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SHARP LARGE DEVIATIONS FOR GAUSSIAN QUADRATIC FORMS
WITH APPLICATIONS

Bernard Bercu
1
, Fabrice Gamboa

2
and Marc Lavielle

3

Abstract. Under regularity assumptions, we establish a sharp large deviation principle for Hermitian
quadratic forms of stationary Gaussian processes. Our result is similar to the well-known Bahadur-Rao
theorem [2] on the sample mean. We also provide several examples of application such as the sharp
large deviation properties of the Neyman-Pearson likelihood ratio test, of the sum of squares, of the
Yule-Walker estimator of the parameter of a stable autoregressive Gaussian process, and finally of the
empirical spectral repartition function.

Résumé. Sous des hypothèses de régularité convenables, on établit un principe de grandes
déviations précises pour des formes quadratiques de processus gaussiens stationnaires. Notre résultat
est l’analogue du théorème de Bahadur-Rao [2] sur la moyenne empirique. Nous proposons égale-
ment plusieurs exemples d’application comme les propriétés de grandes déviations précises pour le
test du rapport de vraisemblance de Neyman-Pearson, pour la somme des carrés, pour l’estimateur de
Yule-Walker du paramètre d’un processus gaussien autorégressif stable, et finalement pour la fonction
de répartition spectrale empirique.
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1. Introduction

The basic common way to study the rate of convergence in the law of large numbers is given by the Central
Limit theorem (CLT). Let (Z1, Z2, . . . , Zn) be a sample of independent and identically distributed random
variables with zero mean and unit variance. The rate of convergence of the empirical mean

Zn =
1
n

n∑
i=1

Zi

towards 0 is evaluated rescaling Zn by
√
n. The CLT tells us that for any c ∈ R, P(

√
nZn ≥ c) converges

to 1 − F (c) where F is the standard normal distribution. Under the well-known Cramer’s condition [16], one
could refine the previous convergence via an Edgeworth expansion of the density of

√
nZn (see e.g. [27]). On

the one hand, as the rescaling factor is
√
n, this tool is well adapted if one wishes to evaluate P(Zn ≥ c)
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where c is in the normal range for Zn, namely c = O(n−1/2). On the other hand, if one wants to estimate
P(Zn ≥ c) where c is bounded away from zero, the CLT or one of its refinement does not give an accurate
equivalent for this probability (see the introduction of [27]). Indeed, under some regularity assumptions on the
cumulant generating function of Zi, P(Zn ≥ c) goes exponentially fast to 0. Moreover, this exponential behavior
depends on the distribution of Zi and could be quite different from the Gaussian one given by exp(−nc2/2).
Roughly speaking, typical values of Zn are of order n−1/2 but with exponentially small probabilities, Zn takes
relatively large values. This is well-known (see e.g. [18] and references therein) and formalized by saying that
(Zn) satisfies a Large Deviations Principle (LDP). More precisely, there exists a positive lower semicontinuous
function I having compact level sets such that for any closed set A of R

lim sup
n→∞

1
n

logP
(
Zn ∈ A

)
≤ − inf

x∈A
I(x),

while for any open set B of R

− inf
x∈B

I(x) ≤ lim inf
n→∞

1
n

logP
(
Zn ∈ B

)
.

Actually, the rate function I could be easily calculated as the Legendre transform of the cumulant generating
function of Zi. Of course, for estimating P(Zn ≥ c) with c > 0 in a practical situation, the LDP is not so helpful
since it only gives a logarithmic equivalent for this probability. Bahadur and Rao [2] overcome this difficulty by
proving a full expansion of this tail probability. They established a sharp large deviation principle for (Zn) in
the spirit of the following definition.

Definition 1.1. Let (Vn) be a sequence of real random variables converging almost surely to some real number
v. We say that (Vn) satisfies a Local Sharp Large Deviation Principle (LSLDP) of order p ∈ N at point c ∈ R
whenever the following expansion holds

P(Vn ≥ c) =
a0 exp(−nb)√

n

(
1 +

a1

n
+ . . .+

ap
np

+ o

(
1
np

))
(c > v) (1.1)

or

P(Vn ≤ c) =
a0 exp(−nb)√

n

(
1 +

a1

n
+ . . .+

ap
np

+ o

(
1
np

))
(c < v) (1.2)

where a0, a1, . . . , ap ∈ R and b ∈ R+ ∪ {+∞} only depend on c. We say that (Vn) satisfies a Sharp Large
Deviation Principle (SLDP) of order p ∈ N if it satisfies an LSLDP of order p at any point c ∈ R.

After some refinements, the expansion remains valid in the range of middle or small deviations. This is the
so-called saddlepoint approximation used in statistics. For further references, the interested reader should check
Barndorff-Nielsen and Cox [3] and Jensen [27].

In this paper, our purpose is to establish an LSLDP for quadratic forms of Gaussian processes and to
illustrate the interest of such tractable expansions by some simple examples arising from statistics. Let us
begin by introducing the frame of the paper. Let (Xn) be a centered stationary real Gaussian process having
spectral density g. The function g is nonnegative, integrable on the torus T = [−π, π[ and the auto-covariances
of the process (Xn) are the Fourier coefficients of g (ĝi = E(XnXn+i) with n, i ∈ Z). For a given sequence of
Hermitian matrices (Mn), we are interested in the asymptotic properties of the random variable

Wn =
1
n
X(n)∗MnX

(n) (1.3)
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where X(n)∗ = (X1, . . . , Xn). Under some assumptions on the sequence of matrices (Mn), (Wn) converges
almost surely to a constant ϕ. Hereafter, it is an interesting problem to study the rate of convergence. In [7,11],
it was proved that under some regularity assumptions (Wn) satisfies an LDP. In the present paper, we study the
sharp large deviation properties of (Wn). As for the sequence of empirical means (Zn), one cannot deduce from
the LDP an asymptotic equivalent for P(Wn ≥ c). Therefore, it is necessary to establish an LSLDP for (Wn) as
in Definition 1.1. We will use the same approach as the one developed by Bahadur and Rao for establishing the
LSLDP for (Wn). Actually, the main idea to study the LSLDP for (Wn) is to express Wn as a weighted sum
of i.i.d. random variables. Some extensions of Bahadur and Rao theorem were proposed in [8]. However, these
extensions will not be helpful for us since they cannot integrate the very particular behavior of the sequence
of weights. This behavior is related to the asymptotic theory of Toeplitz operators. Moreover, the difficulty in
our framework is that the expansion of the characteristic function needs more analysis. This will be achieved
via the strong Szegö theorem (see [22,23,25,28]).

The paper is organized as follows. The results concerning LDP for quadratic forms (see [7] and [11]) are
recalled in Section 2. In Section 3, we establish under suitable assumptions, the LSLDP for (Wn). Section 4 is
devoted to some alternatives to our approach which are essentially the Edgeworth and saddlepoint approxima-
tions [2,27,32]. Roughly speaking, on the one hand, Edgeworth expansion cannot give an accurate approximation
for large deviation probabilities. On the other hand, saddlepoint approximation is generally untractable in our
present frame. As a matter of fact, the exponential part is generally very intrigated. Nevertheless, our result
may also be seen as approximated saddlepoint expansions in the spirit of Whittle approximation of a Gaussian
likelihood [1]. In Section 5, we provide several statistical applications of our general result: we obtain an LSLDP
for the likelihood ratio statistic, for the estimated variance of a sequence of Gaussian random variables, for the
empirical spectral repartition function and finally for the Yule-Walker estimator of the parameter of a stable
autoregressive Gaussian process. Notice also that this kind of expansion has been extensively studied for the
autoregressive process, partly for its importance in econometrics (see [27] and the references therein). One of the
interest of this paper is to present general results, obtained in the Large Deviations framework. These results
are new and of statistical interest. Some numerical comparisons between the sharp large deviation estimates
and Edgeworth or saddlepoint expansions are proposed. The theoretical results are shown to be of practical
interest since small tailed probabilities (smaller than 10−2) are very well approximated by using the LSLDP.
The Edgeworth expansion provides very good results for small and medium deviations (larger than 10−3) and
the saddlepoint approximation is shown to be very efficient for approximating any probability, when it can be
computed. In Appendices A and B, we recall some useful known and less known results on the asymptotic
behavior of the eigenvalues of Toeplitz forms. These asymptotic results are widely used in Section 5.

