rar-si -- n,r -
and consequently 

sJETt \ n 
P(Z > 0) 2: „ \ f x x — - P(£ n Y (r)£ 0) n n(l+nC(r)) [ 1 ( r ) J 1 

for sufficiently large r. The Chernoff-Cramer theorem applies again, yielding 

that lim inf P(Z > 0 ) 1 / n £ inf jf"1 p.m 1"^ . 
n-x» n ^i = 0 1 1 

t2T0 1/n y—1 If m =1 for all i with p >0, this means lim inf P(Z > 0) £ Y~ p. and the 
i i n-xo n **i = 0 1 

proof is then terminated by letting r-x» since p=EZ =1; otherwise we have 

J*° p.log m.<0 (subcritical). Then for all sufficiently r>0 / * P.l°9 m.<0. ^i=0 1 1 ^1=0 l l 
«r-l 1 -t r-1 Since (J^ p i m i =- E i-QPi l o^ m

i
> 0' w e ^ a v e 

inf 1 p.m 1 t = inf 1 p.m 1 t = inf Vf 1 p.iru a inf F (t) . 
^ i = 0 1 1 ^ i = 0 1 1 ^ i = 0 1 1 r 

tfcO t€[0,l] t€[0,l] t€[0,l] 

1 /n This shows that lim inf P(Z > 0) £ inf F (t) . As in case I, letting r-Xo n-x» n r 
t€[0,l] 

1 /n gives lim inf P(Z > 0) £p, the result desired. This ends the proof of the n-*» n ^ 
theorem. • 

4. Proof of theorem 1.1. 

The result has nearly been proved. This section is to show how theorem 

1.1 can be deduced from theorems 2.1 and 3.1. 

Proof of theorem 1.1. From the remarks about the value of p at the 

begining of the proof of Theorem 3.1, it suffices to prove the formula (1.1). 

2 

We first consider the case where E(Z^) < oo. If P(m(<)=0) = 0, the result is 

immediate by theorems 2.1 and 3.1. Otherwise we use a technique of reduction 
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as was remarked by Dekking [5,remark 2]. In fact, let E = (i € N | = 0) and 

P E = E P ± ' t h e n 

i€E 
P(Z >0) = P(Z >0 | E, 0 S j S n-l)(l-p_) n = P(Z '>0) (1-p ) n , n n j z* n c* 

where (Z ') is a new BPRE with the same offspring distributions as (Z n) but 

v 0, otherwise. 
An application of the result to the process (Z^') gives 

lim P(Z ' > 0 ) 1 / n = inf E(m(C') t)= y^— inf E(m(<) t) . 
n-*o n t€[0,l] ~ PE t€[0,l] 

Thus the result follows. 

We then consider the general case where E(Z^)< co. To this end, we use 

a truncated comparison method. Let X (n^O) be the random variable whose 
Si 

probability generating function is f (the offspring distributions of (Z^) 
^n 

given the environment sequence (C )(n £ 0)). Associated with (Z ), we define a 
n n 

* BPRE (Z ) with the same environment sequence as (Z ) , but with offspring n n 
• 

distributions X = X 1 (X^ ), where N > 0 is a given positive integer 
^n 

• and l^(') denotes the indicate function of the set A. Then Z ^ Z a.s. and A n n 
* 2 

E[ (Z1) ] < oo. Hence 
lim inf P(Z > 0 ) 1 / n > lim inf P(Z* > 0 ) 1 / n = inf I„T(t) , n-*» n n-*» n t € [ 0 , l ] N 

where 

V t ) B E[(J"[0,N] x d G ^ ^ x ) ) ^ 
G « , •) being the distribution of X . Now lim I (t) = E [m(<)t] =F(t) by the 

S N-*» 
monotone convergence theorem. Moreover, the convergence is uniform for t € 

[0,1] by Dini's theorem. Thus for all e>0, there exists N =N (e)>0 
0 0 

sufficiently large such that for all N£N and all t€[0,l], F(t)£I (t) £F(t)-e. 
0 N 

Taking inferiors shows that 

I™ t t t n V ' " = ti? ! , i ] F ( t ) = p -
N-̂ oo 
1 /n 

Thus lim inf P(Z n> 0) >: p. Combining with Theorem 2.1, this ends the proof 
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