@article{PS_1998__2__163_0, author = {Lanzinger, Hartmut}, title = {An almost sure limit theorem for moving averages of random variables between the strong law of large numbers and the {Erd\"os-R\'enyi} law}, journal = {ESAIM: Probability and Statistics}, pages = {163--183}, publisher = {EDP-Sciences}, volume = {2}, year = {1998}, mrnumber = {1655989}, zbl = {0915.60049}, language = {en}, url = {http://archive.numdam.org/item/PS_1998__2__163_0/} }
TY - JOUR AU - Lanzinger, Hartmut TI - An almost sure limit theorem for moving averages of random variables between the strong law of large numbers and the Erdös-Rényi law JO - ESAIM: Probability and Statistics PY - 1998 SP - 163 EP - 183 VL - 2 PB - EDP-Sciences UR - http://archive.numdam.org/item/PS_1998__2__163_0/ LA - en ID - PS_1998__2__163_0 ER -
%0 Journal Article %A Lanzinger, Hartmut %T An almost sure limit theorem for moving averages of random variables between the strong law of large numbers and the Erdös-Rényi law %J ESAIM: Probability and Statistics %D 1998 %P 163-183 %V 2 %I EDP-Sciences %U http://archive.numdam.org/item/PS_1998__2__163_0/ %G en %F PS_1998__2__163_0
Lanzinger, Hartmut. An almost sure limit theorem for moving averages of random variables between the strong law of large numbers and the Erdös-Rényi law. ESAIM: Probability and Statistics, Tome 2 (1998), pp. 163-183. http://archive.numdam.org/item/PS_1998__2__163_0/
Limit theorems for moving averages of independent random vectors. Z. Wahrscheinlichkeitstheorie verw. Geb. 64, 67-123. | MR | Zbl
and ( 1983).On Tauberian theorems in probability theory. Nieuw. Arch. Wisk. (4) 3. 2 143-149. | MR | Zbl
( 1985).Moving averages, in: Almost everywhere convergence I. Academic Press. 131-145. | MR | Zbl
( 1988).On one-sided Tauberian conditions. Analysis. 3, 159-188. | MR | Zbl
and ( 1983).Riesz means and self-neglecting functions. Math. Z. 199, 443-454. | MR | Zbl
and ( 1983).Summability methods and almost sure convergence. Z. Wahrscheinlichkeitstheorie verw. Geb. 68, 383-392. | MR | Zbl
and ( 1985).Jakimovski methods and almost sure convergence, in: Disorder in Physical Systems. Grimmett, Welsh Eds.; Clarendon Press, Oxford. 5-17. | MR | Zbl
and ( 1990).Riesz and Valiron means and fractional moments. Math. Proc. Cambridge Philos. Soc. 99, 143-149. | MR | Zbl
and ( 1986).Regular variation. Cambridge University Press. | MR | Zbl
, and ( 1987).Delayed sums and Borel summability of independent, identically distributed random variables. Bull. Inst. Math. Acad. Sinica. 1, 207-220. | MR | Zbl
( 1973).Improved Erdös-Rényi and strong approximation laws for increments of partial sums. Ann. Probab. 9, 988-996. | MR | Zbl
and ( 1981).Limit laws of Erdös-Rényi-Shepp type. Ann. Probab. 15, 1363-1386. | MR | Zbl
and ( 1987).On a new law of large numbers. J. Anal. Math. 23, 103-111. | MR | Zbl
and ( 1970).An extension of the law of the iterated logarithm to variables without variance. J. Math. Mech. 18, 343-355. | MR | Zbl
( 1968).Large deviations for a heavy-tailed mixing sequence. Preprint.
( 1996).The influence of extremes on the law of the iterated logarithm. Probab. Theory Related Fields. 77, 241-270. | MR | Zbl
( 1988).Non-classical law of the iterated logarithm behaviour for trimmed sums. Probab. Theory Related Fields. 78, 293-319. | MR | Zbl
( 1988a).General Nörlund Transforms and Power series Methods. Math. Z. 214, 273-286. | EuDML | MR | Zbl
( 1993).Power series methods and almost sure covergence. Math. Proc. Cambridge Philos. Soc. 113, 195-205. | MR | Zbl
( 1993a).Erdös-Rényi-Shepp-Laws and weighted sums of i.i.d. random variables. J. Theoret. Probab. 6, 961-982. | MR | Zbl
and ( 1996).Sur la loi forte des grands nombres. C. R. Acad. Sci. Paris. 191, 910-912. | JFM
( 1930).Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer Verlag. | JFM | MR | Zbl
( 1933).An approximation of partial sums of independent rv's and the sample df. I. Z. Wahrscheinlichkeitstheorie verw. Geb. 32, 111-131. | MR | Zbl
, and ( 1975).An approximation of partial sums of independent rv's and the sample df. II. Z. Wahrscheinlichkeitstheorie verw. Geb. 34, 33-58. | MR | Zbl
, and ( 1976).Summability methods for independent, identically distributed random variables. Proc. Amer. Math. Soc. 45, 253-261. | MR | Zbl
( 1974).Limit theorems for delayed sums. Ann. Probab. 2, 432-440. | MR | Zbl
( 1974a).The approximation of partial sums of independent rv's. Z. Wahrscheinlichkeitstheorie verw. Geb. 35, 213-220. | MR | Zbl
( 1976).The strong law of large numbers when extreme terms are excluded from sums. Z. Wahrscheinlichkeitstheorie verw. Geb. 36, 189-194. | MR | Zbl
( 1976);Stability for sums of i.i.d. random variables when extreme terms are excluded. Z. Wahrscheinlichkeitstheorie verw. Geb. 40, 159-167. | MR | Zbl
( 1977);Large deviations of sums of independent random variables. Ann. Probab. 7, 745-789. | MR | Zbl
( 1979).On a problem of Csörgö and Révész. Ann. Probab. 17(2), 809-812. | MR | Zbl
( 1989).A limit law concerning moving averages. Ann. Math. Stat. 35(1), 424-428. | MR | Zbl
( 1964).On a family of summability methods and one-sided tauberian conditions. J. Math. Anal. Appl. 196, 99-119. | MR | Zbl
( 1995).On a necessary condition for the Erdös-Rényi law of large numbers. Proc. Amer. Math. Soc. 68, 97-100. | MR | Zbl
( 1978).