2. Large deviations for quadratic forms

Let Tn(g) be the covariance matrix of the vector X(n) which is also called the order n Toeplitz matrix
associated with g, (Tn(g) = (ĝi−j)1≤i,j≤n). Denote by λn1 ≤ . . . ≤ λnn the eigenvalues of Tn(g)

1
2MnTn(g)

1
2 which

are also the eigenvalues of MnTn(g). After an orthogonal change of basis, one can rewrite (1.3) as

Wn =
1
n

n∑
i=1

λni Z
n
i (2.1)

where Zn1 , . . . , Z
n
n are i.i.d. random variables with χ2(1) distribution. We are now in position to study the tail

properties of the sequence (Wn). A classical tool to investigate the large deviations of a sequence of random
variables is the normalized cumulant generating function

Ln(τ) =
1
n

logE
(
enτWn

)
. (2.2)
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It clearly follows from the decomposition (2.1) that

Ln(τ) =

{ − 1
2n

∑n
i=1 log(1− 2τλni ) if τ ∈ ∆n

+∞ otherwise
(2.3)

where

∆n =
{
τ ∈ R / max(λn1 τ, λ

n
nτ) <

1
2

}
·

First, as we want to apply some classical results such as the Gärtner-Ellis theorem (see e.g. [18]), we are brought
to make one of the major assumptions of the paper.

There exists a function ϕ ∈ L∞(T) which is not identically zero such that, if mϕ=essinf ϕ and Mϕ=esssup ϕ,
then for all n ≥ 1,

(H1) mϕ ≤ λn1 ≤ λnn ≤Mϕ and
1
n

n∑
i=1

δλni =⇒ Pϕ

where the limit Pϕ is the image probability of the uniform measure on the torus T by the application ϕ.
We clearly have from (H1), limλn1 = mϕ and limλnn = Mϕ. Therefore, under (H1), the asymptotic cumulant

generating function is

L(τ) =


− 1

4π

∫
T

log (1− 2τϕ(x)) dx if τ ∈ ∆

+∞ otherwise

(2.4)

where

∆ =
{
τ ∈ R / max(mϕτ,Mϕτ) <

1
2

}
·

Using this limit function, it was shown in [7] that an LDP is available for (Wn) (see also [11] for the special
case where Mn is the identity matrix). Denote by L? the Fenchel-Legendre dual of L

L?(c) = sup
τ∈R

(
cτ +

1
4π

∫
T

log (1− 2τϕ(x)) dx
)
. (2.5)

The following theorem was proved in [7]:

Theorem 2.1. Assume that (H1) holds. Then, the sequence (Wn) satisfies an LDP with rate function L?. In
particular, 

lim
n→∞

1
n

logP(Wn ≥ c) = −L?(c), (c > ϕ)

lim
n→∞

1
n

logP(Wn ≤ c) = −L?(c), (c < ϕ)
(2.6)

where ϕ =
1

2π

∫
T
ϕ(x)dx.

In [7], we also investigated the case where (H1) is not satisfied.
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3. Local sharp large deviations for quadratic forms

Let Cϕ be either [0,+∞[ if mϕ ≥ 0, ]−∞, 0] if Mϕ ≤ 0 or R otherwise. Actually, Cϕ is, for n large enough
the support of the distribution of (Wn). The LSLDP for (Wn) will hold for any point c lying in

Dϕ =
{
c ∈ R / ∃τ ∈ ∆ such that c =

1
2π

∫
T

ϕ(x)
1− 2τϕ(x)

dx

}
·

The following lemma will be useful in the sequel. It is a direct consequence of the work on ill posed inverse
problems developed in [20] and [21].

Lemma 3.1.
a) For any c ∈ Int Cϕ (the interior of Cϕ), there exists a unique τc in ∆ such that L?(c) = cτc − L(τc).
b) If c lies in Dϕ, then c = L′(τc) so that

L′(τc) =
1

2π

∫
T

ϕ(x)
1− 2τcϕ(x)

dx. (3.1)

c) Finally, assume that ϕ is differentiable on T. Then, Int Cϕ = Dϕ and consequently, (3.1) holds for any
c ∈ Int Cϕ.

Roughly speaking, the parameter τc gives the exponential change of probability which allows us to sharpen
Theorem 2.1, establishing the LSLDP for (Wn) at point c ∈ Dϕ. From assumption (H1), the sequence (Ln)
converges simply to L. In order to get the LSLDP, we need to specify this convergence assuming that for some
p ≥ 0, the following conditions are satisfied.

Case p = 0: there exists a function H such that,

(H2(0)) Ln(τc) = L(τc) +
1
n
H(τc) + o

(
1
n

)
·

Case p > 0: there exists a function H differentiable 2p+ 3 times, such that, for any 0 ≤ k ≤ 2p+ 3,

(H2(p)) L(k)
n (τc) = L(k)(τc) +

1
n
H(k)(τc) +O

(
n−p−2

)
where L(k) is the k’th derivative of L.

Assumption (H2(p)) is not really restrictive. Indeed, we shall show in Section 5 that (H2(p)) is fulfilled in
several statistical applications for any p ≥ 0. We now propose the main result of the paper, giving the LSLDP
theorem for (Wn).

Theorem 3.2. Let c ∈ Dϕ and assume that there exists p ≥ 0 such that (H1) and (H2(p)) hold. If c > ϕ,
there exists a sequence dc,1, dc,2, . . . , dc,p, such that, for n large enough

P(Wn ≥ c) =
e−nL

?(c)+H(τc)

σcτc
√

2πn

[
1 + o(1)

]
, if p = 0, (3.2)

P(Wn ≥ c) =
e−nL

?(c)+H(τc)

σcτc
√

2πn

[
1 +

p∑
k=1

dc,k
nk

+O(n−p−1)

]
, if p > 0. (3.3)
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Here, σ2
c = L

′′
(τc) and the coefficients dc,1, dc,2, . . . , dc,p may be explicitly computed as functions of the

derivatives of L and H at point τc. For example, the first coefficient dc,1 is given by

dc,1 =
1
σ2
c

(
−h2

2
− h2

1

2
+

l4
8σ2

c

+
l3h1

2σ2
c

− 5l23
24σ4

c

+
h1

τc
− l3

2τcσ2
c

− 1
τ2
c

)
(3.4)

with lk = L(k)(τc) and hk = H(k)(τc). In addition, relations similar to (3.2) or (3.3) are also valid for P(Wn ≤ c)
when c < ϕ. In other words, (Wn) satisfies an LSLDP of order p ≥ 0 at point c ∈ Dϕ.

