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THE LIKELIHOOD RATIO TEST FOR THE NUMBER OF COMPONENTS
IN A MIXTURE WITH MARKOV REGIME

Elisabeth Gassiat
1
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Abstract. We study the LRT statistic for testing a single population i.i.d. model against a mixture
of two populations with Markov regime. We prove that the LRT statistic converges to infinity in
probability as the number of observations tends to infinity. This is a consequence of a convergence
result of the LRT statistic for a subproblem where the parameters are restricted to a subset of the
whole parameter set.

Résumé. Nous étudions la statistique du test de rapport de vraisemblance (TRV) pour tester un
modèle i.i.d. à une population contre un mélange de deux populations à régime markovien. Nous
prouvons que la statistique du TRV converge vers l’infini en probabilité quand la taille de l’échantillon
tend vers l’infini. Ceci est une conséquence d’un résultat de convergence de la statistique du TRV
pour un sous-problème où les paramètres sont restreints à un sous-ensemble de l’ensemble complet des
paramètres.
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1. Introduction

Hidden Markov Models have been used for a long time as a useful modeling tool. Applications include speech
processing (Rabiner [32]), neurophysiology (Fredkin and Rice [17]), biology (Churchill [6]), see also Mac Donald
and Zucchini [27]. A hidden Markov model (HMM) is a discrete time stochastic process (Yk)k∈N such that the
distribution of the process may be well explained through a non observable Markov chain (Xk)k∈N taking values
in a finite state space. Given (Xk), (Yk) is a sequence of independent random variables, and the distribution
of Yn given (Xk) is that of Yn given Xn. Thus, the one dimensional marginal of the process, namely the
distribution of Yn, appears to be a mixture of populations where the number of populations m is the cardinality
of the state space of the hidden Markov chain. The observations may then be said to follow a “mixture model
with Markov regime”.

Asymptotic properties of maximum likelihood estimators (m.l.e.) for the estimation of the parameters in
a HMM have received early interest when the (Yk) take values in a finite set (Baum and Petrie [2]), and
recent interest in the general case (Leroux [24], Ryden [33], Bickel and Ritov [3], Bickel et al. [4], Mevel [29],
Vandekerkhove [34], Douc and Matias [13], Jensen and Petersen [21]). Various algorithms have been proposed
to achieve the m.l.e., see for instance Mevel [29] or Vandekerkhove [34].
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The problem of estimating m, the number of populations, or of testing between different values of m, is an
important one either for numerical features (a larger value than the true one leads to flat likelihoods) or for
its interpretation as a meaningful parameter. Earlier works on the subject propose to use likelihood methods
(Leroux [24], Ryden [33], Finesso [16]), but fail to prove the consistency of the estimator (or the asymptotic
level of the test) because of an intrinsic difficulty of the model: the usual regularity conditions are not fulfilled
under the null hypothesis, so that the χ-square theory may not apply. Corresponding problem for mixtures with
i.i.d. regime has a long history (see Lindsay [26]) but the asymptotic distribution of the LRT (likelihood ratio
test) has been recently solved by Dacunha-Castelle and Gassiat [10, 11] and the consistency of the penalized
likelihood estimator has been proved by Keribin [23].

The aim of this paper is the study of the LRT for testing the number of populations in a mixture with Markov
regime. Intuition and methods of Dacunha-Castelle and Gassiat [10, 11] may be applied, and it appears that
the computation of the asymptotic distribution in the general setting is much more complicated than in the
i.i.d. regime situation. However, by applying the method to a subproblem of the general problem, we obtain
meaningful results. Let us now be more precise.

Let
F = {fγ , γ ∈ Γ}

be a set of probability densities with respect to a given measure ν on a metric space, where Γ is a compact subset
of some Euclidean space. Let (Xk)k∈N be a stationary Markov chain taking values in a set of m distinct values of
Γ, {γ1, . . . , γm}, with transition matrix Π. The observations are (Y1, . . . , Yn). Conditionally to (X1, . . . , Xn),
(Y1, . . . , Yn) are independent variables, each Yi having conditional distribution fXi · ν. Define

Tn(m) = sup{`n(Π, γ1, . . . , γm;m) : Π m×m stochastic matrix, (γ1, . . . , γm) ∈ Γm}, (1)

in which `n(Π, γ1, . . . , γm;m) is the log-likelihood of the observations under the parameter (Π, γ1, . . . , γm) when
the number of hidden states is m. One of our main results is that the LRT statistic Tn(2)−Tn(1) for testing i.i.d.
observations of one population against 2 populations with stationary Markov regime converges in probability
to infinity under the null hypothesis of i.i.d. observations (see Th. 2.5). This result is a consequence of another
convergence result in the sub-problem of testing a fixed contamination with stationary Markov regime. Let fγ0

and fγ1 be fixed densities in F , γ0 6= γ1. Let (Xk)k∈N take values in {γ0, γ1}, with initial distribution

P (X0 = γ0) = 1− u, P (X0 = γ1) = u

and transition matrix

Πu,q =
(

1− qu
1−u

qu
1−u

q 1− q

)
. (2)

Here, 0 ≤ q ≤ 1, 0 ≤ u ≤ 1, and q and u are also constrained by

0 ≤ qu

1− u ≤ 1.

