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MULTI�SCALED DIFFUSION�APPROXIMATION�

APPLICATIONS TO WAVE PROPAGATION

IN RANDOM MEDIA

JOSSELIN GARNIER

Abstract� In this paper a multi�scaled di�usion�approximation theo�
rem is proved so as to unify various applications in wave propagation in
random media� transmission of optical modes through random planar
waveguides� time delay in scattering for the linear wave equation� decay
of the transmission coe�cient for large lengths with �xed output and
phase di�erence in weakly nonlinear random media�

�� Introduction

Wave propagation in random media has become an extensively studied
subject� In one�dimensional linear media with random inhomogeneities� lo�
calization occurs� which means in particular that the transmitted intensity
decays exponentially as a function of the size of the medium� This problem
has been analyzed in detail by Carmona et al� �����	�

In our paper� we consider wave re
ection and transmission from a one�
dimensional random slab� Several quantities characterize the re
ected wave�
here we focus on the re
ection coe�cient� the phase di
erence and the
time delay� The analysis puts into evidence the usual scales �see Knapp
et al� �����	 and Papanicolaou �����		� length of the slab� wavelength�
amplitude and correlation radius of the random perturbations� We study
the asymptotic behavior of the scattered wave in the framework introduced
by Papanicolaou based on the separation of these scales� The 
uctuations
of the random coe�cients are on a small scale so that we actually deal
with di
usion�approximation problems� However we consider here situa�
tions where many scaled quantities play a role� so that we need to prove�
then to use general multi�scaled di
usion�approximation theorems� Indeed�
the study of planar waveguides depends on the above quantities� but also
on the thickness of the core� The time delay depends not only on the high
carrier frequency of the wave packet� but also on its bandwidth� Finally the
amplitude of the nonlinear term is an essential requirement for the study
of the behavior of the transmittivity for the nonlinear wave equation� The
action of nonlinearity seems to be opposite to that of disorder� Nonlinearity
may change the dependence of the transmission coe�cient on the length�
that still tends to zero as the size of the medium increases� but following a
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power law �see Desvillard et al� �����	 and Knapp et al� �����		 instead of
the exponential behavior observed in the linear case�

The organization of the paper is as follows� The �rst section is devoted to
the transmission of optical modes through a random metallic planar wave�
guide� In Section � we re�ne some results of Faris et al� �����	 concerning
the time delay in scattering for the linear wave equation with a random
index of refraction� The last sections deal with the random nonlinear wave
equation� In Section � we study the nonlinear �xed output problem� i�e� the
transmission problem with a �xed outgoing intensity� which is simpler than
the �xed input problem� since there are unique values of input intensity and
transmittivity for a given output intensity� In Section � we deal with the
phase di
erence of the re
ected wave� Finally the appendix is devoted to the
statements and the proofs of multi�scaled di
usion�approximation theorems�

�� Propagation in metallic planar waveguides

In this section we study propagation of optical modes in dielectric �lms
with thicknesses comparable to the wavelength� The main idea of a wave�
guide is to guide a beam of light by employing a variation of the index of
refraction in the transverse direction so as to cause the light to travel along
a well�de�ned channel� The dependence of the index of refraction on the
transverse direction may be continuous or discontinuous �we shall consider
a particular case of the discontinuous situation	� but the essential element
is that the index of refraction is maximal in the channel along which one
whishes to guide the light�

We shall consider the basic problem of TE �transversal electric	 mode
propagation in slab dielectric waveguides �see Collins �����		� Indeed the
basic features of the behavior of dielectric waveguide can be extracted from
a planar model in which no variation exists in one direction �say y	� Channel
waveguides with axis z� in which the waveguide dimensions are �nite in both
the x and y directions� approach the behavior of a planar waveguide when
one dimension is much larger than the other �see Groell �����		� Even when
this is not the case� most of the phenomena of interest are only modi�ed in
a simply quantitative way when going from a planar waveguide to a channel
waveguide� This fact combined with the great mathematical simpli�cation
of the one�dimensional case has led us to consider here planar waveguides�

We assume that the slab waveguide has thickness �a and is located in the
region x � ��a� a�� Its axis is z and the slab is in�nite in the y�direction� The
slab is switched between two metallic slabs for x � a and for x � �a� We
shall restrict ourselves to the y�independent case and consider waves which
depend only on x and z�

We begin by studying the properties of guided modes in a perfect wave�
guide� whose core has a homogeneous index of refraction equal to n�� A
mode of a dielectric waveguide is a monochromatic wave E�t� r	 � E�r	e�i�t

solution of the wave equation

�E�r	 � k��n
��r	E�r	 � �� ����	
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where k� � ��c is the vacuum wavenumber� The solution satis�es continuity
conditions of the tangential components of the �eld at the dielectric inter�
faces� Limiting ourselves to waves with phase front normal to the waveguide
axis z� we have E�r	 � E�x	ei�z�

We are looking for TE modes E � ��� Ey� �	 with �eld component Ey �
E�x	ei�z� The scalar �eld E satis�es

��E

�x�
� �k� � ��	E � �� ����	

where k is the homogeneous wavenumber k � n�k�� In the metallic slabs
x � a and x � �a the electric �eld is zero� Because of the need to match
Ey at x � �a and x � a the �eld E solution of ����	 satis�es the boundary
conditions E��a� z	 � E�a� z	 � �� There exists solutions only for some
values of �� Thus the metallic planar waveguide can only support a �nite
number of con�ned TE modes� Ej�x� z	 � Rj�x	e

i�jz � where

Rj�x	 �

����
���

cos

�
j	x

�a

�
� if j is odd�

sin

�
j	x

�a

�
� if j is even�

����	

and �j satis�es the dispersion relation

��j �
	�j�

�a�
� k�
 ����	

There exists N guided modes� where N is the integer that satis�es

�ak

	
� � � N �

�ak

	

 ����	

We shall assume that a monochromatic guided wave is incoming from the
left through a perfect waveguide and has the form �x � �	�

Ein�x� z	 �
NX
j��

Rj�x	Ej�z	� Ej�z	 � Bj�e
i�jz � ����	

where �j is the positive solution of ����	 and Bj� is the decomposition of the
incident wave Ein on the j�th mode� This wave is scattered by a perturbed
waveguide occupying the interval ��� L��� so that the total �eld is consti�
tuted of the sum of the incident wave ����	 and the re
ected wave in the
region x � �� and of the transmitted wave in the region x � L�� where the
waveguide is unperturbed� We shall consider here that the wavelength of
the incident wave and the thickness of the waveguide �a are of order �� We
assume that the medium inside the waveguide is a
ected by small random
inhomogeneities for z � ��� L��� so that its index of refraction admits the
representation�

n���z	 � n��

�
� � �m�

z

�r
	
�
� ����	

where � is a small parameter which characterizes the amplitude of the ran�
dom inhomogeneities� The random coe�cient m which describes the in�
homogeneities is assumed to be an ergodic Markov process� More exactly�
we consider that the process m has a unique invariant probability� under
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which it is ergodic and that it satis�es the Fredholm alternative� As a con�
sequence� its in�nitesimal generator admits an inverse on the subspace of
functions centered under the invariant probability of m� In our paper we
think at Markov processes on a compact space satisfying the Doeblin condi�
tion� however some Markov di
usion processes studied by Bouc et al� �����	
are suitable� We refer in particular to Kesten et al� �����	� Kushner �����	
and Papanicolaou et al� �����	 for sharp conditions� Throughout the pa�
per expectations will be taken under the invariant probability of m and we
denote�

