A LEMMA ON PROXIMITY OF VARIANCES AND EXPECTATIONS*

DORON SONSINO¹

Abstract. We define a notion of delta-variance maximization and show it implies epsilon-proximity in expactations.

AMS Subject Classification. 60A99.

Received March 19, 2000.

We present a lemma stipulating that when the variance of each element in a collection of random variables is maximal with respect to some larger class of random variables, then the corresponding expectations must be very close.

First, we formally define our notion of a large class of random variables.

Definition. A collection \mathcal{G} of random variables on a probability space (Ω, \mathcal{F}, P) is CPC (Closed under Piecewise Compositions) if for every $y, y' \in \mathcal{G}$ and every measurable $E \in \mathcal{F}$, $y \cdot I_E + y' \cdot I_{E^C} \in \mathcal{G}^2$.

In words, the collection \mathcal{G} is closed under piecewise compositions if whenever y and y' are in \mathcal{G} and E is a measurable set, the random variable that takes the value $y(\omega)$ when ω belongs to E and takes the value $y'(\omega)$ elsewhere, is in the collection \mathcal{G} as well.

We say that the collection of random variables \mathcal{G} is a *CPC*-extension of the collection \mathcal{D} if \mathcal{G} is a CPCcollection of random variables that contains \mathcal{D} (where all the random variables in both collections are defined on the same probability space $(\Omega, \mathcal{F}, \mathcal{P})$).

We now define the notion of δ -variance maximization.

Definition. A collection \mathcal{D} of random variables in $\mathcal{L}^2(\Omega, \mathcal{F}, P)$ is δ -variance maximizing if there is a CPC-extension of \mathcal{D} , \mathcal{G} , and a finite k such that:

- (1) $\operatorname{Var}(y) \leq k \quad \forall y \in \mathcal{G}, \text{ and}$
- (2) $\operatorname{Var}(y) \ge k \delta \quad \forall y \in \mathcal{D}.$

Put differently, the collection of random variables \mathcal{D} is δ -variance maximizing if there is a large (in the sense of CPC) collection of random variables \mathcal{G} that contains \mathcal{D} such that the variance of each of the random variables in \mathcal{D} is within δ from the supremum of variances over the larger collection \mathcal{G} .

Note that if y and y' belong to a δ -variance maximizing collection of random variables, then $|\mathbf{Var}(y) - \mathbf{Var}(y')| \leq \delta$ and the two random variables have similar variances. Clearly, closeness in variances alone is not

¹ Technion, Israel Institute of Technology, Haifa, Israel; e-mail: sonsino@ie.technion.ac.il

Keywords and phrases: Variance, expectation.

^{*} I thank Dov Monderer, Haim Raizman and Ishy Weissman for comments and discussions.

²Measurability of $y \cdot I_E + y' \cdot I_{EC}$ follows directly from standard arguments.

strong enough to induce similarity in expectations. The MVSE lemma³ however says that the stronger concept of δ -variance maximization is sufficient for this purpose.

The MVSE lemma. Let \mathcal{D} be a collection of random variables on a non atomic probability space (Ω, \mathcal{F}, P) . If \mathcal{D} is δ -variance maximizing then $|\mathbf{E}[y] - \mathbf{E}[y']| \leq 2\sqrt{\delta}$ for every $y, y' \in \mathcal{D}$.

Proof. Let \mathcal{D} be a δ -variance maximizing collection of random variables on a non atomic probability space (Ω, \mathcal{F}, P) . Fix y, y' in \mathcal{D} and assume w.l.g. that $\mathbf{E}[y] > \mathbf{E}[y']$. Assume by way of contradiction that $\mathbf{E}[y] - \mathbf{E}[y'] = 2\sqrt{\epsilon} > 2\sqrt{\delta}$.

Let

$$A = \{ \omega \in \Omega \mid (y(\omega) - \mathbf{E}[y] + \sqrt{\epsilon})^2 \ge (y'(\omega) - \mathbf{E}[y'] - \sqrt{\epsilon})^2 \}$$
$$B = A^C = \{ \omega \in \Omega \mid (y(\omega) - \mathbf{E}[y] + \sqrt{\epsilon})^2 < (y'(\omega) - \mathbf{E}[y'] - \sqrt{\epsilon})^2 \}.$$

Observe that (by standard arguments) A and B are measurable w.r.t \mathcal{F} .