Remark 3.3.
a) If ϕ is differentiable on T and if (H1) holds and (H2(p)) is globally satisfied for p ≥ 0 and for all c ∈ Int Cϕ,

then Theorem 3.2 gives an SLDP for the sequence (Wn).
b) For sack of simplicity, we prefer to express locally the assumption. If (H2) is satisfied for any c in a non

empty open set it implies (H1).

Proof. Recall that Wn may be expressed as a weighted sum of i.i.d. random variables with χ2(1) distribution

Wn =
1
n

n∑
i=1

λni Z
n
i .

In order to prove (3.3), we follow the same approach as Bahadur and Rao [2] for the sample mean. The main
difference is that in the i.i.d. case, no approximation between L?n and L? has to be evaluated, since the large
deviation functional is directly the Cramer transform of the sample and consequently does not depend on n.
We assume that mϕ < 0 and Mϕ > 0. The other case can be tackled identically. Consider the exponential
change of probability

dQn
dP

= exp
(
τcnWn − nLn(τc)

)
.

Then, we have the decomposition P(Wn ≥ c) = AnBn with

An = exp
[
n(Ln(τc)− cτc)

]
, (3.5)

Bn = En
(

exp
[
−τcn(Wn − c)

]
IWn≥c

)
, (3.6)

where En is the expectation over the new probability Qn. As L?(c) = τcc−L(τc), we clearly have Ln(τc)− cτc
= Ln(τc)− L(τc)− L?(c). Therefore, from assumption (H2(p)) we have

An = exp
[
−nL?(c) +H(τc)

] (
1 +O(n−p−1)

)
. (3.7)

We must now evaluate Bn. For this end, we use the classical normalization of the CLT

Un =
√
n(Wn − c)

σc
· (3.8)

Then, we immediately have from (3.6)

Bn = En
(

exp
[
−τcσc

√
nUn

]
IUn≥0

)
.



SHARP LARGE DEVIATIONS FOR GAUSSIAN QUADRATIC FORMS 7

We shall now prove that, for c > ϕ, the distribution of Un under Qn converges to the standard Gaussian
distribution. Denote by Φn the characteristic function of Un over the probability Qn

Φn(u) = En
(

exp
[
iu
√
n(Wn − c)
σc

])
· (3.9)

It is easy to see that

Φn(u) = exp
[
− iu
√
nc

σc
+ nLn(τc +

iu

σc
√
n

)− nLn(τc)
]
. (3.10)

Consequently, from (2.3)

|Φn(u)|2 =
n∏
j=1

(
1 +

4u2(λnj )2

σ2
cn(1− 2τcλnj )2

)− 1
2

. (3.11)

Hence, for n ≥ 2, Φn ∈ L2(R) and we may use Parseval’s formula to calculate Bn. Thus, we obtain

Bn =
1

2π

∫
R

(
1

τcσc
√
n+ iu

)
Φn(u) du =

Cn

τcσc
√

2πn
, (3.12)

Cn =
1√
2π

∫
R

(
1 +

iu

τcσc
√
n

)−1

Φn(u) du. (3.13)

Let ε be some positive constant such that Pϕ([mϕ,Mϕ]\[−ε; ε]) = δε > 0 together with 1− 2τcε > 0. Denote
by qn = #{λni ; |λni | > ε}. Then (H1) implies that qn ∼ nδε. In addition, we also have from (3.11),

|Φn(u)|2 ≤
(

1 +
(λεcu)2

n

)− qn2
where λεc =

2ε
σc(1 + 2τcε)

· (3.14)

First, consider the simple case p = 0. In order to prove (3.2), it only remains to show that Cn converges to 1.
From (3.14), we have for all v ∈ R,

∣∣∣∣Φn(√ n

qn
v

)∣∣∣∣ ≤ (1 +
(λεcv)2

qn

)− qn4
. (3.15)

For all a ∈ R, let ha(x) = (1 + a2x−1)−x. The function ha is non-increasing on R+. In addition, for n large
enough, qn ≥ 4. Consequently, it follows from (3.15) that

∣∣∣∣Φn(√ n

qn
v

)∣∣∣∣ ≤ (1 +
(λεcv)2

4

)−1

. (3.16)

The function at the right hand side of (3.16) belongs to L1(R). Therefore, as lim Φn(u) = exp(−u2/2), we
obtain from (3.13) together with the Lebesgue dominated convergence theorem that

lim
n→+∞

Cn =
1√

2πδε

∫
R

exp
(
− v2

2δε

)
dv = 1. (3.17)
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We now return to the general case p > 0. Let C be some positive constant, explicitly given at the end of the
proof, and set sn = Cn

1
6 . One can rewrite Cn = In + Jn where

In =
1√
2π

∫
|u|≤sn

(
1 +

iu

τcσc
√
n

)−1

Φn(u) du, (3.18)

Jn =
1√
2π

∫
|u|>sn

(
1 +

iu

τcσc
√
n

)−1

Φn(u) du. (3.19)

On the one hand, we derive from (3.14) that

|Jn| ≤
2τcσc

√
n√

2π

∫ +∞

sn

1
u
|Φn(u)| du ≤ 2τcσc

√
n√

2πs2
n

∫ +∞

sn

u

(
1 +

(λεcu)2

n

)− qn4
du

≤ 4τcσcn
√
n√

2π(qn − 4)(λεcsn)2

(
1 +

(λεcsn)2

n

)− qn4 +1

.

Consequently,

|Jn| = O
(√

n

s2
n

(
1 +

(λεcsn)2

n

)−nδε4 +1
)

so that we can always find, for n large enough, some constant 0 < θ < 1 such that |Jn| = O(θn). Now, from
assumption (H2(p)), for any 0 ≤ k ≤ 2p+ 3

L(k)
n (τc) = lk +

hk
n

+O(n−p−2) (3.20)

with lk = L(k)(τc) and hk = H(k)(τc). Therefore, from (3.10), there exists ξ ∈ R such that, for all |u| < σc
√
n

log Φn(u) = − iu
√
nc

σc
+ n

2p+3∑
k=1

(
iu

σc
√
n

)k (
lk
k!

+
hk
nk!

)
+

n

(2p+ 4)!

(
iu

σc
√
n

)2p+4

L(2p+4)
n (τc + iξ) +O(n−p−1).

From (2.3), we have for all ξ ∈ R, | L(2p+4)
n (τc + iξ) | ≤ L(2p+4)

n (τc). Consequently, we find that

log Φn(u) = −u
2

2
+ n

2p+3∑
k=3

(
iu

σc
√
n

)k
lk
k!

+
2p+1∑
k=1

(
iu

σc
√
n

)k
hk
k!

+
(1 + u2p+4)

np+1
O(1)

where the remainder O(1) is uniform in u. Then, for |u| < Cn
1
6 with C = σc | l3 |−

1
3

Φn(u)
1 + iu

τcσc
√
n

= e−
u2
2

(
1 +

2p+1∑
k=1

Pp,k(u)

n
k
2

+
(1 + u6(p+1))

np+1
O(1)

)
(3.21)

where the Pp,k are polynomials in odd powers of u for k odd, and polynomials in even powers of u for k even.
The same expansion was established in the i.i.d. case in [16] and [19]. Finally, from (3.18) and (3.21) together
with standard calculus about the moments of N (0, 1) distribution, we obtain relation (3.3). For example, in
the particular case p = 1, we have

P1,2(u)=− l3u
4

6τcσ4
c

+
h1u

2

τcσ2
c

+
l4u

4

24σ4
c

−h2u
2

2σ2
c

− l23u
6

72σ6
c

− h2
1u

2

2σ2
c

+
l3h1u

4

6σ4
c

− u2

τ2
c σ

2
c

·
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Therefore, we find that

In=1+
1
σ2
cn

(
−h2

2
− h2

1

2
+

l4
8σ2

c

+
l3h1

2σ2
c

− 5l23
24σ4

c

+
h1

τc
− l3

2τcσ2
c

− 1
τ2
c

)
+O

(
1
n2

)
which completes the proof of Theorem 3.2.