This is a general parametrization of the distribution of a stationary Markov chain with two parameters. We
want to test the null hypothesis H0: “the Yi’s are i.i.d. with common density fγ0”, against the alternative H1:
“(Yn)n∈N follows a HMM for some parameters u, q”, and with fixed γ0 and γ1. Obviously, the HMM reduces to
i.i.d. variables with common density fγ0 if and only if u = 0, so that the test we consider is that of H0: “u=0”
against H1: “u6=0”. Let H be the Hilbert space L2(fγ0 · ν), and

N2 =
∥∥∥∥fγ1 − fγ0

fγ0

∥∥∥∥2

H

·
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For any η ∈]0, 1[, let

Qη = {q ∈ [0, 1] : (1− q)2(N2 + 1) ≤ 1− η} = [qη, 1] (3)

with

qη = 1−
√

1− η
N2 + 1

> 0.

When the q’s are restricted to belong to Qη, let Pη be the parameter set of possible (u, q). The log-likelihood
`n(Πu,q, γ0, γ1; 2) will now be denoted by `n(u, q). Notice that under the null hypothesis, the parameter q is
undefined, the log-likelihood does not depend on q, and is `n(0, q) for any q. The LRT statistic is now, when
the q’s are restricted to belong to Qη:

Vn(η) = sup{`n(u, q)− `n(0, q) : (u, q) ∈ Pη} · (4)

The first main convergence result is that Vn(η) converges to half the supremum of the square of the positive
part of some Gaussian process (see Th. 2.1). This result is similar to that obtained for testing the number
of populations in a mixture, or for testing the order of a stationary ARMA process, see Dacunha-Castelle and
Gassiat [10, 11]. As η goes to 0, the covariance of infinitely many members of the process goes to 0, and the
convergence to infinity of Tn(2)− Tn(1) is thus an easy consequence.

Convergence to infinity of LRT’s has been observed earlier in two papers about mixtures with i.i.d. regime:
when the parameter set is unbounded, see Hartigan [19], and when the family F is not regular, two situations in
which the set of scores may be proved to be non compact, see Ciuperca [7]. Here, the parameter set is compact,
and the family F is regular. Our result may be compared to a similar result, not proved in any paper but which
is also an easy consequence of Theorem 4.5 in Dacunha-Castelle and Gassiat [11], that the LRT for testing the
order of an ARMA model tends to infinity when the poles and roots are not restricted to a compact subset of
the open unit complex disk.

Our result leaves open the problem of the choice of the penalization rate when estimating the number of
populations using penalized likelihood estimators, for mixtures with Markov regime. However, for translation
or scale mixtures, the method proposed by Dacunha-Castelle and Gassiat [9] may be applied to mixtures with
Markov regime to obtain a consistent estimate of the number of populations.

The paper is organized as follows. In Section 2, we state the assumptions and our main results. Section 3 is
devoted to numerical experiments, and Section 4 to the proofs of intermediate results.

2. Main results

We study the asymptotic properties of the LRT under the null hypothesis, in which the Yi’s are assumed to
be i.i.d. with distribution fγ0ν. Let us introduce the assumptions:

• (A1) For γ ∈ {γ0, γ1}, under H0, E(| log fγ(Y1) |) < +∞.
• (A2) Under H0, the support of the random variable fγ1

fγ0
(Y1) is [0,+∞[.

• (A3) Under H0, E(fγ0
fγ1

(Y1)) < +∞.

• (A4) Under H0, E
(
fγ1
fγ0

(Y1)
)3

< +∞.

Let now (ξq)q∈Qη be the continuous Gaussian process with covariance

R(q1, q2) =
C(q1, q2)

C(q1, q1)1/2C(q2, q2)1/2
(5)
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with

C(q1, q2) =
1− (1− q1)(1− q2)

1− (1− q1)(1− q2)(N2 + 1)
· (6)

Then:

Theorem 2.1. Assume that (A1, A2, A3) and (A4) hold. Under H0, Vn(η) converges in distribution to

1
2

sup
q∈Qη

ξ2
q · 1ξq≥0.