Note that since $\mathbf{E}[y] - \mathbf{E}[y'] = \int (y - y') dP = 2\sqrt{\epsilon}$, it is either the case that

$$\int_{A} (y - y') \, dP \ge \sqrt{\epsilon}, \quad \text{or} \tag{1}$$

$$\int_{B} (y - y') \, dP \ge \sqrt{\epsilon}.\tag{2}$$

In case 1, let E be a measurable subset of A such that

$$\int_{E} (y - y') \, dP = \sqrt{\epsilon}.\tag{3}$$

The existence of such a measurable E follows from the assumption that P is non atomic (see Billingsley [1], 2.17, p. 31).

Set $z = y \cdot I_E + y' \cdot I_{E^C}$ and observe that z must belong to any CPC-extension of \mathcal{D} . Thus, the assumptions that \mathcal{D} is δ -variance maximizing implies that

$$\operatorname{Var}(z) \leq \operatorname{Var}(y) + \delta \quad \text{and} \quad \operatorname{Var}(z) \leq \operatorname{Var}(y') + \delta.$$
 (4)

But note that by definitions of z and E,

$$\mathbf{E}\left[z\right] = \int z \, dP = \int_E y \, dP + \int_{E^C} y' \, dP = \int_{\Omega} y' \, dP + \int_E \left(y - y'\right) \, dP = \mathbf{E}\left[y'\right] + \sqrt{\epsilon},$$

and similarly

$$\mathbf{E}[z] = \int_{\Omega} y \, dP - \int_{E^{C}} (y - y') \, dP = \int_{\Omega} y \, dP - \int_{\Omega} (y - y') \, dP + \int_{E} (y - y') \, dP = \mathbf{E}[y] - \sqrt{\epsilon}.$$

Thus,

$$\mathbf{Var}\left[z\right] = \int \left(z - E[z]\right)^2 dP = \int_E \left(y - \mathbf{E}\left[y\right] + \sqrt{\epsilon}\right)^2 dP + \int_{E^C} \left(y' - \mathbf{E}\left[y'\right] - \sqrt{\epsilon}\right)^2 dP,$$

230

³MVSE stands for Maximal Variance Similar Expectations.

and since $(y - \mathbf{E}[y] + \sqrt{\epsilon})^2 \ge (y' - \mathbf{E}[y'] - \sqrt{\epsilon})^2$ on $E \subseteq A$,

$$\operatorname{Var}\left[z\right] \geq \int_{\Omega} \left(y' - \mathbf{E}\left[y'\right] - \sqrt{\epsilon}\right)^2 dP = \int_{\Omega} \left(y' - \mathbf{E}\left[y'\right]\right)^2 dP + \epsilon = \operatorname{Var}\left[y'\right] + \epsilon > \operatorname{Var}\left[y'\right] + \delta,$$

which contradicts (4) and proves that case (1) is impossible.

In a very similar way we may argue that case (2) leads to a contradiction as well: assume by way of contradiction that the condition in (2) holds. Let E be a measurable subset of B such that

$$\int_{E} (y - y') \, dP = \sqrt{\epsilon}.\tag{5}$$

(Existence follows again from the assumption that P is non atomic.)

Let $z = y' \cdot I_E + y \cdot I_{E^C}$.

Note (as above) that

$$\mathbf{E}[z] = \mathbf{E}[y] - \sqrt{\epsilon} = \mathbf{E}[y'] + \sqrt{\epsilon}.$$

Thus,

$$\begin{aligned} \mathbf{Var}[z] &= \int \left(z - E[z]\right)^2 dP = \int_E (y' - E[y'] - \sqrt{\epsilon})^2 dP + \int_{E^C} (y - \mathbf{E}[y] + \sqrt{\epsilon})^2 dP \\ &\geq \int_\Omega (y - \mathbf{E}[y] + \sqrt{\epsilon})^2 dP = \int_\Omega \left(y - \mathbf{E}[y]\right)^2 dP + \epsilon = \mathbf{Var}[y] + \epsilon > \mathbf{Var}[y] + \delta, \end{aligned}$$

which again contradicts (4) and proves that case (2) is impossible as well.

Reference

[1] P. Billingsley, Probability and Measure. 2nd edition. John Wiley & Sons, New York (1986).

231