�c�k	 �

Z �

�
cos��ks	E�m��	m�s	�ds
 ����	

Three cases appear� If �� � r � � �resp� r � �� r � �	� the correlation
radius of the inhomogeneities is much larger �resp� of the same order� much
shorter	 than the wavelength� The �rst case corresponds to a very high
frequency regime� and the third one to a low frequency regime� The case
r � �� does not provide us with any asymptotic regime�

We shall consider a perturbed slab waveguide of length L� � L���
r

located in the region z � ��� L��� It will appear in the following that this is the
judicious scale to put into evidence a macroscopic e
ect of the perturbations�
We shall see that the 
uctuations of the index of refraction induce a coupling
between forward and backward modes when r � � and only a
ect the phases
of the modes when r � �� We can now state our main result�

Proposition ���� The transmitted wave has the following form� for z �
L���
r�

Etr�x� z	 �
NX
j��

Rj�x	Ej�z�
L

��
r
	� Ej�z�

L

��
r
	 � Bj�

L

��
r
	ei�jz � ����	

�� If �� � r � �� then the processes
	
Bj�L��

�
r	


L��

� j � �� 
 
 
 � N

converge weakly to Bj�e
i�j�L� as �� ��


j�L	 �

����
���

k��

��j
wL� if �� � r � ��

k�

��j

Z L

�
m�z	dz� if r � ���

�����	

where w is a standard Brownian motion independent of j and �� �
�c��	�

�� If r � �� then the processes
	jBj�L��

�
r	j�

L��

� j � �� 
 
 
 � N converge

weakly to independent Markov processes Ij whose generators are

Lj � �

�j
I�j
�
� �

�Ij � ��� Ij	 �
�

�I�j

�
� �����	

where
�

�j
�

�����
����

k��c��j	

���j
� if r � ��

k��c��	

���j
� if r � ��

�����	
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In particular� the transmitted intensities decay exponentially with the
length of the random waveguide�

lim
L��

�

L
ln E �Ij�L	� � � �

��j

 �����	

In the very high frequency regime� the perturbations only a
ect the phases
of the optical modes by adding random phases on every mode� In the other
regimes� we can observe an exponential localization of the modes� but the
striking point is that each mode has its own localization length� The smaller
the e
ective wavenumber � is� the less the corresponding mode can penetrate
in the random waveguide�

Proof� Inside the perturbed slab we expand the total �eld E in the form

E�x� z	 �
NX
j��

Rj�x	Ej�z	� Ej�z	 � Aj�z	e
�i�jz �Bj�z	e

i�jz � �����	

where Aj and Bj are respectively backward �going to the right	 and forward
�going tot the left	 optical modes� E satis�es the boundary conditions at
the dielectric interfaces x � �a and x � a and the evolution equation ����	
which writes�

NX
j��

Rj�x	�
�
j�z� Aj� Bj	 � �� �����	

��
j�z� Aj � Bj	 �

d�Aj

dz�
e�i�jz �

d�Bj

dz�
ei�jz � �i�j

�
dAj

dz
e�i�jz � dBj

dz
ei�jz

�
�k��m�

z

�r
	
�
Aje

�i�jz � Bje
i�jz

�



Integrating �����	 with respect to Rl�x	dx� we can deduce from the orthog�
onality of the family �Rj	j������ �N that

��
j�z� Aj � Bj	 � �� for every j � �� 
 
 
 � N � �����	

The orthogonality of the modes is of great importance� It will insure that
there exists only coupling between forward and backward modes� and not
between j and j� modes�
Let us study the equation �����	� If the couple � �Aj � �Bj	 is a solution� then

the couple �Aj � Bj	 de�ned by Aj�z	 � �Aj�z	 � f�z	ei�jz� Bj�z	 � �Bj�z	�
f�z	e�i�jz � is another solution of �����	� whatever f is� Choosing f�z	 �
i

��j

�
d �Aj

dz e
�i�jz �

d �Bj

dz e
i�jz

�
� we come to the conclusion that �Aj � Bj	 satis�es

both �����	 and the relation

dAj

dz
e�i�jz �

dBj

dz
ei�jz � �
 �����	

We actually do not look for every solution of �����	 since we aim at studying
Ej de�ned in �����	� So we can restrict ourselves to �Aj � Bj	 which satis�es
both �����	 and �����	� Finally� injecting �����	 in �����	� the normalized
processes A�

j � B
�
j � j � �� 
 
 
 � N given by

A�
j�z	 � Aj�

z

��
r
	� B�

j �z	 � Bj�
z

��
r
	� �����	
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are solutions of

d

dz

�
A�
j�z	

B�
j �z	

�
� P �

j �z	

�
A�
j�z	

B�
j �z	

�
� �����	

P �
j �z	 �

ik�

��j��
r
m�

z

��
�r
	



� �� �ei

��jz

���r

e�i
��jz

���r �

�
A 
 �����	

There is no wave entering the perturbed slab at z � L �in the normalized
scale	 and the incident wave at z � � has the form ����	� so A�

j and B�
j

satisfy the boundary conditions

A�
j�L	 � �� B�

j ��	 � Bj�
 �����	

We aim at proving an asymptotic theorem for B�
j �L	 as � goes to �� Instead

of working with A�
j and B�

j � we shall use the propagator Y �
j � i�e� the matrix

which satis�es� �
A�
j�L	

B�
j �L	

�
� Y �

j �L	

�
A�
j��	

B�
j ��	

�

 �����	

The matrix Y �
j is solution of the linear di
erential equation�

dY �
j

dz
�z	 � P �

j �z	Y
�
j �z	� Y �

j ��	 � Id
 �����	

If �a�j � b
�
j	 is a solution of �����	 with the initial conditions

a�j��	 � �� b�j��	 � �� �����	

then it can be readily checked that �b�j
�� a�j

�	 is another solution of �����	

linearly independent of �a�j � b
�
j	� so we can write

Y �
j �z	 �

�
a�j�z	 b�j

��z	
b�j�z	 a�j

��z	

�

 �����	

From �
�

B�
j �L	

�
� Y �

j �L	

�
Aj

���	
Bj�

�
�����	

we can deduce that

A�
j��	 � �b

�
j�L	

�Bj�

a�j�L	
� B�

j �L	 �
Bj�

a�j�L	

 �����	

Since the matrix P �
j has trace zero� the determinant of the matrix Y �

j is

constant� i�e� ja�j�z	j� � jb�j�z	j� � �� so that we get the energy conservation
relation�

jA�
j��	j� � jB�

j �L	j� � jBj�j�� �����	

which means that the intensity of each incident mode has split into a trans�
mitted intensity jB�

j �L	j� and a re
ected intensity jA�
j��	j��

So we have transformed the boundary value problem �����	� �����	 into
an initial value problem �����	� �����	� In order to be allowed to apply the
di
usion�approximation theorems� we have to take care to consider sepa�
rately the real and imaginary parts of each coe�cient a�j and b�j� so that we
actually deal with a system with �N linear di
erential equations� Denoting
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X�
�j
� � Re�a�j	� X