4. Edgeworth and saddlepoint approximations

We shall discuss in this section some alternatives to our approach, which are the Edgeworth and saddlepoint
approximations [3, 27]. We first need to introduce some notations. Denote by f and F the standard normal
density and distribution, respectively. By the Fourier inversion formula, we have

f(x) =
1

2π

∫
R

exp
(
− t

2

2

)
exp(−itx) dt

so that, for all n ∈ N,

f (n)(x) =
1

2π

∫
R
(−it)n exp

(
− t

2

2

)
exp(−itx) dt.

The Hermite polynomials (Hn) are given, for all n ∈ N, by

Hn(x) = (−1)nf−1(x)f (n)(x) (4.1)

which implies that for all a > 0, ∫ +∞

a

f(x)Hn(x) dx = f(a)Hn−1(a).

Furthermore, the Esscher functions (Bn) are given, for all n ∈ N and a > 0, by

Bn(a) =
1

2π

∫
R

exp
(
− t

2

2

)
(it)n

1 + it/a
dt. (4.2)

It is possible to show (see e.g. [27], p. 24) that the Hermite polynomials and the Esscher functions are associated
by the relation

Bn(a) = a

∫ +∞

0

f(x) exp(−ax)Hn(x) dx. (4.3)

The first six Hermite polynomials and Esscher functions are well-known and can be found in [27], p. 19 and
p. 24.

4.1. Edgeworth expansion

Set mn = E(Wn) = L
′
n(0), σ2

n = V (Wn) = L
′′
n(0)/n and

Un =
Wn −mn

σn
·
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Denote by fn the density of Un. Then, we have

P(Wn ≥ c) =
∫ +∞

dn

fn(x) dx

with dn = (c − mn)/σn. Consequently, using an Edgeworth expansion for fn, we obtain via the Hermite
polynomials (4.1) the following expansion.

Approximation 1. For any c ∈ R, we have

P(Wn ≥ c) ≈ 1− F (dn) + f(dn)
6∑
j=3

kn,j
j!

Hj−1(dn) +
1
72
k2
n,3H5(dn) (4.4)

where kn,j =
n

(nσn)j
L(j)
n (0).

Remark 4.1. As dn →∞, we have for any p ≥ 0,

1− F (dn) =
f(dn)
dn

{
1− 1

d2
n

+
3
d4
n

+ · · ·+ (−1)p(2p)!
d2p
n 2pp!

+O
(

1
d2p+2
n

)}
·

The Edgeworth approximation is suitable whenever the distribution of (Wn) is close to a Gaussian distribution.
Thus (4.4) is competitive only when c belongs to the normal range for Wn, namely c = O(n−1/2). On the other
hand, this approximation gives poor results for small tail probabilities. A numerical example will illustrate this
behavior below.

4.2. Saddlepoint expansion

As in the proof of our main result in Section 3, we have the decomposition P(Wn ≥ c) = AnBn with

An = exp
[
n(Ln(τn)− cτn)

]
,

Bn = En
(

exp
[
−τnn(Wn − c)

]
IWn≥c

)
,

where En is the expectation over the usual exponential change of probability Qn associated with the saddlepoint
τn such that L

′

n(τn) = c. Set σ2
n = L

′′

n(τn) and

Un =
√
n(Wn − c)
σn

·

Denote by Φn the characteristic function of Un over Qn. By Parseval’s formula, we have

Bn =
1

τnσn
√
n

1
2π

∫
R

(
1 +

iu

τnσn
√
n

)−1

Φn(u) du.

Consequently, using an Edgeworth expansion for Φn, we find via the Esscher functions (4.3) the following
expansion.

Approximation 2. For any c ∈ R, we have

P(Wn ≥ c) ≈
en(Ln(τn)−cτn)

τnσn
√
n

B0(pn)+
6∑
j=3

kn,j
j!

Bj(pn)+
1
72
k2
n,3B6(pn)

 (4.5)
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where pn = τnσn
√
n and kn,j =

n

(
√
nσn)j

L(j)
n (τn).

Remark 4.2. The saddlepoint approximation is very sharp if we can explicitly calculate the normalized
cumulant generating function Ln and all its derivatives. Consequently, except for very special cases, Ln is
very complicated and (4.5) is untractable in a general frame. Now, from a practical point of view, it is always
possible to replace Ln by L + H/n and compute the approximation given above. A theoretical study of this
approach is precisely the main purpose of this paper. Finally, we want to point out that the remainders in
Edgeworth and Saddlepoint expansions were not properly evaluated in the literature in a general frame.

5. Examples of application

5.1. Likelihood ratio test

Denote by Pg the probability distribution of (Xn). Let g0 and g1 be two spectral densities which differ on
a positive Lebesgue measure set. If we wishes to test H0 : g = g0 versus H1 : g = g1 on the basis of the
observation X1, . . . , Xn, then the Neyman-Pearson theorem tells us that the optimal strategy is the likelihood
ratio test (see e.g. [30], Th. 1, p. 65). Here, the likelihood ratio statistics only depends on the random variable

Wn =
1
n
X(n)∗ [T−1

n (g0)− T−1
n (g1)

]
X(n). (5.1)

The rejecting set for the optimal strategy at level α ∈]0, 1[ is [cn,α,+∞[ where the threshold cn,α is such that
Pg0(Wn ≥ cn,α) = α.

5.1.1. General sharp large deviations

We will provide here, for large values of n, the sharp behavior of Pg0(Wn ≥ c) for appropriate values
of c. The asymptotic behavior of Pg0(Wn ≥ c) using the large deviation theory was first studied by
Dacunha-Castelle in [17] (see also [10, 15]). Nevertheless, in these papers, no full LDP is provided. First
of all, we recall the result recently obtained in [7] which establishes the LDP for (Wn) under the classical fol-
lowing assumption: (H3)

i) The spectral density g0 is in the Szegö class, i.e. log g0 ∈ L1(T).
ii) The ratio

g0

g1
∈ L∞(T).

Proposition 5.1. Assume that (H3) holds. Then, under the null hypothesis, (Wn) satisfies an LDP with rate
function L? which is the Fenchel-Legendre dual of

L(τ) =


− 1

4π

∫
T

log (1− 2τϕ(x)) dx if τ ∈ ∆

+∞ otherwise

(5.2)

where ϕ = 1− g0

g1
.

We are now in position to sharpen Proposition 5.1, in a general framework, via the strong Szegö theorem
(see [23,25,28]). For f ∈ L1(T), denote by f̂n the Fourier coefficient of order n ∈ Z of f . Let

E(T) =

{
f ∈ L2(T) such that

+∞∑
n=1

n|f̂n|2 < +∞
}
· (5.3)
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For any complex valued function f ∈ L1(T) such that log f has a meaning together with log f ∈ E(T), set

ψ(f) =
∞∑
n=1

n
∣∣∣l̂og fn

∣∣∣2 . (5.4)

The two following corollaries give the local sharp asymptotic behavior for the likelihood ratio test.

