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A LEMMA ON PROXIMITY OF VARIANCES AND EXPECTATIONS ∗

Doron Sonsino
1

Abstract. We define a notion of delta-variance maximization and show it implies epsilon-proximity
in expactations.

AMS Subject Classification. 60A99.

Received March 19, 2000.

We present a lemma stipulating that when the variance of each element in a collection of random variables
is maximal with respect to some larger class of random variables, then the corresponding expectations must be
very close.

First, we formally define our notion of a large class of random variables.

Definition. A collection G of random variables on a probability space (Ω,F , P ) is CPC (Closed under Piecewise
Compositions) if for every y, y′ ∈ G and every measurable E ∈ F , y · IE + y′ · IEC ∈ G2.

In words, the collection G is closed under piecewise compositions if whenever y and y′ are in G and E is a
measurable set, the random variable that takes the value y (ω) when ω belongs to E and takes the value y′ (ω)
elsewhere, is in the collection G as well.

We say that the collection of random variables G is a CPC–extension of the collection D if G is a CPC–
collection of random variables that contains D (where all the random variables in both collections are defined
on the same probability space (Ω,F ,P)).

We now define the notion of δ–variance maximization.

Definition. A collection D of random variables in L2 (Ω,F , P ) is δ–variance maximizing if there is a CPC–
extension of D, G, and a finite k such that:

(1) Var (y) ≤ k ∀y ∈ G, and
(2) Var (y) ≥ k − δ ∀y ∈ D.

Put differently, the collection of random variables D is δ–variance maximizing if there is a large (in the sense of
CPC) collection of random variables G that contains D such that the variance of each of the random variables
in D is within δ from the supremum of variances over the larger collection G.

Note that if y and y′ belong to a δ–variance maximizing collection of random variables, then |Var(y) −
Var(y′)| ≤ δ and the two random variables have similar variances. Clearly, closeness in variances alone is not
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strong enough to induce similarity in expectations. The MVSE lemma3 however says that the stronger concept
of δ–variance maximization is sufficient for this purpose.

The MVSE lemma. Let D be a collection of random variables on a non atomic probability space (Ω,F , P ).
If D is δ–variance maximizing then |E[y]−E[y′]| ≤ 2

√
δ for every y, y′ ∈ D.

Proof. Let D be a δ–variance maximizing collection of random variables on a non atomic probability space
(Ω,F , P ). Fix y, y′ inD and assume w.l.g. that E [y] > E [y′]. Assume by way of contradiction that E [y]−E [y′] =
2
√
ε > 2

√
δ.

Let

A = {ω ∈ Ω |
(
y(ω)−E [y] +

√
ε
)2 ≥ ( y′(ω)−E [y′]−

√
ε
)2}

B = AC = {ω ∈ Ω |
(
y(ω)−E[y] +

√
ε
)2
<
(
y′(ω)−E[y′]−

√
ε
)2}.

Observe that (by standard arguments) A and B are measurable w.r.t F .
Note that since E [y]−E [y′] =

∫
(y − y′) dP = 2

√
ε, it is either the case that∫

A

(y − y′) dP ≥
√
ε, or (1)∫

B

(y − y′) dP ≥
√
ε. (2)

In case 1, let E be a measurable subset of A such that∫
E

(y − y′) dP =
√
ε. (3)

The existence of such a measurable E follows from the assumption that P is non atomic (see Billingsley [1],
2.17, p. 31).

Set z = y · IE + y′ · IEC and observe that z must belong to any CPC–extension of D. Thus, the assumptions
that D is δ–variance maximizing implies that

Var (z) ≤ Var (y) + δ and Var (z) ≤ Var (y′) + δ. (4)

But note that by definitions of z and E,

E [z] =
∫

z dP =
∫
E

y dP +
∫
EC

y′ dP =
∫

Ω

y′ dP +
∫
E

(y − y′) dP = E [y′] +
√
ε,

and similarly

E [z] =
∫

Ω

y dP −
∫
EC

(y − y′) dP =
∫

Ω

y dP −
∫

Ω

(y − y′) dP +
∫
E

(y − y′) dP = E [y]−
√
ε.

Thus,

Var [z] =
∫ (

z −E[z]
)2
dP =

∫
E

( y −E [y] +
√
ε )2 dP +

∫
EC

( y′ −E [y′]−
√
ε )2 dP,

3MVSE stands for Maximal Variance Similar Expectations.
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and since ( y −E [y] +
√
ε )2 ≥ ( y′ −E [y′]−√ε )2 on E ⊆ A,

Var [z] ≥
∫

Ω

( y′ −E [y′]−
√
ε )2 dP =

∫
Ω

( y′ −E [y′] )2 dP + ε = Var [y′] + ε > Var [y′] + δ,

which contradicts (4) and proves that case (1) is impossible.
In a very similar way we may argue that case (2) leads to a contradiction as well: assume by way of

contradiction that the condition in (2) holds. Let E be a measurable subset of B such that∫
E

(y − y′) dP =
√
ε. (5)

(Existence follows again from the assumption that P is non atomic.)
Let z = y′ · IE + y · IEC .
Note (as above) that

E [z] = E [y]−
√
ε = E [y′] +

√
ε.

Thus,

Var[z] =
∫ (

z −E[z]
)2
dP =

∫
E

(y′ −E[y′]−
√
ε)2dP +

∫
EC

(y −E[y] +
√
ε)2dP

≥
∫

Ω

(y −E[y] +
√
ε)2dP =

∫
Ω

(
y −E[y]

)2
dP + ε = Var[y] + ε > Var[y] + δ,

which again contradicts (4) and proves that case (2) is impossible as well. �
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