�
�j
� � Im�a�j	� X

�
�j
� � Re�b�j	 and X�

�j
� � Im�b�j	�

j � �� 
 
 
 � N � the R�N�valued process X� satis�es the linear di
erential
equation

dX��z	

dz
�

�

��
r
F
�
m�

z

��
�r
	�

z

��
r

�
X��z	� �����	

with the initial conditions X�
�j
j���	 � � if j� � �� X�

�j
j���	 � � if j� �
�� �� �� where

F �m� h	 � �N
j��

k�m

��j



BB�

� � sin���jh	 cos���jh	
�� � � cos���jh	 sin���jh	

sin���jh	 � cos���jh	 � ��
cos���jh	 sin���jh	 � �

�
CCA

Then we transform ��
r �� �� so that the system writes now as an usual
di
usion�approximation problem� The application of Theorem ��� Papani�
colaou et al� �����	 �resp� Theorem ��� Papanicolaou et al� �����		 provides
us with the desired result for the case r � � �resp� r � �	� The case r � �
can be deduced from Theorem ��� in the appendix�

�� Time delay

We aim at studying the time delay of a wave packet scattered by a one�
dimensional random medium� The time delay is the di
erence between times
spent by the wave packet in the perturbed region and in the homogeneous
space� For instance� a positive time delay means that the wave packet has
spent more time in the scattering region than the one it would have spent
in homogeneous space�

We consider a wave packet re
ected by a one�dimensional randommedium
located in the region ��� L�� The wave packet is assumed to satisfy the linear
wave equation�

n���x	

c�
��E

�t�
�

��E

�x�
� ����	

where the index of refraction n� admits the representation

n���x	 � n�� �� �m��x		 � m��x	 � �m�
x

��
	
 ����	

m is an ergodic Markov process� which describes the perturbations of the
index of refraction� Their amplitude is of order � and their correlation radius
is of order ��� which is small compared to the length L of the slab�

We consider the matched medium boundary condition� It is assumed that
a wave packet is incident on the random slab ��� L� from a homogeneous
medium with index n� occupying x � ��

ui�t� x	 �

Z �

�
ei�kx�ckt�n�� �ui�k	dk� ����	

where �ui is the spectrum of the incident wave packet� The boundary condi�
tion at x � L is for termination of the random slab by a uniform medium�
We will have total re
ection for large length L because the wave cannot
penetrate to in�nite depth� Indeed the re
ection coe�cient converges expo�
nentially fast to � which follows from Furstenberg�s theorem �see Carmona
�����		� So it is convenient to analyze the problem with a totally re
ecting
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termination at x � L� so that the number of degrees of freedom is reduced
by one� Thus the wave packet is scattered and the re
ected wave has the
following form for large t�

u�r�t� x	 �

Z �

�
R��k	ei��kx�ckt�n�� �ui�k	dk� ����	

where R��k	 is the re
ection coe�cient associated to the homogeneous wave�
number k� Because of the re
ecting boundary condition� the modulus of
R��k	 is equal to � so that R��k	 � ei	

��k�
i	��k�� The phase ���k	 � �kL�	
is related to the homogeneous part of the index of refraction� If the slab
��� L� were occupied by a homogeneous medium� the re
ected wave would
be exactly�

ur��t� x	 �

Z �

�
ei��kx�ckt�n��ei	��k� �ui�k	dk
 ����	

The phase ���k	 characterizes the in
uence of the 
uctuations of the index
of refraction onto the re
ected wave� In particular the time delay is given
by

T ��ui	 �
n�
c

Z �

�
� ��k	j �uij��k	dk� ����	

where � ��k	 �� d	�

dk �k	� A rigorous proof may be derived from Jauch et al�
�����	� but we can heuristically put into evidence ����	 �cf Faris et al�
�����		� Assume that �ui is concentrated near some wavenumber kc� By
expanding R��k	 about kc in ����	� we �nd that the re
ected wave is� up to
a multiplicative constant�

u�r�t� x	 �
Z �

�
ei��kx�ck�t�n�


��kc��c��n��ei	��k� �ui�k	dk
 ����	

By such a way we can understand why n��
��kc	�c represents the time delay

at frequency kc�
Faris et al� �����	 studied the one�dimensional distribution of � ��k	 for

some k and considered the limit case � � �� and then k � 	� We �rst
prove that we can deal with simultaneous limits when k is of order ���� i�e�
when the wavelength and the correlation radius of the perturbations are of
the same order�

Proposition ���� The process �� ��k���� L		L�� converges in distribution
in C�����		�R	 to the inhomogeneous Markov process ���L		L�� whose in�
�nitesimal generator is�

Lk �
�

�
�c�k	k

��� � �L	�
��

���
� ����	

where �c�k	 has been de�ned by ���	
� In particular ��L	 is a centered
process� whose variance is�

E���L	� � �
�

�c�k	�k�

�
e�c�k�k

�L � �� �c�k	k
�L� �

�

	
�c�k	k

�L

��


 ����	

Its distribution can be represented as follows�

��L	 � X�L	� �L� X�L	 �
�

�c�k	k�

Z �c�k�k�L

�
ews�

�

�
sds� �����	
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where w is a standard Brownian motion�

Proof� Following Papanicolaou �����	� we �nd that the phase �� satis�es�

d��

dL
� k� ��� cos��� � �k�L		m��L	� ����	 � �


Di
erentiating with respect to the wavenumber yields the equation which
governs the evolution of � ��

d� �

dL
� ��� cos��� � �k�L		m��L	 � k� sin��� � �k�L	 �� � � �L	m��L	


Introducing the di
erent scales in the evolution equation� the process ���� � �	
satis�es� up to negligible terms of order ������

���
d��

dL
�

k

�

�
�� cos

�
�� �

�kL

��

��
m�

L

��
	� ����	 � 	�

d� �

dL
�

k

�
sin

�
�� �

�kL

��

�
�� � � �L	m�

L

��
	� � ���	 � �


The application of Theorem ��� Papanicolaou et al� �����	 completes the
proof�

The above analysis leads to the asymptotic distribution of � ��k	 for a
�xed wavenumber� However it is necessary to �nd the joint distribution of
� ��k	 for several wavenumbers k in order to study the behavior of the time
delay T ��ui	 for an incident wave packet ui� For instance the estimation of
the p�th moment of T ��ui	 requires the computation of the joint distribution
of the p�uplet �� ��k�	� 
 
 
 � � ��kp		� since

E�T ��ui	
p� �

np�
cp

Z
E�� ��k�	 
 
 
 �

��kp	�j �uij��k�	 
 
 
 j �uij��kp	dk� 
 
 
 dkp


We now state the main result of this section about the convergence of the
time delay� We assume that an incident wave ����	 with a high carrier
frequency kc��

� and a bandwidth of order �a�� is incoming from the right�

Proposition ���� Let us assume that the Fourier transform of the incident
wave �u�i has the form