Proof of Theorem 2.1. Theorem 2.1 will be proved by investigating the asymptotic behavior of the maximum of
the likelihood for fixed q as a process with Qη the time set, and then taking the maximum for q over Qη. For
an HMM with parameters Πu,q, γ0 and γ1, let (pk(u, q))k≥1 be the prediction filter, that is, for any positive k:

pk(u, q) = P (Xk = γ1/Y1, . . . , Yk−1). (7)

It is well known that the pk(u, q)’s satisfy the recursive equation:

pk+1(u, q) =
qu

(1−u) (1− pk)fγ0(Yk) + (1− q)pkfγ1(Yk)

(1− pk)fγ0(Yk) + pkfγ1(Yk)
(8)

with initialization p1(u, q) = u. Parameter (u, q) is omitted for pk on the right hand of the recurrence equation
for readability. This will be the case also in further recurrence equations concerning the derivatives of the
prediction filter. Now the log-likelihood may be written:

`n(u, q)− `n(0, q) =
n∑
k=1

log
[
1 + pk(u, q)

fγ1 − fγ0

fγ0

(Yk)
]
. (9)

Define
Sn(u, q) =

1
n

[`n(u, q)− `n(0, q)].

Asymptotic properties of Sn(u, q) and its derivatives will be investigated using the properties of the Markov
chains (Yk, pk(u, q))k∈N (Yk, derivatives of pk(u, q))k∈N. This point of view is the one adopted by Mevel [29],
Mevel and LeGland [30] to obtain the asymptotic properties of the maximum likelihood estimator (m.l.e.) of
the parameters when the number of populations m is known.

Let now (û, q̂) be the m.l.e. for (u, q), and ûq the m.l.e. for u when q is fixed. We have:

Proposition 2.2. Assume (A1, A2, A3) and (A4). Then supq∈Qη ûq and û converge to 0 in probability under
H0.

Remark. This result could be derived from Theorem 3 of Leroux [24]. However, we give here an alternative
specific proof which shows the effect of overestimating m.

The limiting contrast function of Sn(u, q) will be proved to be

S(u, q) = −
∫
K(fγ0 , (1− p)fγ0 + pfγ1)dµu,q(p), (10)

in which K(·, ·) is the Kullbak information (see for instance Dacunha-Castelle and Duflo [8] for a definition)
and µu,q is a probability distribution on [0, 1] such that, for u = 0, µ0,q is the dirac at 0. Notice that S(u, q) is
always finite by (A1), and, since the Kullback information is always non negative, for any (u, q), S(u, q) ≤ 0, and
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S(0, q) = 0. Proposition 2.2 will follow from the fact that S(u, q) = 0 only for u = 0, and that the convergence
of Sn(u, q) to S(u, q) is uniform enough, see Section 4. We have:

Vn(η) = sup
q∈Qη

nSn(ûq, q).

But using Proposition 2.2, for any q in Qη, Taylor expansion leads to

Sn(ûq, q) = −1
2

( ∂
∂uSn(0, q))2

∂2

∂u2Sn(0, q)
· (1 +Rn(q)) (11)

in which Rn(q) converges in probability to 0 uniformly in q as soon as

∂2

∂u2Sn(ũ, q)
∂2

∂u2Sn(0, q)

converges to 1 uniformly in q for any ũ converging in probability to 0 uniformly in q. Now,

∂2

∂u2
Sn(u, q) = − 1

n

n∑
i=1

1(
1 + pk(u, q)fγ1−fγ0

fγ0
(Yk)

)2

(
∂pk
∂u

(u, q)
)2(

fγ1 − fγ0

fγ0

(Yk)
)2

+
1
n

n∑
i=1

1

1 + pk(u, q)fγ1−fγ0
fγ0

(Yk)

∂2pk
∂u2

(u, q)
fγ1 − fγ0

fγ0

(Yk). (12)

In particular, for u = 0, one obtains

∂2

∂u2
Sn(0, q) = − 1

n

n∑
i=1

(
∂pk
∂u

(0, q)
)2 (

fγ1 − fγ0

fγ0

(Yk)
)2

+
1
n

n∑
i=1

∂2pk
∂u2

(0, q)
fγ1 − fγ0

fγ0

(Yk). (13)

In this sum, the second term is centered, so that as soon as laws of large numbers apply, the limiting value
is −N2 times the expectation of (∂pk∂u (0, q))2 under the stationary distribution. This convergence result holds
more generally and we have:

Proposition 2.3. Assume that (A2, A3) and (A4) hold. Then, for any random ũ converging in probability to
0 uniformly in q,

∂2

∂u2
Sn(ũ, q)

converges in probability to −N2C(q, q) uniformly over Qη.