Corollary 5.2. Assume that (H3) holds. In addition, assume that both log g1 and log gτc belong to E(T) where
gτc = (1 − 2τc)g1 + 2τcg0 and c ∈ Dϕ. Then, (Wn) satisfies the LSLDP of order 0 at point c ∈ Dϕ, given in
Theorem 3.2, with

L(τc) = − 1
4π

∫
T

log(1− 2τcϕ(x)) dx, (5.5)

σ2
c =

1
π

∫
T

(
ϕ(x)

1− 2τcϕ(x)

)2

dx, (5.6)

H(τc) =
1
2

(
ψ(g1)− ψ(gτc)

)
. (5.7)

Remark 5.3. First, observe that if (H3) holds, then g1 also lies in the Szegö class. Next, if g0 and g1 are
continuously derivable with Lipzsichian derivative, then we deduce from Lemma 3.1 that Dϕ = Int Cϕ and
theorem p. 76 of [23] implies that both g1 and gτc belong to E(T). Therefore, we find that (Wn) satisfies an
SLDP of order 0.

Proof. In order to apply Theorem 3.2, we have to evaluate the asymptotic behavior of Zn(c) = n(Ln(τc)−L(τc)).
We clearly obtain from standard calculus on Gaussian distribution that

Ln(τ) =
1
n

logEPg0
[
enτWn

]

Ln(τ) =


1

2n
log detTn(g1)− 1

2n
log detTn(gτ ) if τ ∈ ∆n

+∞ otherwise.
(5.8)

Consequently, it follows from (5.2) together with Theorem A.1 and the discussion in Appendix A that, for all
c ∈ Dϕ

Zn(c) =
1
2

(
ψ(g1)− ψ(gτc)

)
+O(n−1)

which completes the proof of Corollary 5.2.

Corollary 5.4. Assume that g0 and g1 both admit analytical extensions on the annulus {z ∈ C / ρ < |z| < ρ−1}
with 0 < ρ < 1. Moreover, assume that neither g0 and g1 vanish on T. Then, for any p ≥ 0, (Wn) satisfies an
SLDP of order p with L, H and σ2 given in Corollary 5.2.

Proof. First, the positivity and the analyticity of g0 and g1 imply (H3). Next, it follows from Lemma 3.1 that
Dϕ = Int Cϕ. Hence, it remains to show that assumption (H2(p)) holds for any p ≥ 0. From the proof of
Corollary 5.2, it holds for p = 0. For p > 0, we will prove the following stronger property: for all ν ∈ ∆ and
k > 0

∂k

∂τk
log detTn(gν) =

n

2π
∂k

∂τk

∫
T

log(gν(x))dx +
∂k

∂τk
ψ(gν) +O(θ2n)
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with 0 < θ < ρ. Let ν ∈ ∆ and ε > 0 with ]ν − ε, ν+ ε[⊂ ∆. Denote by D(ν, ε) the complex open disk centered
at ν with radius ε. Set, for all z ∈ D(ν, ε)

Sn(z) = log det(Tn(gz))−
n

2π

∫
T

log(gz(x))dx.

As gν is real, we can choose ε such that both the widing number of gz is 0 and gz does not vanish on T
(see the App. A and also point b, p. 71 of [9]). Hence, from relation (A.5) of Theorem A.1, we obtain that, for
all z ∈ D(ν, ε)

Sn(z) = ψ(gz) +Rn(z)

where Rn(z) = o(θ2n). In addition, we can rewrite ψ(gz) as (see formula (1.19), p. 193 of [25])

ψ(gz) =
1

32π

∫
T2

[
log gz(x) − log gz(y)

sin 1
2 (x− y)

]2

dxdy.

Therefore, the function ψ(gz) is analytical on D(ν, ε). Finally, using the Cauchy estimates for the derivatives of
an analytical function (see e.g. [31], Th. 10.26, p. 213), we find that, for any k > 0, R(k)

n (z) = o(θ2n). It implies
that (H2(p)) holds for any p > 0, which completes the proof of Corollary 5.4.

5.1.2. Application to ARMA processes

Recently, Barone et al. [4] proved, in the ARMA framework (i.e. when both g0 and g1 are quotients of positive
trigonometric polynomials), an LDP for the likelihood ratio statistics given by (5.1). Hence, they calculated,
for any appropriate value of c, the limit of n−1 logPg0(Wn ≥ c), and proposed a numerical way to estimate this
asymptotic probability. Actually, the large deviation properties of the sequence (Wn) allows the authors of [4]
to estimate Pg0(Wn ≥ c) by using an importance sampling technique. We will complete their results showing
an SLDP for the likelihood-ratio statistics by use of the following useful Lemma on Szegö theorems for rational
functions (see [23] and App. A and B).

Lemma 5.5. Assume that g can be written as g(x) = σ2|B(eix)/A(eix)|2, where A and B are polynomials of
degree p and q:

A(eix) =
p∏
j=1

(1− αjeix), B(eix) =
q∏
k=1

(1− βkeix).

Moreover, assume that the roots of A and B are all outside the unit circle (i.e. |αj | < 1 and |βk| < 1 for any j
and any k). Then, we have

1
2π

∫
T

log g(x)dx = log σ2.

In addition, there exists 0 ≤ γ < 1 such that

detTn(g)
(σ2)n

= expψ(g) +O(γn), (5.9)

where

expψ(g) =

∏p
j=1

∏q
k=1 |1− αjβk|2∏p

j=1

∏p
j′=1(1− αjαj′)

∏q
k=1

∏q
k′=1(1− βkβk′)

· (5.10)
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If q = 0 (case of an AR(p) process), then, for n ≥ p, we have the remarkable equality

detTn(g)
(σ2)n

=
1∏p

j=1

∏p
j′=1(1− αjαj′)

·

Proof. For any |α| < 1 and any n > 0, we have∫
T

log |1− αeix|2 dx = 0,
∫
T
einx log |1− αeix|2 dx = −α

n

n
· (5.11)

Consequently, we find that

̂log g(n) =
1
n

 p∑
j=1

αnj −
q∑
k=1

βnk

 . (5.12)

Therefore, we obtain from (5.4) and (5.12) that

ψ(g) =
p∑
j=1

q∑
k=1

log
∣∣1− αjβk∣∣2 − 1

2

p∑
j=1

p∑
j′=1

log |1− αjαj′ |2 −
1
2

q∑
k=1

q∑
k′=1

log
∣∣1− βkβk′ ∣∣2 .

As all the roots of A and B are outside the unit circle (5.9) immediately follows from Theorem A.1.