�u�i �k	 �
��

�
�ak � kc

��

�
� �����	

where �� is a continuous function with compact support�

 If � � a � �� then the time delay �T ��u�i 	�L		L�� converges weakly to

the process ��

 If a � �� then �T ��u�i 	�L		L�� converges weakly to a centered and con�

tinuous process with variance�

E�T ��L	� �
n��
c�

�e�c�kc�k
�
cL

	�c�kc	�k�cL

�Z
j ���k	j�dk

�
� o

L��

�
e�c�kc�k

�
cL

�c�kc	k�cL

�



�����	
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 If a � �� then ��a��T ��u�i 	�L		L�� converges weakly to a centered and
continuous process with variance�

E�T ��L	� �
n��
c�

�e�c�kc�k
�
cL

�c�kc	�k�c

�Z
j ���k	j�dk

��
� o

L��

�
e�c�kc�k

�
cL
�

 �����	

Proof� We assume that the support of �� is contained in ��N�N	� We denote
by � ��L� h	 the process � ��L� k�	 jk���kc
�ah���� � From the expression ����	
of the time delay� if we prove that � ��L� h	 converges weakly as a process in
C
�����		� L���N�N		� then it will follow that T ��u�i 	 converges weakly in

C
�����		�R	�

Step �� Convergence of the finite�dimensional distributions

of � �� First we deal with the two�dimensional distributions of the pro�
cess � �� We aim at �nding the asymptotic joint distribution of the couple
�� ���L	� �

�
��L		L��� where �

�
i � � ��L� k�i 	 and k�i are wavenumbers given by

k�i � �kc � �ahi	��
�� If we denote ��k� L	 jk�k�i by ��i then we �nd that

�����L	� �
�
��L	� �

�
��L	� �

�
��L		L�� satis�es�������������

�����������

d���
dL

�
kc � �ah�

�

�
�� cos

�
��� �

�kcL

��
�

�h�L

���a

��
m�

L

��
	� �����	 � ��

d���
dL

�
kc � �ah�

�

�
�� cos

�
��� �

�kcL

��
�

�h�L

���a

��
m�

L

��
	� �����	 � ��

d� ��
dL

�
kc � �ah�

�
sin

�
��� �

�kcL

��
�

�h�L

���a

�
�� �� � �L	m�

L

��
	� � �� ��	 � ��

d� ��
dL

�
kc � �ah�

�
sin

�
��� �

�kcL

��
�

�h�L

���a

�
�� �� � �L	m�

L

��
	� � �� ��	 � �



 If � � a � �� then we get by applying Theorem ��� in the appendix
in the case A � �kc� B� � � and Bj � �� j � � that the process �� �� � �

�
�	

converges to ���� ��	� where �� and �� are independent Markov process with
the same generator Lkc given by ����	�

 If a � �� then by the standard Theorem ��� Papanicolaou et al� �����	

the process �� �� � �
�
�	 converges to ���� ��	� where �� and �� are independent

Markov process with generators Lkc
h� and Lkc
h� respectively�

 If a � �� then �� �� � �

�
�	 converges to ��� �	� where � is a Markov process

with generator Lkc �

 If a � �� then �����L	� �

�
��L	� �

�
��L	� �

�
��L		L�� converges in distribution in

C
�����		�R�	 to the Markov process ����L	� ���L	� ���L	� ���L		L�� whose

in�nitesimal generator is �h � h� � h�	�

L � �c��	k
�
c

�
�

���
�

�

���

��
�
�

�
�c�kc	k

�
c

�
��

����
�

��

����
� � cos��� � �� � �hL	

��

�����

�

�
�

�
�c�kc	k

�
c

�
��� � �L	�

��

����
� ��� � �L	�

��

����

����� � �L	���� �L	 cos��� � �� � �hL	
��

�����

�
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Papanicolaou �����	 proved the convergence of the couple �����L	� �
�
��L		L���

and also that the process ����L	 � ���L	 � �hL mod �		L�� admits an in�
variant probability measure mh which satis�es�

hcos
imh
�

�jhj
�c�kc	k�c

Z �

�
exp

�
� �jhjz
�c�kc	k�c

�
z�

z� � �
dz
 �����	

By a straightforward generalization of the above results we can show that
the �nite�dimensional distributions �� ��L� h�	� 
 
 
 � �

��L� hn		L�� converge
in C�����		�Rn	�

It remains to prove the tightness of � ��L� h	 in C�����		� L���N�N		�
We will only deal with the most delicate case a � �� In fact we shall show
that � ��L� h	 is tight in D����		� L���N�N		 and we shall conclude by
checking that the weak limit is unique and belongs toC�����		� L���N�N		�

We begin by stating some standard tightness criteria �see Metivier �����		�

Lemma ���� Let �E� d	 be a metric space� and X� a process with paths in
D����		� E	� If for every t in a dense subset of R
 the family �X��t		�������
is tight in E and X� satis�es the Aldous property�

�A�

For any M � �� � � �� � � �� there exists � � � such that
lim sup
���

sup
T

sup
��	�


P�jjX��T � �	 �X��T 	 jj � �	 � ��

where T is a stopping time and supT is the sup over all such T �M�

then the family �X�	������� is tight in D����		� E	�

Lemma ���� Let H be a Hilbert space and Hn be an increasing sequence of
�nite�dimensional spaces in H such that� for any h � H� limn�� 	Hnh � h�
Let Y � be a H�valued process�
Y � is tight if and only if for any � � � and � � �� there exists �� and a
subspace H��� such that

sup
�������

P� jjY � jj � ��	 � � and sup
�������

P�d�Y �� H���	 � �	 � �
 �����	

Here we will take H � L���N�N	 and Hn the set of all the simple
functions of the form

h�t	 �
Nn��X
k��Nn

�k�It��k�n�k
��n�� ��k	k��Nn���� �Nn�� � R�Nn


If g � C����N�N ��R	� we denote by 	n�g	 the simple function in Hn de�ned

by g� �nt�n 	�
Step �� �� ��L� h		h���N�N� is tight in L���N�N	 for every L� By
Lemma ��� it is su�cient to check that �� ��L� h		h���N�N� ful�lls �����	� The
following criteria ������ ����	 insures that �� ��L� h		h���N�N� ful�lls �����	�

lim

��

lim sup
���

E

�
sup

jh�h�j�
�jhj�N�jh�j�N
j� ��L� h	� � ��L� h�	j�

�
� �� �����	

lim sup
���

sup
jhj�N

E
�j� ��L� h	j�� �	
 �����	
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If g � C����N�N ��R	 and supjx�x�j���n jg�x	�g�x�	j � �� then we obviously

get that jjg � 	n�g	 jjL���N�N� �
p
�N�� which implies d�g�Hn	 �

p
�N��

First we check by the perturbed function method �see estimates ����	 and
����	 in Section �	 that the second moment of � ��L� h	 is uniformly bounded
with respect to � � ��� ��� h � ��N�N � and L � ���M �� Indeed� denoting
f��	 � ���

E�f�� ��L		� � E�f�� ��L		� f ��L	�

�

Z L

�
E�L�sf ��s	� Lsf�� ��s		� �

Z L

�
E�Lsf�� ��s		��

where LLf��	 � �c�k	k
��� � �L	� and the perturbed test functions f �

are built according to the procedure described in the proof of Theorem
���� The functions satisfy in this particular case jf�� ��L		 � f ��L	j �
�KL �� � f�� ��L			 and jLLf�� ��L		�L�Lf ��L	j � �KL �� � f�� ��L			� This
yields �����	 from Gronwall�s inequality�

On the other hand� from the obvious estimate j� ��L� h	 � � ��L� h�	j �
jh� h�j supjhj�N j�


��L�h�
�h j and from Sobolev�s imbedding W������N�N �	 ��

C
����N�N ��R	� we get that there exists a constant CN such that

E

�
sup

jh�h� j�
�jhj�N�jh�j�N
j� ��L� h	� � ��L� h�	j�

�

� CN�
� sup
jhj�N

E

�
j��

��L� h	

�h
j� � j�

�� ��L� h	

�h�
j�
�
�

which yields �����	 since the second moments of
�
��L�h�

�h and
��
��L�h�

�h�
are

uniformly bounded with respect to � � ��� ��� h � ��N�N � and L � ���M �
�again by the perturbed test function method	� So we have stated the tight�
ness of �� ��L� h		h���N�N� in L���N�N	 for any L�

Step �� � � is tight in D����		� L���N�N		� The following criteria
insures that the process � � satis�es the Aldous property �A� if we take E �
L���N�N	�

lim

��

lim sup
���

sup
jhj�N

sup
T

sup
��	�


E
�
� � j� ��T � �� h	� � ��T� h	j�� � �� �����	

where supT is taken over all the stopping times T such that T �M � Using
Theorems III�� and � Kushner �����	 and the estimates of the perturbed
test function ����	 and ����	� we easily establish that � � satis�es �����	�
Combining this result with Lemma ��� yields the tightness of � � as a process
in D����		� L���N�N		�
Step �� Convergence of the process T ��u�i 	� Combining the results
of the steps � and � yields the convergence of � � in D����		� L���N�N		�
Besides the �nite�dimensional distributions converge to the distributions of
continuous processes� so the weak limit of� �belongs toC�����		�L���N�N		�
As a consequence the convergence of � � holds in C�����		� L���N�N		�
It follows from the expression ����	 of the time delay that T ��u�i 	 weakly
converges in C�����		�R	�
Step �� Variance of the limit process� We aim now at calculating
the asymptotic variance� We still focus on the non trivial case a � �� First
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some calculations yield that�

lim
L��

�

L
ln E����L	���L	� � ��kc� h	� �����	

where ��kc� h	 � �c�kc	k
�
c hcos
imh

and hcos
imh
is given by �����	� Since

��kc� h	 is maximal when h � � and ��
�h�kc� h	 jh���� ��	� ���h�kc� h	 jh����

��	� we have for any continuous function 
 with compact support�Z 
�

��

E������
�h	dh �
�
��	

	�c�kc	�k�cL
e��kc���L � o

L��

�
�

L
e��kc���L

�



Then it is easy to complete the proof of �����	�

�� Transmission through a one�dimensional weakly

nonlinear random medium

We consider a one�dimensional Helmholtz equation with a small random
perturbation and study the problem of the decay of the transmission coe��
cient for large lengths with �xed output� It is well known that in the linear
case we have exponential localization �Carmona �����		� while with a strong
nonlinear term we have a polynomial behavior of the transmittivity �Knapp
et al� �����		� Our main aim is to show that we still have an exponential
decay of the transmission coe�cient with a weak nonlinear term for �xed
output�

We study the propagation of monochromatic waves through a �nite� non�
linear� disordered slab ��� L�� The time harmonic scalar �eld U satis�es the
equation�

Uxx � k��n
���x� jU j�	U � �� ����	

where k� is the vacuum wavenumber� and n�x� jU j�	 is the index of refraction
of the medium�

Outside the slab ��� L�� space is free and the index of refraction is equal to
one� The model for the medium inside the slab is deduced from some optical
media� whose indices of refraction are a
ected by the intensity of light and
by random inhomogeneities� Therefore we shall take the index of refraction
to have the form�

n���x� jU j�	 � n��
	
� �m��x	 � �a��jU j�
 � m��x	 � �m�

x

��
	� ����	

where m is an ergodic Markov process which describes the linear random
perturbations of the index of refraction� �� and a are positive real constants�
The small parameter � establishes ratios between the di
erent scales� The
employed scalings correspond to standard situations in optics �see Knapp
et al� �����		� We assume that the correlation radius of the perturbations
and the wavelength are of the same order and are small compared to the
size of the slab L� More exactly the correlation length and the wavelength
are assumed to be of order �� while L is of order one� We therefore consider
that the homogeneous wavenumber is k� � k���� We assume also that the
amplitude of the random perturbation is weak� of order �� Knapp et al�
�����	 studied the decay of the transmission coe�cient in the limit corre�
sponding to these scalings when the size of the nonlinearity is of order one�
i�e� the case a � �� In ���� the same authors considered the case a � ��
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where only a slight modi�cation of the arguments that are used in the linear
case is needed� We shall consider a nonlinearity of order �a for some real
a � �� Of course the most relevant case is a small a�

We assume that a plane wave of amplitude U� is incoming from the right�
so that there are an incident wave from the right and a re
ected wave for
x � L� and a transmitted wave for x � �� Therefore the wave U may be
presented in the following form� outside the slab ��� L���

U�x	 � U��e
�ik��x�L� �Reik

��x�L�	� x � L�
U�x	 � U�Te

�ik�x� x � ��
����	

where R and T are respectively the re
ection and transmission coe�cients�
They depend on the length of the slab L and on the amplitude of the in�
coming wave U� because of nonlinearity�

Remark ���� We could have considered the nonlinear stationary Schr odin�
ger equation with a random potential�

��xx � V �x	�� �j�j�� � k��
 ����	

However the scalings we have just described have to be adapted�

We aim at analyzing the scattering problem which consists of the equation
����	 with the boundary conditions ����	� We introduce the normalized �eld
u such that U�x	 � U�u�x	� If we introduce the intensity of the incoming
wave w � jU�j�� then the equation ����	 can be rewritten as�

uxx � k���� �m��x	 � �a��wjuj�	u � �
 ����	

The term �a��w governs the strength of the nonlinearity of the system� The
boundary value problem ��������	 can be replaced by an initial value prob�
lem parametrized by the output intensity w� � jT �j�w� Let us de�ne the
R�valued functions q� and �� by u�x	 � jT �jq��x	e�i	��x�� Injecting this ex�
pression into ����	� separating the real and imaginary multiples of e�i	

�
� we

�nd that ��x � k��q�� and q� satis�es��
q�x � p�� q���	 � ��
p�x � k��

	
q��� � �� �m��x		q� � �a�q��



� p���	 � ��

����	

where � � ��w�� The initial conditions of ����	 are imposed by the boundary
condition at x � � in ����	� Using the boundary condition at x � L� we get
that the square modulus of the transmission coe�cient T � can be expressed
as�

jT �j��L	 � �k��

E��L	 � k�� � �
�k

����aq���L	
� ����	

where E� is the energy given by�

E��L	 �
�

�
p���L	 � V ��q��L		� V ��q	 �

k��

�
�q� �

�

q�
�

�

�
�a�q�	
 ����	

In order to explicit the periodic structure of the fast varying components
of the processes q�� p� and E�� we introduce the action angle variables �see