Proposition 2.3 leads to

Vn(η) =
1
2

[
sup
q∈Qη

(
√
n ∂
∂uSn(0, q))2

N2C(q, q)

]
(1 + oP (1)) (14)

and Theorem 2.1 will follow from:

Proposition 2.4. Assume (A1, A2) and (A3). Then, the process

√
n

(
∂

∂u
Sn(0, q)

)
q∈Qη

converges uniformly to the continuous Gaussian process with covariance N2C(·, ·).
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Comments. The score process at u = 0 and for fixed q is:

∂

∂u
Sn(0, q) =

1
n

n∑
k=1

∂pk
∂u

(0, q)
fγ1 − fγ0

fγ0

(Yk)

in which (∂pk∂u (0, q))k∈N is a Markov chain satisfying the recursion:

∂pk+1

∂u
(0, q) = q + (1− q)fγ1

fγ0

(Yk)
∂pk
∂u

(0, q) (15)

with initialization ∂p1
∂u (0, q) = 1. But in case an invariant distribution exists and has a second moment σ2, (15)

leads to:

σ2 = q2 + 2q(1− q) + (1− q)2(N2 + 1)σ2.

Since for any q, q2 +2q(1−q) ≥ 0, this equation leads to a non negative σ2 if and only if 1−(1−q)2(N2 +1) ≥ 0.
This last condition is thus a necessary one to obtain a convergence in distribution of

√
n ∂
∂uSn(0, q) and a law

of large numbers for ∂2

∂u2Sn(0, q). This is why the parameter set is cut in two different regions, the union of all
Pη, and its complementary set. Our conjecture is that, on this complementary set, nSn(ûq, q) converges to half
the square of a standard Gaussian white noise.

To state the unboundedness of the LRT statistic for testing between one or two populations in a mixture
with Markov regime, we introduce the following assumption:

• (I) Tn(1)− `n(0, q) is uniformly tight under H0.

Notice that a sufficient condition for (I) to hold is that the family F is regular enough. For instance, differen-
tiability in quadratic mean with respect to γ and existence and inversibility of the Fisher information suffice
since in this case Tn(1)− `n(0, q) converges to a χ2(1) (see for instance Van der Vaart [35]). We now obtain the
unconstrained result:

Theorem 2.5. Assume (I), and that (A1, A2, A3) and (A4) hold for any γ0 and γ1 in Γ. Then, under H0,
Tn(2)− Tn(1) converges to infinity in probability.

Comments. When testing the number of parameters of a model, different situations occur. We consider the
test with as alternative more parameters than the null hypothesis H0. When the set of parametric distributions
is smooth enough and for compact sets of parameters, the LRT statistic converges in general in distribution
under H0. In case all parameters are identifiable when the model is overparametrized, the LRT statistic is
asymptotically chi-square (see [22]). In case some parameters are not identifiable under H0, as for mixtures, the
asymptotic distribution is no longer chi-square but still exists. This allows to set tests with asymptotic known
level. This allows also to use compensated likelihood for the estimation of the number of parameters [23], with
a compensator of form −vn× nb of parameters, where vn → +∞ and vn = o(n).

Here the LRT statistic tends to infinity. In some sense, this means that the alternative is too far from the
null (for some of its points). But this is not due to the non compactness of the set of parameters as in [19], or
to the non regularity of the distribution as in [7]. To be able to construct tests with known asymptotic level,
one has to know at least the speed of convergence. Indeed, let a test be

1Tn(2)−Tn(1)≥sn

where sn → +∞. Under the alternative, as usual, using [4], Tn(2)− Tn(1) is of order n× C, for a constant C,
so that the power of the test is asymptotically one as soon as sn = o(n). The asymptotic level will be 0 as soon
as, under H0, Tn(2)− Tn(1) converges to +∞ slower than sn. The speed of convergence of Tn(2) − Tn(1) will
be investigated in further work.
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Proof of Theorem 2.5. Let fγ0ν be the true (unknown) distribution of the i.i.d. variables (Yk). Let γ1 be a
point in Γ distinct of γ0.

Since the LRT statistic for i.i.d. observations with the model F is tight, Tn(2)− Tn(1) converges to infinity
in probability as soon as Vn(0) does.

Let ρ < 1, and define for all integer k:

rk = ρk
2
.

Define also qk ∈ [0, 1] by
(1− qk)2(N2 + 1) = 1− rk.

Obviously,

Vn(0) ≥ sup{`n(ûqk , qk)− `n(0, qk) : k ∈ N} · (16)

Now, for the particular sequence rk = ρk
2
, observe that

lim
k 6=l→+∞

R(qk, ql) = 0,

so that
sup
k≤L

ξ2
qk · 1ξqk≥0

converges in probability to +∞ as L tends to +∞. For any positive M , for any positive ε, there exists L0 such
that

P

(
sup
k≤L0

ξ2
qk
· 1ξqk≥0 > M

)
≥ 1− ε.

