Flows in Networks and Hausdorff Measures Associated. Applications to Fractal Sets in Euclidian Space
Publications de l'Institut de recherche mathématiques de Rennes, Fascicule de probabilités, no. 2 (1994), article no. 6, 77 p.
@article{PSMIR_1994___2_A6_0,
     author = {Liu, Quansheng},
     title = {Flows in {Networks} and {Hausdorff} {Measures} {Associated.} {Applications} to {Fractal} {Sets} in {Euclidian} {Space}},
     journal = {Publications de l'Institut de recherche math\'ematiques de Rennes},
     eid = {6},
     pages = {1--77},
     publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://archive.numdam.org/item/PSMIR_1994___2_A6_0/}
}
TY  - JOUR
AU  - Liu, Quansheng
TI  - Flows in Networks and Hausdorff Measures Associated. Applications to Fractal Sets in Euclidian Space
JO  - Publications de l'Institut de recherche mathématiques de Rennes
PY  - 1994
SP  - 1
EP  - 77
IS  - 2
PB  - Département de Mathématiques et Informatique, Université de Rennes
UR  - http://archive.numdam.org/item/PSMIR_1994___2_A6_0/
LA  - en
ID  - PSMIR_1994___2_A6_0
ER  - 
%0 Journal Article
%A Liu, Quansheng
%T Flows in Networks and Hausdorff Measures Associated. Applications to Fractal Sets in Euclidian Space
%J Publications de l'Institut de recherche mathématiques de Rennes
%D 1994
%P 1-77
%N 2
%I Département de Mathématiques et Informatique, Université de Rennes
%U http://archive.numdam.org/item/PSMIR_1994___2_A6_0/
%G en
%F PSMIR_1994___2_A6_0
Liu, Quansheng. Flows in Networks and Hausdorff Measures Associated. Applications to Fractal Sets in Euclidian Space. Publications de l'Institut de recherche mathématiques de Rennes, Fascicule de probabilités, no. 2 (1994), article  no. 6, 77 p. http://archive.numdam.org/item/PSMIR_1994___2_A6_0/

[1] K.B. Athereya and P.E. Ney, Branching processes, Springer-Verlag, Berlin and New York, 1972. | MR | Zbl

[2] A.S. Besicovitch, On the fundamental geometrical properties of linearly measurable plan sets of points, Mathematische Annalen, 98 (1928) 422-64. | JFM | MR

[3] B. Bollobás, Graph theory, an introductory course. Berlin: Springer Verlag. | MR | Zbl

[4] K.J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, (1985). | MR | Zbl

[5] K.J. Falconer, Random fractals, Math. Proc. Camb. Phil. Soc., 100 (1986) 559-582. | MR | Zbl

[6] K.J. Falconer, Cut set sums and tree processes, Proc. Amer. Math. Soc, (2) 101 (1987) 337-346. | MR | Zbl

[7] K.J. Falconer, Fractal Geometry, John Wiley & Sons Ltd, 1990. | MR | Zbl

[8] L.R. Ford and D.R. Fulkerson, Flows in networks, Princeton University Press, 1962. | MR | Zbl

[9] S. Graf, Statistically self-similar fractals, Probab. Th. & Rel. Fields 74 (1987) 357-392. | MR | Zbl

[10] S. Graf, R.D. Maudin and S.C. Williams, The exact Hausdorff dimension in random recursive constructions, Mem.Amer.Math.Soc., Vol.71 (1988) no.381. | MR | Zbl

[11] G.R. Grimmett, Random flows network flows : and electrical flows through random media, London Math. Soc. Lecture Note Series: 103 (1985) 59-95. (Surveys in combinatorics 1985. Edited by IAN ANDERSON, Cambridge Univ. press.) | MR | Zbl

[12] Y. Guivarc'H, Sur une extension de la notion de loi semi-stable, Anal. Inst. Henri Poincaré, 26 (1990) 261-285. | Numdam | MR | Zbl

[13] J. Hawkes, Trees generated by a simple branching process, J. London Math. Soc. (2) 24 (1981) 373-384. | MR | Zbl

[14] J.P.Kahane, J. Peyrière, Sur certaines martingales de B.Mandelbrot, Adv.Math. 22 (1976) 131-145. | MR | Zbl

[15] Q.S. Liu, The exact Hausdorff dimension of a branching set, Prépublication N° 135, Laboratoire de Probabilités, Univ. Paris VI, 1992. | Zbl

[16] R.D. Maudin and S.C. Williams, Random constructions, Asympototic geometric and topological properties, Trans. Amer. Math. Soc. 295 (1986), 325-346. | MR | Zbl

[17] J. Neveu, Arbres et processus de Galton-Watson, Ann. Inst. Henri Poincaré, 22 (1986) no.2, 199-207. | Numdam | MR | Zbl

[18] C.A. Rogers, Hausdoff measures, Cambridge University Press, 1970. | MR | Zbl