Next, let g0 and g1 be two spectral densities of ARMA processes:

g0(x) = σ2
0

∣∣∣∣B0(eix)
A0(eix)

∣∣∣∣2 , g1(x) = σ2
1

∣∣∣∣B1(eix)
A1(eix)

∣∣∣∣2 (5.13)

where A0, B0, A1 and B1 are polynomials of degree p0, q0, p1 and q1, whose roots are all outside the unit circle.
Recall that here the function L is finite on ∆ = {τ ∈ R / (1− 2τ)g1 + 2τg0 > 0}. For any τ ∈ ∆, we consider
the polynomial Fτ of degree r = max(p0 + q1, p1 + q0) defined on C by

Fτ (z) = (1− 2τ) |A0(z)B1(z)|2 + 2τ
σ2

0

σ2
1

|A1(z)B0(z)|2 . (5.14)

Thus, there exists f0(τ), f1(τ), . . . , fr(τ) and z1(τ), z2(τ), . . . , zr(τ) such that

Fτ (z) = f0(τ) +
r∑
j=1

fj(τ)(zj + zj) (5.15)

=
(−1)rfr(τ)∏r
j=1 zj(τ)

r∏
j=1

(1− zj(τ)z)
(

1− zj(τ)
z

)
· (5.16)

Here, the z1(τ), . . . , zr(τ) are the r roots of Fτ having a modulus lesser than 1. Then, for τ ∈ ∆, we have from
(5.2) together with (5.11)

L(τ) = − 1
4π

∫
T

log(1− 2τ + 2τ
g0(x)
g1(x)

) dx = − 1
4π

∫
T

log
Fτ (eix)

|A0(eix)B1(eix)|2 dx

= −1
2

log

(
(−1)rfr(τ)∏r
j=1 zj(τ)

)
· (5.17)
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Now, for τ ∈ ∆, set gτ = (1− 2τ)g1 + 2τg0. We clearly have from (5.13) and (5.14)

gτ (x) =
σ2

1Fτ (eix)
|A0(eix)A1(eix)|2 · (5.18)

Consequently, for τ ∈ ∆, gτ is the spectral density of an ARMA(r, p0 + p1) stationary process and (H3) is
satisfied. We can use Lemma 5.5 to compute ψ(gτ ) and equation (5.7) to calculate H(τ) and its derivatives.
We are now in position to precise the sharp asymptotic behavior of the likelihood-ratio statistics.

Corollary 5.6. In the ARMA framework, for any p ≥ 0, (Wn) satisfies an SLDP of order p, with

L(τc) = −1
2

log

(
(−1)rfr(τc)∏r
j=1 zj(τc)

)
, (5.19)

σ2
c =

1
π

∫
T

(
ϕ(x)

1− 2τcϕ(x)

)2

dx, (5.20)

H(τc) =
1
2

(
ψ(g1)− ψ(gτc)

)
(5.21)

where ψ is given in relation (5.10).

5.1.3. Numerical experiments

As a simple example, assume that we want to test H0: X is a white noise versus H1: X is a AR(1) process
with parameter α = 0.1. More precisely, assume that the spectral density of X has the form g(x) = |1−αeix|−2

and we want to test H0 : α = 0 versus H1 : α = 0.1. For a given value of c and a given n, we first estimate
the unknown probability Pg0(Wn ≥ c) by a Monte-Carlo procedure, using the importance sampling scheme
proposed by Barone et al. [4]. The size of the Monte-Carlo sample is large enough, in order to get a very
good accuracy in the estimation and to assume that the true value of Pg0(Wn ≥ c) is known. The aim of this
section is to compute an approximation of Pg0(Wn ≥ c) by use of Theorem 3.2, and to study numerically its
behavior. The functions L and H are explicitely given in Corollary 5.6. The order p is the only parameter which
must be chosen arbitrarily. Unfortunately, there is no general rule for an optimal practical choice of p. Indeed,
the accuracy of the LSLDP approximation, and then the choice of p, strongly depends on the sequence (Wn)
together with n and c. Nevertheless, we can mention that, in our examples, very good results are obtained with
small values of p.

Figure 1 shows the approximations of Pg0(Wn ≥ c) with n = 100, obtained with p = 0 in (3.2) and p = 1
in (3.3). We clearly see that both approximations are very accurate for probabilities smaller than 0.01.

5.2. Sum of squares

The large deviation properties of the sum of squares

Wn =
1
n

n∑
j=1

X2
j (5.22)

was extensively studied by Bryc and Dembo [11] (see also [12] for the autoregressive process and [13] for a
heuristic approach). Bucklew and Sadowsky [14] also established LSLDP of order 0 for (Wn). Their approach is
different from ours, they did not estimate the normalized cumulant generating function Ln of Wn by functions
L and H. Using the same arguments as in the proofs of Corollaries 5.2 and 5.4 with ϕ = g where g is the
spectral density of (Xn), we obtain the next two corollaries which precise the local sharp asymptotic behavior
for the sum of squares.
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Figure 1. Application of the SLDP for the likelihood-ratio test. Comparison of different
approximations of P(Wn > c) obtained with n = 100 for different values of c. −−−− : the true
probability P(Wn > c), −− : the LSLDP approximation obtained with p = 0, · : the LSLDP
approximation obtained with p = 1.

Corollary 5.7. Let

L(τ) = − 1
4π

∫
T

log(1− 2τg(x)) dx (5.23)

and c ∈ Dϕ such that τc satisfies log(1− 2τcg) ∈ E(T). Then, (Wn) satisfies the LSLDP of order 0 at c, given
in Theorem 3.2, with

σ2
c =

1
π

∫
T

(
g(x)

1− 2τcg(x)

)2

dx, (5.24)

H(τc) =
1
2
ψ(1− 2τcg). (5.25)

Corollary 5.8. Assume that g admits an analytical extension on the annulus {z ∈ C ; ρ < |z| < ρ−1} with
0 < ρ < 1. Moreover, assume that g does not vanish on T. Then, for any p ≥ 0, (Wn) satisfies an SLDP of
order p with L, H and σ2 given in Corollary 5.7.

Similar calculus from those of Section 5.1.2 can be easily achieved for the sum of squares when (Xn) is an
ARMA(p, q) process with spectral density g. In this framework, gτ = 1 − 2τg is the spectral density of an
ARMA(r, q) process with r = max(p, q).

5.3. Yule-Walker estimator

Consider the autoregressive process

Xn+1 = θXn + εn+1, | θ |< 1 (5.26)
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where (εn) is i.i.d. with N (0, σ2) distribution. Assume that X0 is independent of (εn) with N (0, σ2/(1− θ2))
distribution. (Xn) is a centered stationary Gaussian process with spectral density defined for all x ∈ T by
g(x) = σ2(1 + θ2 − 2θ cosx)−1. Let θ̃n be the Yule-Walker estimator of the parameter θ

θ̃n =

n∑
i=1

XiXi−1

n∑
i=0

X2
i

· (5.27)

5.3.1. Sharp large deviations for the Yule-Walker estimator

The large deviation properties of (θ̃n) are related to the ones of

Wn(c) =
1
n

(
n∑
i=1

XiXi−1 − c
n∑
i=0

X2
i

)
(5.28)

with c ∈ R since P(θ̃n ≥ c) = P(Wn(c) ≥ 0). One has to keep in mind that the threshold c for θ̃n appears like a
parameter for Wn(c). Thus, we only have to consider the threshold zero for Wn(c). This key-point allows us to
establish the following result [7] and also to calculate the sharp large deviation behavior for (θ̃n).

Proposition 5.9. (θ̃n) satisfies an LDP with rate function

L?(c) =


1
2

log
(

1 + θ2 − 2θc
1− c2

)
if | c |< 1

+∞ otherwise.
(5.29)

Corollary 5.10. For any p ≥ 0, (θ̃n) satisfies an SLDP of order p with, for | c |< 1, L(τc) = −L?(c) and

τc =
θ(1 + c2)− c(1 + θ2)

c2 − 1
, σ2

c =
1− c2

(1 + θ2 − 2θc)2
(5.30)

H(τc) = −1
2

log
(

(1− cθ)4

(1− θ)2(1 + θ2 − 2θc)(1− c2)2

)
· (5.31)

Proof. We can rewrite (5.28) as

Wn(c) =
1
n
X(n)∗Tn(fc)X(n) (5.32)

where Tn(fc) is the Toeplitz matrix associated to fc(x) = cosx− c, x ∈ T. Set ρ = 1 + θ2 + 2cτ , q = −θ − τ ,
r = ρ− θ2 and, for ρ > 2 | q |

α =
ρ+

√
ρ2 − 4q2

2
and β =

ρ−
√
ρ2 − 4q2

2
· (5.33)

Exactly as in [7], the normalized cumulant generating function of Wn(c) is

Ln(τ) = − 1
2n

log
[
(1− θ2)−1(α− β)−1

(
(r − β)2αn − (r − α)2βn

)]
(5.34)
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if τ ∈∆n and Ln(τ) = +∞ otherwise. The asymptotic cumulant generating function is

L(τ) =


−1

2
log

(
ρ+

√
ρ2 − 4q2

2

)
if τ ∈ ∆

+∞ otherwise.