But using portmanteau’s lemma, the fact that sup{`n(ûqk , qk) − `n(0, qk) : k ≤ L0} converges in distribution
to supk≤L0

ξ2
qk · 1ξqk≥0, and inequality (16), we have that

lim inf
n→+∞

P (Vn(0) > M) ≥ 1− ε.

Since this holds for any ε, Vn(0) tends to +∞ in probability.

Remarks.

• The same result holds if the parameter space is restricted to all possible (u, q) such that

(1− q)2(N2 + 1) ≤ 1,

as may be seen from the proof. This means that the unboundedness of the LRT statistic is not due to
the fact that the model contains non ergodic hidden Markov chains (by taking q = 0), but to the fact
that the alternative may be too far from the null hypothesis, also with respect to the distance between
the populations involved in the mixture.
• When the hidden chain has m states and true parameters Π0, γ1, . . . γm, the statistic Tn(m) − `n(Π0,
γ1, . . . γm) converges to a chi-square distribution, as a result of the LAN properties and the

√
n-convergence

of the maximum likelihood estimator for HMM’s with known number of hidden states [3,4], under appro-
priate regularity assumptions. We conjecture that the convergence to infinity of Tn(m+ q)− Tn(m) may
be proved using the same ideas as in this paper.
• Stationary Markov chains are particular Markov chains, so that the general alternative handling with

eventually non stationary chains leads to similar results.
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3. Numerical experiments

In this section, we numerically investigate the behavior of the LRT statistic. The true model is an i.i.d. process
with Gaussian distribution N (0, 1) of mean 0 and variance 1. We test i.i.d. observations of one population
with distribution N (0, 1) against two populations with Markov regime, the distributions of the observations
conditionally to the Markov chain being N (0, 1) and N (1, 1). In other words fγ0(x) = (2π)−1/2 exp−x2

2 and

fγ1(x) = (2π)−1/2 exp− (x−1)2

2 .
We first draw the likelihood map, then we study the convergence in distribution of Vn(η) (Th. 2.1) and we

finally experiment the convergence to infinity of the LRT statistic (Th. 2.5).

3.1. Likelihood map

We compute the log-likelihood ratio (LLR)

`n(u, q)− `n(0, q) =
n∑
k=1

log
[
1 + pk(u, q)

fγ1 − fγ0

fγ0

(Yk)
]
,

using the recursive equation of the prediction filter (8) for (q, u) ∈ [0, 1] × [0, 1], such that qu/(1− u) ≤ 1, by
step of 0.01. The typical aspect of all our LLR maps is the following: we observe the LLR to fast decrease with
u, and refine the map for u near 0. Two cases happen:

• Case A: the maximum is 0, reached for û = 0, and the LLR is an always decreasing function of u (Fig. 1);
• Case B: the maximum is strictly positive and is reached for û close to 0 (Fig. 2).

When the number of observations increases, û gets closer to 0. For 10 000 observations, û is of the order of 0.01,
for 50 000 observations, û is of the order of 0.005, and for 100 000 observations, û is of the order of 0.001.

As the LLR can take large negative values, we cut off the values larger than −3 and replaced them by −3
to allow the visualization of the maximum. In the same way, we represent the points of the domain where
qu/(1− u) ≥ 1 with the value −4.
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Figure 1. Case A. On left: on the whole domain (q, u) ∈ [0, 1] × [0, 1] by steps of 0.01. On
right: refinement (q, u) ∈ [0, 1]× [0, 0.05] by steps of 5.10−4 for u and 0.01 for q.
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Figure 2. Case B. On left: on the whole domain (q, u) ∈ [0, 1] × [0, 1] by steps of 0.01. On
right: refinement (q, u) ∈ [0, 1]× [0, 0.05] by steps of 5.10−4 for u and 0.01 for q.

3.2. Distribution of Vn(η)

The aim of this section is to study the rate in the distributional convergence of the LRT statistic on Pη to the
asymptotic distribution given in Theorem 2.1:

1
2

sup
q∈Qη

ξ2
q · 1ξq≥0,

to be able to say for how many observations the asymptotic approximation holds. We encounter difficulties to
have a significant result on the whole Pη domain, so we do the simulations on a simplified model, where the
supremum is taken over two values of q.

1
2

sup
q∈{1,0.4}

ξ2
q · 1ξq≥0.

In this case, we can easily simulate the theoretical law, using the following property: if X1 and X2 are indepen-
dent normal deviates N (0, 1) and if

Y1 = σ1X1, Y2 = σ2

(
ρX1 +

√
1− ρ2X2

)
,

then Y1 and Y2 are dependent random variables, normally distributed with standard deviations σ1 and σ2, and
with correlation coefficient ρ.