ESAIM� P�S� May ����� Vol� �� pp� ��	
��




MULTI�SCALED DIFFUSION�APPROXIMATION ��


Knapp et al� �����		� The action I is de�ned as a function of the energy E
by

I��E	 �
�

�	

I
pdq� �

�

�	

I p
�E � �V ��q�	dq�
 ����	

Indeed� if you �x the energy at some value E� then the motion described by

����	 is periodic� with a period given by 	��E	 �
H dq�

p �
H dq�p

�E��V ��q��
or

else by �	 �I�

�E � The angle 
 is de�ned as a function of E and q by


��E� q	 � �
Z q �p

�I
dq� � � �	

	��E	

Z q dq�p
�E � �V ��q�	


 �����	

The transformation �E� q	 � �I� 
	 can be inverted to give the functions
E��I	 and Q��I� 
	� Now we de�ne t by x � t���� In the scaled variable t�
the correlation radius of the perturbation and the wavelength are of order ��
while the size of the slab is of order ���� So we study the random processes
I��t���	 and 
��t���	 in the scaled variable t� they are solutions of the
di
erential equations����

��
dI�

dt
�
t

��
	 �

�

�
m�

t

��
	k�h���I

�� 
�	�

d
�

dt
�
t

��
	 � � �

��
���I�	� �

�
m�

t

��
	k�h�I�I

�� 
�	�
�����	

where h��I� 
	 � ����	Q���I� 
	 and ���I	 � �	�	��E��I		 are smooth func�
tions and h� is periodic with respect to 
�

Lemma ���� For any integer N � we can expand �� and h�

���I	 �
NX
j��

aj�I	�
ja � ��N
��ar��I	� �����	

h��I� 
	 �
NX
j��

Hj�I� 
	�
ja� ��N
��aR��I� 
	� �����	

where aj and Hj are smooth functions� r� and R� are smooth functions
uniformly bounded with respect to I � K� 
 � R and � � ��� �� for any
compact subset K of R� The explicit forms of the �rst terms a� and H� are�

a��I	 � �k� H��I� 
	 �
�

�
�
I

k
�

r
I

k
� �

I

k
	� cos

 �����	

Proof� We �rst look for explicit representations of the functions �� and h��
Let us �x E and denote by e�� � e�� � e�� the roots of the polynomial P �

E�z	 �

�k�

� �
a�z��k�z���Ez�k�� A straightforward study of P �

E yields that e�� �

� � e�� � � � e��� As a consequence� the roots of ��E � V ��q		 � P �
E�q

�	�q�

are
p
e�� and

p
e��� Then it appears that the bounds of the periodic motion

described by ����	 are
p
e�� and

p
e��� From the de�nition ����	 of I�� it

follows that�

dI�

dE
�E	 �

�

	

Z pe�
�
�E�

p
e�
�
�E�

q�dq�q
P �
E�q

��	

 �����	
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We can recognize an elliptic integral� which can be rewritten �Abramowitz
et al� �����		 as�

dI�

dE
�E	 �

K ����E		

	

�
��a

�
k� �e���E	� e���E		

�����
� �����	

where

���I	 �
e�� � e��
e�� � e��

�E��I		� �����	

and K is the complete elliptic integral�

K��	 �

Z ���

�

	
�� � sin� s


����
ds
 �����	

On the other hand� ���I	 is equal to dE�

dI �I	� i�e� the inverse expression of

�����	� Since E���	 � k� � k�

� ��
a �indeed� if I � �� then e�� � e�� � � and

P �
E������	 � �	� we get an explicit representation ofE� in terms of the roots e�i

by integrating ���I	� Finally we can recognize in the expression �����	 of 
�

an elliptic function of the third kind� Using the formulas given in Chapter
��� Abramowitz et al� �����	� the expression of h� may be explicited by
means of Jacobian elliptic functions�

h��I� 
	 �
�

�

�
e���E

��I		� �e�� � e��	�E
��I		sn��

K����I		

	

� ���I		

�
�

�����	

where sn is the Jacobian sinus given by�

S � sn��� r	� S � sin � � � �

Z �

�

dsp
�� r sin� s


 �����	

In order to get the expansions of �� and h�� we adopt the following strat�
egy� We �rst expand the roots e�i in powers of �a� Then we expand the

functions dI�

dE �E	� ���I	� E��I	 and Q��I� 
	 successively�
Let us �rst �x E� Then the roots e��� e

�
� and e�� of the polynomial P �

E
can be expanded in powers of �a� In particular the �rst order terms of the
expansions are� ���������

��������

e�� �
�

k�
�E �

p
E� � k�	 �O��a	�

e�� �
�

k�
�E �

p
E� � k�	 �O��a	�

e�� � � �

��a
�O��	�

�� �
�

k�

p
E� � k���a �O���a	


�����	

The notation O��a	 is a shorthand for an expression of the form� f��E	�a�
f��E	��a� 
 
 
 where f�� f�� 
 
 
 are smooth deterministic functions�
The function E �� I��E	 is de�ned by ����	 and its derivative by �����	� It
admits therefore an asymptotic expansion� whose �rst order term is�

dI�

dE
�E	 �

�

�k
� O��a	
 �����	
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By inverting we get the expansion �����	 of ��� By integrating with respect
to I � we �nd that E��I	 � E���	 � �kI � O��a	� Since E���	 � k� �O��a	�
we get�

E��I	 � k��� �
�I

k
	 �O��a	
 �����	

The composition of the functions I �� E��I	 and E �� e�j�E	 therefore
admits an expansion in powers of �a�������������

�����������

e���E
��I		 � � �

�I

k
� �

r
I

k
� �

I

k
	� � O��a	�

e���E
��I		 � � �

�I

k
� �

r
I

k
� �

I

k
	� � O��a	�

e���E
��I		 � � �

��a
� O��	�

���E��I		 � �

r
I

k
� �

I

k
	���a � O���a	


�����	

Finally� from the representation �����	 of h� and the asymptotic expansions
of the Jacobian functions �Abramowitz et al� �����		� we can establish the
expansion �����	 of h��

From now on� we �x an integer N such that �� � N	a � �� We will
see that the expansions of �� and h� at this order are su�cient for our
purpose� We aim at studying the di
erential equations �����	 satis�ed by
the process �I��t���	� 
��t���		t��� Since the 
�equation in �����	 has a fast
varying part ���I	� we introduce new variables � �j �t	� j � �� 
 
 
 � N and a
new random process ���t	 de�ned by������

����

d� �j
dt

�t	 � ��ja��aj�I�� t
��
		� � �j ��	 � ��


��
t

��
	 � ���t	 �

NX
j��

� �j �t	

�����	

� ���t	 is the fast varying component of the angle 
��t���	� Its behavior has
a characteristic time of order �� while the semi�fast varying components
� �j �t	� j � �� 
 
 
 � N have characteristic times of order ���ja respectively� We
can express the di
erential equations �����	 with the scaled length t and
these new variables������������������

����������������

dI�

dt
�

NX
j��

�

���ja
k�m�

t

��
	Hj�

�
I�� �� �

NX
l��

� �l

�

���N
��a��k�m�
t

��
	R�

�

�
I�� �� �

NX
l��

� �l

�
�

d��

dt
� �

NX
j��

�

���ja
k�m�

t

��
	HjI

�
I�� �� �

NX
l��

� �l

�

���N
��a��k�m�
t

��
	R�

I

�
I�� �� �

NX
l��

� �l

�
� ��N
��a��r��I�	�

�����	
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where H� is given by �����	� In particular� H� is periodic with respect
to its second variable� Moreover we can notice that the last term will be
asymptotically negligible since �N � �	a� � � �� In fact� that is the motive
for our choice of the integer N � By applying Theorem ��� in the appendix�
we get that �I��t���		t�� converges weakly to a Markov process �I�t		t��
whose generator is given by�

LI � �c�k	k
�

�

�

�I

�
I

k
� �

I

k
	�
�

�

�I
� �����	

where �c�k	 has been de�ned by ����	� Coming back to the square modu�
lus of the transmission coe�cient� we �nd that �jT �j��L���		L�� converges
weakly to the process T �L	 � ���� � I�k�L		� �T �L		L�� is a Markov
process with generator LT given by�

LT �
�

�
�c�k	k

�T �

�
� �

�T � ��� T 	 ��

�T �

�

 �����	

It is the same generator as in the linear case� Asymptotically� the square
modulus of the transmission coe�cient has the same law in the linear case
and in the weak nonlinear case for the output problem� In particular�

lim
L��

�

L
ln E�T �L	� � ��c�k	k

�

�

 �����	

�� Phase difference

We are now interested in the phase di
erence of the re
ected wave in the
situation described in Section �� We consider the one�dimensional Helmholtz
equation ����	 where the index of refraction n� is described by ����	� We
assume that a monochromatic plane wave with amplitude U� is incoming
from the right� If we consider a free boundary condition at x � �� then the
incident wave is scattered into a re
ected wave and a transmitted wave� so
that the wave has the form U�x	 � U��e�ik

��x�L� � R�eik
��x�L�	 for x �

L� From the previous section� we know that the modulus of the re
ection
coe�cient is exponentially close to � for large lengths L� As a consequence�
if we focus on the phase then it is convenient to analyze the problem with
a totally re
ecting condition at the interface x � �� so that R� � ei�

�
�

�� is the phase di
erence of the re
ected wave� that means the di
erence
between the phase angle of the re
ected phase and the phase angle of the
incident wave at the interface x � L� If the medium is homogeneous inside
the slab ��� L� �i�e� n 
 n�	� then �� � �k�L � 	� So the relative phase
di
erence due to the 
uctuations of the index of refraction is ��� �k�L�	�
We aim at describing �� in the limit case described in Section �� where the

uctuation of the linear component of the index of refraction is of the form
m��x	 � �m�x���	 and the homogeneous wavenumber is k� � k���� We can
now state the main result of this section�

Proposition ���� The phase di
erence �� has the following structure when
�� ��

���L	 �
�kL

��
�

��kL

���a
� 
��L	 � 	� ����	
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where 
� converges weakly to a Brownian motion whose di
usive constant
is k� ��c�k	 � ��c��		� and � � ��jU�j��
Proof� By standard arguments �see Papanicolaou �����		� we can �nd the
equation which governs the evolution of the phase ���L	 �� ���L	��kL����

d��

dL
� k

�
� � cos

�
�kL

��
� ��

���
�

�
m�

L

��
	 �

���w

���a

�
� � cos

�
�kL

��
� ��

���
If a � �� then it is obvious to check that the nonlinear term has no e
ect
on the phase� If a � ��� ��� then we introduce the semi�fast varying phase
���wkL
���a � so that

���L	 � ���L	 � 
��L	 �
���wkL

���a
� 	�

where �� and 
� satisfy������
����

d��

dL
�

��k

���a

��
�� cos

�
�kL

��
�

���wkL

���a
� ���L	 � 
��L	

���
� �

�

�
�

d
�

dL
�

k

�
m�

L

��
	

�
�� cos

�
�kL

��
�

���wkL

���a
� ���L	 � 
��L	

��



with the initial conditions ����	 � � and 
���	 � �� Then� applying Theorem
��� in the appendix� we get that the process ����L	� 
��L		L�� converges
weakly to the Markov process ��� 
�L		L�� whose in�nitesimal generator L�
is given by�

L� �
k�

�
��c�k	 � ��c��		

��

�
�
�

where �c�k	 has been de�ned by ����	�

�� Appendix � Multi�scaled diffusion�approximation

In this appendix� we prove the multi�scaled di
usion�approximation the�
orems that are applied in this paper� General versions of these theorems
can be found in Garnier �����	� We consider �rst the following problem� we
aim at proving the weak convergence of the Rd�valued process X� de�ned
by the system����������
��������

dX�

dt
�t	 �

�

�
F �X��t	� q��t	� h��t	� � ���t	� 
 
 
 � �

�
N�t		

�
NX
j��

�

���ja
Gj �X

��t	� q��t	� h��t	� � ���t	� 
 
 
 � �
�
N�t		

��bR� �X��t	� q��t	� h��t	� � ���t	� 
 
 
 � �
�
N�t		 �

X���	 � x� � Rd


����	

���
��

d� �j
dt

�t	 �
�

���ja
Bj�X

��t		 � � �j ��	 � �� j � �� 
 
 
 � N�

dh�

dt
�t	 �

�

��
A � h���	 � �


����	

In the following we shall denote � � ���� 
 
 
 � �N	 and r �

�
�

�xj

�
j������ �N

�

We assume that�

 a and b are positive constants�
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 A is a constant di
erent from � and Bj�x	 are smooth functions for all
j � �� 
 
 
 � N �

 q��t	 � q�t���	 where q is a Markov� stationary� ergodic process with

generator Q� satisfying the Fredholm alternative�

 F and Gj are Rd�valued functions which are periodic with respect

to their third variables� they satisfy centering conditions� For any x� � �
hE�F �x� q��	� h� �	�ih � � and hE�Gj �x� q��	� h� �	�ih � �� where E�
� denotes
the expectation with respect to the invariant probability measure of q and
h
ih stands for an averaging over a period T in h�
Instead of technical sharp conditions� we assume that F and Gj are smooth
and have bounded partial derivatives in x�

 R� is a function such that� for any compact subset K of Rd� we have�

sup
�������

sup
x�K�q�h�


jR��x� q� h� �	j�	
 ����	


 N is an integer such that �N � �	a � ��
We introduce the in�nitesimal generator L de�ned by�

Lf�x	 �
Z �

�
du hE �F �x� q��	� h� �	
r �F �x� q�u	� h� Au� �	
rf�x		�ih

����	

and claim that L does not depend on � �

Theorem 	��� The process �X��t		t�� given by ����
 converges weakly in
C
�����		�Rd	 to the di
usion Markov process X generated by L of ����
�

This theorem is actually a multi�scaled version of Theorem ��� Papanico�
laou et al� �����	� We will use the perturbed test function method �Kushner
�����		 to prove it�

Proof� �q��t	� h��t	� � ��t	� X��t		t�� is a Markov process with generator L��

L� � �

��
�Q� A

�

�h
	 �

NX
j��

�

���ja
Bj�x	

�

��j
�

�

�
F �x� q� h� �	
r

�
NX
j��

�

���ja
Gj�x� q� h� �	
r� �bR��x� q� h� �	
r


����	

According to Kushner �����	 �see Chapter III Theorems � and �	� the most
important fact to establish is�

For any bounded� C� function f � we can �nd a family of functions f �

such that� for any compact subset K of Rd�

sup
x�K�q�h�


jf ��x� q� h� �	� f�x	j ����� �� ����	

sup
x�K�q�h�


jL�f ��x� q� h� �	� Lf�x	j ����� �
 ����	

Let f be a bounded� C� function� We de�ne f � by�

f ��x� q� h� �	 � f�x	 �
NX
j��

��
jaf�
j�x� q� h� �	� ��fN
��x� q� h� �	
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f � is a correction of f � whose corrective terms fj will be chosen such that
����	 and ����	 will be satis�ed� If we apply the generator L� to f � then we
�nd�

L�f � � �

�

�
�Q� A

�

�h
	f� � F
rf

�

�
NX
j��

�

���ja

�
jX

i��

Bi
�

��i
fj
��i � Gj 
rf � �Q�A

�

�h
	fj
�

�

�

�
�Q�A

�

�h
	fN
� � F
rf�

�
� O��a	b	��N
��a���	


Our �rst aim is to get L�f � without any divergent term� The second one will
be to get an expression with a O��	 term independent of q� h� � � Therefore
we de�ne the functions fj as follows�

f��x� q� h� �	 � ��Q �A
�

�h
	�� �F �x� q� h� �	
rf�x		 


�Q�A
�

�h
	 does not have an inverse� However� denoting !h � h mod T � the

Markov �q�� !h�	 satis�es the Fredholm alternative� Therefore �Q�A
�

�h
	 has

an inverse on the subspace of periodic functions which are centered under
the invariant probability P� �I���T � of �q� !h	� Thus the previous expression
is well�de�ned since hE�F �x� q��	� h� �	
rf�x	�ih � �� An explicit expression
of f� is�

f��x� q� h� �	 �

Z �

�
duEq �F �x� q�u	� h� Au� �	
rf�x	�


For j � �� 
 
 
 � N � we de�ne by induction fj
��

fj
��x� q� h� �	 � ��Q�A
�

�h
	���

jX
i��

Bi�x	
�

��i
fj
��i�x� q� h� �	� Gj�x� q� h� �	
rf�x	

�



The function between parentheses is centered� Indeed� on the one hand Gj

is centered by assumption� and on the other hand we can show that fj is

centered by induction with respect to j� since the operators �Q � A
�

�h
	��

and
�

��i
do not modify the centering�

Finally we adopt for fN
� the following expression�

fN
��x� q� h� �	 � ��Q� A
�

�h
	��

�F �x� q� h� �	
rf��x� q� h� �	� hE�F �x� q��	� h� �	
rf��x� q��	� h� �	�ih	
which is well�de�ned because of the centering of the integrated term�

Adopting this de�nition for f �� we have�

L�f ��x� q� h� �	 � Lf�x	 � O��a	b	��N
��a���	�

where L is given by ����	� Thus f � satis�es ����	 and ����	�
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Finally� Gj and the semi�fast varying phases � �j �t	� j � �� 
 
 
 � N disappear
in the di
usion limit� They are negligible compared to F and the fast varying
phase At��� respectively�

The above result deals with a di
usion�approximation problem with fast
and semi�fast varying phases� We are now concerned in proving a di
usion�
approximation result where an ultra�fast varying phase competes with a
random process� This result is needed in Section �� We consider the fol�
lowing problem� we aim at proving the weak convergence of the Rd�valued
process X� de�ned by the system�

���
��

dX�

dt
�t	 �

�

�
F �X��t	� q��t	� 
��t		� X���	 � x� � Rd�

d
�

dt
�t	 �

�

��
c
C� 
���	 � �


����	

We assume that�

 c and C are positive constants�

 q��t	 � q�t���	 where q is a Markov� stationary� ergodic process with

generator Q� satisfying the Fredholm alternative�

 F is a smooth Rd�valued function which is periodic with respect to its

third variable and satis�es hE�F �x� q��	� 
	�i� � �� where E�
� denotes the

expectation with respect to the invariant probability measure of q and h
i�
stands for an averaging over a period in 
�

Theorem 	��� The process �X��t		t�� given by ���	
 converges weakly in
C
�����		�Rd	 to the di
usion Markov process X generated by the in�nites�

imal generator L given by�

Lf�x	 �
Z �

�
duE

h
hF �x� q��	� 
	i� 
r

�
hF �x� q�u	� 
	i� 
rf�x	

�i

 ����	

An in�nite�dimensional version of this theorem is also available in Bailly
�����	�

Proof� �q��t	� 
��t	� X��t		t�� is a Markov process with generator L� given
by�

L� � C

��
c
�

�

�

�

��
Q�

�

�
F �x� q� 
	
r
 �����	

We still use the perturbed test function method to prove this theorem� We
denote by M an integer that satis�es Mc � �� Let f be a bounded� C�
function� We de�ne f � by�

f ��x� q� 
	 � f�x	 ��f����x� q	 �
MX
j��

��
jcf��j�x� q� 
	

���f����x� q	 � ��
cf����x� q� 
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Applying the generator L� to f �� we get�

L�f � �
�

�

�
Qf����x� q	 � F �x� q� 
	
rf�x	� C

�f���
�h

�

�
M��X
j��

�

���jc

�
C
�f��j
�
�


�x� q� 
	 � Qf��j�x� q� 
	

�

�

�
C
�f���
�


�x� q� 
	 �Qf����x� q	 � F �x� q� 
	
rf����x� q	
�

�O��c	�Mc���	


De�ning

f����x� q	 � �Q�� hF �x� q� 
	i� 
rf�x	�
f����x� q� 
	 � � �

C

Z �

�
d
�

�
F �x� q� 
�	� hF �x� q� 
	i�

�

rf�x	 � c����x� q	


the O���	 term in L�f � becomes �� whatever c��� is� Choosing now c��� as�

c����x� q	 �

�
�

C

Z �

�
d
�

�
F �x� q� 
�	� hF �x� q� 
	i�

�

rf�x	

�
�

�

we get that f��� is periodic with mean �� De�ning by induction

f��j
��x� q� 
	 � � �

C

Z �

�
d
�Qf��j�x� q� 


�	 � c��j
��x� q	�

where

c��j
��x� q	 �

�
�

C

Z �

�
d
�Qf��j�x� q� 


�	

�
�

�

all the terms of order �
���jc are equal to �� Finally� we take f��� and f��� to

be

f����x� q	 � �Q���
hF �x� q� 
	i� 
rf����x� q	� E

h
hF �x� q��	� 
	i� 
rf����x� q��		

i�
�

f����x� q� 
	 � � �

C

Z �

�
d
�

�
F �x� q� 
�	� hF �x� q� 
	i�

�

rf����x� q	�

which are well�de�ned because of the Fredholm alternative and of the cen�
tering conditions� As a consequence f � satis�es the condition ����	� and

L�f ��x� q� 
	 � Lf�x	 � O��c	�Mc���	�

where Lf � E

h
hF �x� q��	� 
	i� 
rf����x� q��		

i
is given by ����	 so that f �

ful�lls ����	�

Remark 	��� In this appendix we could have presented only one theorem
by considering a more general situation where we would have taken into
account all the terms that we dealt with successively in Theorems ��� and
���� However� for the sake of simplicity in the notations� we preferred to
break our presentation into two parts�
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