(5.35)

Let τc be the unique point of ∆ such that L
′
(τc) = 0 i.e.

τc =
θ(1 + c2)− c(1 + θ2)

c2 − 1
· (5.36)

First of all, we have L?(c) = −L(τc) and σ2
c = L

′′
(τc). Next, from (5.34) together with (5.35), for any τ ∈ ∆

lim
n→+∞

n
(
Ln(τ) − L(τ)

)
=H(τ)=−1

2
log
[
(1− θ2)−1(α− β)−1(r − β)2

]
.

It is easy to check that

H(τc) = −1
2

log
(

(1− cθ)4

(1− θ)2(1 + θ2 − 2θc)(1− c2)2

)
· (5.37)

Finally, for any τ ∈ ∆, we can explicitly calculate

Ln(τ) − L(τ)− 1
n
H(τ) = − 1

2n
log
(

1− (r − α)2

(r − β)2

(
β

α

)n)
. (5.38)

Consequently, for all p ≥ 0, the condition (H2(p)) is satisfied since we always have 0 ≤ β < α. In particular, if

δ =
(
c2(1 + θ2 − 2θc)− (1− c2)θ2

(1 + θ2 − 2θc)− (1− c2)θ2

)2

,

we have from (5.38)

Ln(τc)− L(τc)−
1
n
H(τc) = − 1

2n
log
(
1− δc2n

)
(5.39)

and this remainder vanishes exponentially fast to zero since | c |< 1.

5.3.2. Numerical experiments

We consider the autoregressive process given in (5.26) with θ = 0.5. This parameter is estimated by the
Yule-Walker estimator θ̃n.

Table 1 presents different approximations of P(θ̃n > c) for c ∈ [0.55 , 0.95] and n = 50. As it was already
mentioned by Jensen [27], the normal approximation breaks down from small probabilities (smaller than 10−2).
The Edgeworth expansion slightly improves the results for medium deviations, but it is not of much help for
small tail probabilities. On the other hand, the approximation obtained from the SLDP is very poor for large
probabilities and very accurate for small tail probabilities. The inclusion of the correction terms (with p ≥ 1
in (3.3)) is not of great importance here. It is possible in this example to compute the saddlepoint approximation
given in (4.5), since the function Ln is explicitly known. For a practical point of view, it is interesting to remark
that this approximation is very accurate for all table entries.
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Table 1. Different approximations of P(θ̃n > c) obtained for different values of c with n = 50
and θ = 0.5.

c P(θ̃n > c) CLT Edgeworth SLDP Saddle
p = 0 p = 1

0.55 .277 .282 .272 .800 76.8 .298
0.60 .142 .150 .137 .259 1.40 .155
0.70 .58 10−1 .58 10−1 .55 10−1 .83 10−1 .116 .61 10−1

0.75 .16 10−1 .13 10−1 .15 10−1 .20 10−1 .18 10−1 .16 10−1

0.80 .24 10−2 .75 10−3 .21 10−2 .29 10−2 .25 10−2 .25 10−2

0.85 .15 10−3 −.49 10−3 −.88 10−4 .19 10−3 .16 10−3 .16 10−3

0.90 .27 10−5 −.22 10−3 −.13 10−3 .29 10−5 .24 10−5 .25 10−5

0.95 .21 10−8 −.68 10−4 −.48 10−4 .29 10−8 .24 10−8 .25 10−8

5.4. Empirical spectral repartition function

We will now study the sharp large deviation property of the empirical spectral repartition function. First of
all, let G(t) =

∫ t
−t g(x)dx/2π be the spectral repartition function over the interval [−t, t] with t ∈ [0, π]. G(t)

can be estimated, on the basis of the observation X1, . . . , Xn, by

Wn(t) =
1

2π

∫ t

−t
In(x)dx (5.40)

where In is the empirical periodogram

In(x) =
1
n

∣∣∣∣∣∣
n∑
j=1

eijxXj

∣∣∣∣∣∣
2

· (5.41)

One can rewrite Wn(t) as expression (1.3) with Mn = Tn(I[−t,t]). The sequence (Wn(t)) can be used in several
statistical applications (see e.g. [29] for the spectral change point problem). We first propose an LDP for
(Wn(t)). To our knowledge, this result is new.

Proposition 5.11. Assume that g ∈ L∞(T) and let t ∈ [0, π] such that

‖ g ‖∞= sup
x∈[−t,t]

g(x). (5.42)

Then, (Wn(t)) satisfies an LDP with rate function L? given in (2.5) with ϕ = gI[−t,t].

Proof. By (5.42), the proof immediately follows from Corollary 2 of [7].

Unfortunately, the function ϕ is not in general smooth enough in order to obtain, via the Toeplitz operators
theory (see App. A and B), a refinement through an SLDP for (Wn(t)). For this reason, we will consider a
regularized version of (Wn(t)). Actually, instead of using the function I[−t,t], we will now study the tapered
empirical spectral function

Vn(t) =
1

2π

∫
T
χt(x)In(x)dx (5.43)
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where the function χt is such that χt(x) = 1 on [−t, t], 0 ≤ χt(x) < 1 if x 6∈ [−t, t] and there exists a small
ε > 0 such that χt(x) vanishes outside of ]t − ε, t + ε[. Taperization is widely used in statistics of time series
(see e.g. [24], Chap. 4). To state the main result of this section, we need some additional notations. For any
function f ∈ L∞(T), define the infinite Toeplitz matrix T (f) = (f̂i−j)i,j≥0. For a ∈ R and for f, g ∈ L∞(T),
denote whenever it makes sense (see App. B)

expψa(f, g) = Γa(f, g) det
[
T (1 + afg)T ((1 + afg)−1)

]
(5.44)

where

Γa(f, g) = det
[
T (1 + afg)−1

(
I + aT (f)T (g)

)(
I + aT (g)T (f)

)
T (1 + afg)−1

]
and I is the infinite identity matrix. The following Corollary gives the sharp asymptotic behavior for the tapered
empirical spectral function.

Corollary 5.12. Assume that g ∈ L∞(T) and let t ∈ [0, π] such that (5.42) is satisfied. Moreover, assume that
both χt and g are two times continuously differentiable on T. Then, (Vn(t)) satisfies an SLDP of order 0, with

L(τc) = − 1
4π

∫
T

log (1− 2τcχt(x)g(x)) dx, (5.45)

σ2
c =

1
π

∫
T

(
g(x)χt(x)

1− 2τcg(x)χt(x)

)2

dx, (5.46)

H(τc) = ψ−2τc(χt, g). (5.47)

Proof. Since both g and χt are assumed to be two times continuously differentiable on T, Lemma 3.1 gives
Int Cϕ = Dϕ. So, it remains to show that assumption (H2(0)) is satisfied and to calculate H. This is achieved
by applying Theorem B.2.