Figure 3 shows the histogram of the simulated law with 1000 points, with ρ = 0.18 corresponding to the
correlation when q = 1 and q = 0.4. The outline does not significantly change when we increase the number of
points. Notice that the weight for [0, 0.05] is around 370. For two independent normal deviates, this weight is
around 340, whereas for ρ = 1, this weight is around 620.

To approximate the distribution of the LRT statistic Vn(0.4, 1) in this case, we draw m samples of length n,
and compute for each sample the maximum likelihood ratio value for the two values of q. For this computation,
we use a Newton algorithm, using the fact, checked on a great number of samples, that the log-likelihood has
an unique maximum near u = 0. Other simulations with an EM algorithm (Dempster et al. [12]) and various
initial points did not give better results. We first take m = 500 and n = 2 000, n = 5 000, n = 10 000 (Fig. 4
left). The weight of [0, 0.05] is around 250. Compared with the simulated law 370/2 = 185, it is much more
higher. If we now increase the number of samples to m = 5, 000 of size n = 10, 000 (Fig. 4 right), this weight
2450/10 = 245 is not significantly modified.
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Figure 3. Histogram of the simulated law 1
2 supq∈{1,0.4} ξ2

q · 1ξq≥0. with 1000 points.
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Figure 4. Histogram of the simulated LRT statistic Vn(0.4, 1), m = 500 (on left) andm = 5000
(on right) samples of size n = 10 000.

If we increase the size of the samples to n = 100 000 for 500 samples (Fig. 5 left), this weight begins to
decrease (around 230), and this is more significant for m = 50 samples of size 1 000 000 (Fig. 5 right), where
the weight is of the order of 20× 10 = 200.

This allows us to conclude that the convergence is extremely slow, and we can relate this fact to the slow
convergence of the LRT statistic for a mixture of two normal distributions as pointed out by Atwood et al. [1]
or Chuang and Mendell [5]. Bootstrap techniques might also be another way to investigate the distribution, see
McLachlan [28] or Feng and McCulloch [15] for the case of i.i.d mixtures.

3.3. Convergence of the LRT statistic to infinity

At which rate does the LRT on P0 converge to infinity? We numerically investigate the evolution of the LRT
with the length n of the sample.
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Figure 5. Histogram of the simulated LRT statistic Vn(0.4, 1), m = 500 samples of size
n = 100 000 (on left) and m = 50 samples of size n = 1 000 000 (on right).
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Figure 6. V
(1)
n (qk) for the six values of qk defined by (17) with ρ = 0.85, k = 0, . . . , 5. The

sample size increases from size n = 50 to n = 100 000 by steps of 50.

As pointed out in the proof of Theorem 2.5, it is sufficient to take a sequence qk such that

(1− qk)2(N2 + 1) = 1− ρk2
, (17)

and observe that
sup{V (1)

n (qk) : k ∈ N}
tends to infinity with n, where

V (1)
n (qk) = `n(ûqk , qk)− `n(0, qk).

We choose ρ = 0.85, k = 0, . . . , 5, and compute V (1)
n (qk) from n = 50 to n = 100 000 by steps of 50 (Fig. 6).

The result shows that the convergence is very slow, but can be seen. For the i.i.d. mixture of two normals,
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Hartigan [19] gave a 1
2 log log (n) rate. Such rate cannot be experimentally derived, it has to be theoretically

investigated for mixtures with Markov regime in a further work.

4. Proofs

4.1. Proof of Proposition 2.2

Proposition 2.2 is a consequence of the following lemmas:

Lemma 4.1. Assume (A2). Let (u, q) be a fixed parameter. Then under H0, (Yk, pk(u, q))k∈N is a uniformly
ergodic chain with invariant probability π = fγ0ν ⊗ µu,q. For u = 0, µ0,q is the dirac at 0, and for u 6= 0,∫

pdµu,q ≥
qu

2(1− u)
· (18)

Proof of Lemma 4.1. Under H0, (Yk, pk(u, q))k∈N is a Markov chain since the (Yk) are i.i.d. and by equation
(8). Moreover, for any k, Yk and pk(u, q) are independent variables so that the lemma follows as soon as
(pk(u, q))k∈N is a uniformly ergodic chain with invariant probability µu,q. For u = 0, pk(0, q) = 0 for all k. For
u 6= 0, (pk(u, q))k∈N is a Feller chain, ψ-irreductible with ψ the Lebesgue measure on ( qu

1−u , 1 − q) thanks to
(A2), thus a T-chain by Theorem 6.2.9, and then a uniformly ergodic chain by Theorem 16.2.5 of Meyn and
Tweedie [31]. Now using equation (8) one obtains, using the fact that pk(u, q) is σ(Y1, . . . , Yk−1)-measurable
for all k, independent of Yk, and using Jensen’s inequality applied to the function 1/x:

E(pk+1(u, q)/Y1, . . . , Yk−1) ≥ qu

(1− u)
(1− pk(u, q))

so that
E(pk+1(u, q)) ≥ qu

(1− u)
(1−E(pk(u, q)))

and equation (18) follows by taking the limit as k goes to infinity.

