@article{PSMIR_1994___2_A6_0, author = {Liu, Quansheng}, title = {Flows in {Networks} and {Hausdorff} {Measures} {Associated.} {Applications} to {Fractal} {Sets} in {Euclidian} {Space}}, journal = {Publications de l'Institut de recherche math\'ematiques de Rennes}, eid = {6}, pages = {1--77}, publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes}, number = {2}, year = {1994}, language = {en}, url = {http://archive.numdam.org/item/PSMIR_1994___2_A6_0/} }
TY - JOUR AU - Liu, Quansheng TI - Flows in Networks and Hausdorff Measures Associated. Applications to Fractal Sets in Euclidian Space JO - Publications de l'Institut de recherche mathématiques de Rennes PY - 1994 SP - 1 EP - 77 IS - 2 PB - Département de Mathématiques et Informatique, Université de Rennes UR - http://archive.numdam.org/item/PSMIR_1994___2_A6_0/ LA - en ID - PSMIR_1994___2_A6_0 ER -
%0 Journal Article %A Liu, Quansheng %T Flows in Networks and Hausdorff Measures Associated. Applications to Fractal Sets in Euclidian Space %J Publications de l'Institut de recherche mathématiques de Rennes %D 1994 %P 1-77 %N 2 %I Département de Mathématiques et Informatique, Université de Rennes %U http://archive.numdam.org/item/PSMIR_1994___2_A6_0/ %G en %F PSMIR_1994___2_A6_0
Liu, Quansheng. Flows in Networks and Hausdorff Measures Associated. Applications to Fractal Sets in Euclidian Space. Publications de l'Institut de recherche mathématiques de Rennes, Fascicule de probabilités, no. 2 (1994), article no. 6, 77 p. http://archive.numdam.org/item/PSMIR_1994___2_A6_0/
[1] Branching processes, Springer-Verlag, Berlin and New York, 1972. | MR | Zbl
and ,[2] On the fundamental geometrical properties of linearly measurable plan sets of points, Mathematische Annalen, 98 (1928) 422-64. | JFM | MR
,[3] Graph theory, an introductory course. Berlin: Springer Verlag. | MR | Zbl
,[4] The Geometry of Fractal Sets, Cambridge Univ. Press, (1985). | MR | Zbl
,[5] Random fractals, Math. Proc. Camb. Phil. Soc., 100 (1986) 559-582. | MR | Zbl
,[6] Cut set sums and tree processes, Proc. Amer. Math. Soc, (2) 101 (1987) 337-346. | MR | Zbl
,[7] Fractal Geometry, John Wiley & Sons Ltd, 1990. | MR | Zbl
,[8] Flows in networks, Princeton University Press, 1962. | MR | Zbl
and ,[9] Statistically self-similar fractals, Probab. Th. & Rel. Fields 74 (1987) 357-392. | MR | Zbl
,[10] The exact Hausdorff dimension in random recursive constructions, Mem.Amer.Math.Soc., Vol.71 (1988) no.381. | MR | Zbl
, and ,[11] Random flows network flows : and electrical flows through random media, London Math. Soc. Lecture Note Series: 103 (1985) 59-95. (Surveys in combinatorics 1985. Edited by IAN ANDERSON, Cambridge Univ. press.) | MR | Zbl
,[12] Sur une extension de la notion de loi semi-stable, Anal. Inst. Henri Poincaré, 26 (1990) 261-285. | Numdam | MR | Zbl
,[13] Trees generated by a simple branching process, J. London Math. Soc. (2) 24 (1981) 373-384. | MR | Zbl
,[14] Sur certaines martingales de B.Mandelbrot, Adv.Math. 22 (1976) 131-145. | MR | Zbl
, ,[15] The exact Hausdorff dimension of a branching set, Prépublication N° 135, Laboratoire de Probabilités, Univ. Paris VI, 1992. | Zbl
,[16] Random constructions, Asympototic geometric and topological properties, Trans. Amer. Math. Soc. 295 (1986), 325-346. | MR | Zbl
and ,[17] Arbres et processus de Galton-Watson, Ann. Inst. Henri Poincaré, 22 (1986) no.2, 199-207. | Numdam | MR | Zbl
,[18] Hausdoff measures, Cambridge University Press, 1970. | MR | Zbl
,