Appendix A. Asymptotic behavior of the eigenvalues of a Toeplitz form

In this appendix, we will recall sharp results on the asymptotic behavior of the eigenvalues of Toeplitz
matrices. To be more precise, we will focus our attention on the remainder in the strong Szegö theorem. For
f ∈ L1(T), denote by f̂n the Fourier coefficient of order n ∈ Z of f . Let

E(T) =

{
f ∈ L2(T) such that

+∞∑
n=1

n|f̂n|2 < +∞
}
· (A.1)

For any non negative function f ∈ L1(T) with log f ∈ E(T), set

Θ(f) = exp
(

1
2π

∫
T

log f(x)dx
)
, ψ(f) =

∞∑
n=1

n|l̂og fn|2. (A.2)

If f is the spectral density of an autoregressive process of order p then, for all n ≥ p, we have the remarkable
equality (see [23] formulas (18) and (22), pp. 78-79)

detTn(f)
Θ(f)n

= exp
(
ψ(f)

)
. (A.3)
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This formula was first extended by Grenander and Szegö ( [23] formula (4) p. 76) to the celebrated strong Szegö
theorem which states that if f is smooth enough then (A.3) remains true, up to o(1/n). Later, Golinskii and
Ibragimov [22] showed that the formula (A.3) is always true up to o(1/n), as soon as log f ∈ E(T). Finally,
other extensions in many different directions were developed (see for example the probabilistic approach of
Johansson [28] and the references therein). In this paper, we mainly use the strong Szegö theorem for complex
valued functions established by Hartwing and Fisher [25].

Define the complex valued function f on T by f(x) = F (eix) where F is the generating function on C
associated with the Fourier coefficients of f . Denote by ind (f) the winding number of f . Actually, ind (f) is
the increment of the argument of f on T (see [9], p. 70).

Theorem A.1. Assume that f does not vanish on T and ind (f) = 0. In addition, assume that

+∞∑
n=1

f̃n < +∞ where f̃n = max
k≥|n|

(
|f̂k|, |f̂−k|

)
. (A.4)

Then, we have

detTn(f)
Θ(f)n

= exp
(
ψ(f) +Rn(f)

)
(A.5)

where the rate of convergence to zero of the remainder Rn(f) can be explicitly evaluated from the behavior of the
Fourier coefficients of log f . For instance, if the analytical extension F of f possesses an annulus of analyticity
ρ ≤ |z| ≤ ρ−1 with 0 < ρ < 1, then Rn(f) = O(ρ2n) and (A.4) is always satisfied since f̃n = O(ρn).

Appendix B. Extension to products of Toeplitz forms

The goal of this appendix is to provide a large class of functions for which the strong Szegö theorem remains
valid for products of Toeplitz forms. First of all, we recall some standard useful results concerning Toeplitz and
Hankel operators (see [34] and the references therein). For f ∈ L∞(T), we can define the l2(N) Toeplitz and
Hankel operators respectively as

T (f) =
(
f̂i−j

)
i,j≥0

and H(f) =
(
f̂i+j+1

)
i,j≥0

. (B.1)

A well-known identity relating Toeplitz and Hankel operators is

T (fg)− T (f)T (g) = H(f)H(g̃) (B.2)

where g̃(x) = g(−x). The analogue of (B.2) for finite Toeplitz matrices is

Tn(fg)− Tn(f)Tn(g) = PnH(f)H(g̃)Pn +QnH(f̃)H(g)Qn (B.3)

where Pn and Qn are defined by

Pn(x0, x1, · · · ) = (x0, x1, · · · , xn, 0, · · · )
Qn(x0, x1, · · · ) = (xn, xn−1, · · · , x0, 0, · · · )

and Tn(f) is identified with PnT (f)Pn. If f ∈ E(T) then H(f) is an Hilbert-Schmidt operator since

Tr(H(f)H(f̃)) =
+∞∑
n=1

n|f̂n|2 < +∞.
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It was proven in [26] that H(f) is of trace class if

+∞∑
n=1

√
n

(
+∞∑
k=n

|f̂n+k − f̂n+k+1|2
) 1

2

< +∞. (B.4)

In particular, H(f) is of trace class if f̂n+1 − f̂n = O(n−α) with α > 2. Thus, this is true if f̂n = O(n−β) with
β > 1. Finally, the product of two Hilbert-Schmidt operators is of trace class and the product of a trace class
operator with a compact operator is of trace class.

The following result due to Basor [5,6] is the generalization of the strong Szegö theorem for the matrix product
Tn(f)Tn(g). It is essentially based on identity (B.3) together with usual properties of trace class operators.

Theorem B.1. Assume that f, g ∈ L∞(T) and that f and g do not vanish on T. In addition, assume that
H(f)H(g̃) and H(f̃)H(g) are both of trace class. Then, we have

lim
n→+∞

det(Tn(fg))
det(Tn(f)) det(Tn(g))

= Λ(f, g) (B.5)

where Λ(f, g) = det
[
T (f)−1T (fg)T (g)−1T (g)−1T (fg)T (f)−1

]
.

Theorem B.2. Assume that f, g ∈ L∞[T) with H(f)H(g̃) and H(f̃)H(g) both of trace class. Choose a ∈ R
such that the function 1 + afg does not vanish on T and log(1 + afg) ∈ E(T). Then, we have

lim
n→+∞

det(In+aTn(f)Tn(g))
Θ(1 + afg)n

=Γa(f, g) det
[
T (1+afg)T ((1+afg)−1)

]
where

Γa(f, g) = det
[
T (1 + afg)−1

(
I + aT (f)T (g)

)(
I + aT (g)T (f)

)
T (1 + afg)−1

]
and In denotes the identity on Cn.

Remark B.3. Widom [33] proved that for f, log f ∈ E(T), the nice identity exp
(
ψ(f)

)
= det

[
T (f)T (f−1)

]
.

We now give the main lines of the proof of the last theorem. This proof follows from the same arguments
as that of Theorem B.1 (see Basor [5], p. 976). For any a satisfying the assumptions of Theorem B.2, we may
write by equation (B.3)

In + aTn(f)Tn(g) = Tn(1 + afg)− aPnH(f)H(g̃)Pn − aQnH(f̃)H(g)Qn.

Hence, we have

T−1
n (1 + afg)(In + aTn(f)Tn(g)) = In +An +Bn

where

An = −aT−1
n (1 + afg)PnH(f)H(g̃)Pn, (B.6)

Bn = −aT−1
n (1 + afg)QnH(f̃)H(g)Qn. (B.7)
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From the assumption, we may deduce that the product AnBn converges to 0 in the nuclear operator norm.
This implies that

det(In + aTn(f)Tn(g))
Dn(1 + afg)

= det(In +An) det(In +Bn) + o(1).

On one hand, we have
lim
n→∞

det(In +An) = det(I − aT−1(1 + afg)H(f)H(g̃)).

On the other hand, we also obtain that

lim
n→∞

det(In +Bn) = det(I − aT−1( ˜1 + afg)H(f̃)H(g)).

Finally, we find that

lim
n→∞

det(In + aTn(f)Tn(g))
Dn(1 + afg)

= det[T−1(1 + afg)(I + aT (f)T (g))] det[T−1( ˜1 + afg)(I + aT (f̃)T (g̃))]

= det[T−1(1 + afg)(I + aT (f)T (g))(I + aT (g)T (f))T−1(1 + afg)].

The authors want to thank F. Castell, D. Dacunha-Castelle, C. Léonard and A. Rouault for helpful discussions.
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