Lemma 4.2. Assume (A1) and (A2). Then under H0, Sn(u, q) converges a.s. to S(u, q). Moreover, for any
positive δ,

sup
u≥δ,(u,q)∈Pη

S(u, q) = −2ε(δ, η) < 0.

Proof of Lemma 4.2. The a.s. convergence of Sn(u, q) to S(u, q) follows from the first point of Lemma 4.1.
Now,

S(u, q) =
∫
fγ0(x)dν(x)

[∫
log
(

1− p+ p
fγ1

fγ0

(x)
)
dµu,q(p)

]
and by Jensen’s inequality∫

log
(

1− p+ p
fγ1

fγ0

(x)
)
dµu,q(p) ≤ log

(
1−

∫
pdµu,q(p) +

∫
pdµu,q(p)

fγ1

fγ0

(x)
)

so that

S(u, q) ≤ −K
(
fγ0 ,

(
1−

∫
pdµu,q(p)

)
fγ0 +

∫
pdµu,q(p)fγ1

)
.

Using now the second point of Lemma 4.1 one obtains

sup
u≥δ,(u,q)∈Pη

S(u, q) ≤ − inf
{
K(fγ0, (1− p)fγ0 + pfγ1) : u ≥ δ, (u, q) ∈ Pη, p ≥

qu

2(1− u)

}
·

Now using (A1) K(fγ0 , (1− p)fγ0 + pfγ1) is a continuous function of p and the result follows.
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Lemma 4.3. There exist a positive number M1 such that, for any integer k,

E

(
sup

(u,q)∈Pη

∣∣∣∣∂pk∂u (u, q)
∣∣∣∣
)
< M1, E

(
sup

(u,q)∈Pη

∣∣∣∣∂pk∂q (u, q)
∣∣∣∣
)
< M1.

Proof of Lemma 4.3. Let us give the iterative model for the first derivative with respect to u and with respect
to q of pk(u, q) for any value of (u, q). From now on, we shall denote by Wk the random variable fγ1 (Yk)

fγ0 (Yk) . Wk

is non negative and its expectation under H0 equals 1. The initial value is

∂p1

∂u
(u, q) = 1,

∂p1

∂q
(u, q) = 0,

and for any positive integer k:

∂pk+1

∂u
(u, q) =

q

(1− u)2

(1− pk)
(1− pk) + pkWk

+
(

1− q

(1− u)

)
Wk

[(1− pk) + pkWk]2
∂pk
∂u

(19)

∂pk+1

∂q
(u, q) =

u
(1−u) (1− pk)− pkWk

(1− pk) + pkWk
+
(

1− q

(1− u)

)
Wk

[(1− pk) + pkWk]2
∂pk
∂q
·

Direct computation leads to∣∣∣∣ ∂pk+1/∂u

(1− pk+1)2

∣∣∣∣ ≤ q

(1− u)2[(1− qu
1−u )

∧
q]2

+
1− q

(1−u)

(1− qu
(1−u) )2

Wk

∣∣∣∣ ∂pk/∂u(1− pk)2

∣∣∣∣ , (20)

in which a
∧
b means inf{a, b}. We have

sup

{
q

(1− u)2[(1− qu
1−u)

∧
q]2

: (u, q) ∈ Pη

}
= M2 < +∞

and also

sup

{
1− q

(1−u)

(1− qu
(1−u) )2

: (u, q) ∈ Pη

}
= 1− h1 < 1

so that

sup
(u,q)∈Pη

∣∣∣∣ ∂pk+1/∂u

(1− pk+1)2

∣∣∣∣ ≤ M2 + (1− h1)Wk sup
(u,q)∈Pη

∣∣∣∣ ∂pk/∂u(1− pk)2

∣∣∣∣ · (21)

This leads to

E

[
sup

(u,q)∈Pη

∣∣∣∣ ∂pk+1/∂u

(1− pk+1)2

∣∣∣∣
]
≤M2 + (1− h1)E

[
sup

(u,q)∈Pη

∣∣∣∣ ∂pk/∂u(1− pk)2

∣∣∣∣
]
·

By induction one obtains that for any integer k

E

[
sup

(u,q)∈Pη

∣∣∣∣ ∂pk/∂u(1− pk)2

∣∣∣∣
]
≤ M2

h1
·

Since obviously

sup
(u,q)∈Pη

∣∣∣∣∂pk∂u
∣∣∣∣ ≤ sup

(u,q)∈Pη

∣∣∣∣ ∂pk/∂u(1− pk)2

∣∣∣∣
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one obtains the first inequality of Lemma 4.3 with M1 = M2
h1

. The second inequality may be obtained similarly.

Let us come back to the proof of Proposition 2.2. For any positive δ, we have

P

(
sup
q∈Qη

ûq ≥ δ
)
≥ P (û ≥ δ)

so that it is enough to prove the proposition for supq∈Qη ûq. Now, let (ui, qi) be the centers of N(h) squares of
edge of lentgh h covering Pδη = {(u, q) ∈ Pη : u ≥ δ}. We have

P

(
sup
q∈Qη

ûq ≥ δ
)
≤ P

(
sup

(u,q)∈Pδη
Sn(u, q) ≥ 0

)
≤
N(h)∑
i=1

P (Sn(ui, qi) ≥ −ε(δ, η))

+ P

(
sup

|u−u′|≤h,|q−q′|≤h,(u,q)∈Pδη
|Sn(u, q)− Sn(u′, q′)| ≥ ε(δ, η)

)
.

Now, as soon as |u− u′| ≤ h, |q − q′| ≤ h, (u, q) ∈ Pδη ,

|Sn(u, q)− Sn(u′, q′)| ≤ h

n

n∑
k=1

(
sup

(u,q)∈Pη

∣∣∣∣∂pk∂u (u, q)
∣∣∣∣+ sup

(u,q)∈Pη

∣∣∣∣∂pk∂q (u, q)
∣∣∣∣
)
m(Yk),

where m is the function

m(x) = max
(
fγ0

fγ1

(x);
fγ1

fγ0

(x)
)
− 1.

Use Lemma 4.1, Lemma 4.2, Markov inequality, the fact that Yk is independent of the pk and its derivatives,
and Lemma 4.3, to conclude that

lim sup
n→+∞

P

(
sup
q∈Qη

ûq ≥ δ
)

= 0

and Proposition 2.2 follows.

4.2. Proof of Proposition 2.3

We shall first prove:

Lemma 4.4. Assume (A2, A3) and (A4). The random variable

∂2

∂u2
Sn(0, q)

converges in probability to N2C(q, q) uniformly over Qη.

Proof of Lemma 4.4. We have from (13)

∂2

∂u2
Sn(0, q) = − 1

n

n∑
k=1

(
∂pk
∂u

(0, q)
)2

(Wk − 1)2 +
1
n

n∑
k=1

∂2pk
∂u2

(0, q)(Wk − 1).

We shall use the following trick (T1) for proving weak laws of large numbers for Markov chains. Let (Φk)k∈N
be a Markov chain in Rd for some dimension d. Assume that g is a norm-like function, that is a non negative
function such that lim|x|→+∞ g(x) = +∞.
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1. If there exists an initial value x such that

lim inf
k→+∞

E[g(Φk)/Φ0 = x] < +∞

then by Proposition 12.1.3 of Meyn and Tweedie [31], the Markov chain admits an invariant probability µ.
2. If moreover for any initial points v1 and v2, Φv1

k −Φv2
k tends in distribution to 0, then by using 1.IV.22 of

Duflo [14], the invariant probability is unique, and Φk converges in distribution to µ.
3. Then, by using Proposition 6.4.2 of Meyn and Tweedie [31], (Φk)k∈N is an e-chain.
4. If moreover there exists a reachable state, then for any real function f such that f ≤ V ,

1
n

n∑
k=1

f(Φk)

converges in probability to
∫
fdµ by a similar proof as for Theorem 18.5.1 of Meyn and Tweedie [31].

We shall apply (T1) to Φk = (Wk,
∂pk
∂u (0, q), ∂

2pk
∂u2 (0, q)). Let us recall the recursive equations

∂pk+1

∂u
(0, q) = q + (1− q)Wk

∂pk
∂u

(0, q) (22)

∂2pk+1

∂u2
(0, q) = 2q − 2qWk

∂pk
∂u

(0, q)− 2(1− q)(Wk − 1)Wk

(
∂pk
∂u

(0, q)
)2

+(1− q)Wk
∂2pk
∂u2

(0, q) (23)

with initialization ∂p1
∂u (0, q) = 1 and ∂2p1

∂u2 (0, q) = 0. Notice that ∂pk
∂u (u, q) is non negative for all integer k. (22)

leads to

E

(
∂pk+1

∂u
(0, q)

)
= 1

for any integer k, and

E

(
∂pk+1

∂u
(0, q)

)2

= q2 + 2q(1− q) + (1− q)2(N2 + 1)E
(
∂pk
∂u

(0, q)
)2

so that by induction, for any integer k,

E

(
∂pk
∂u

(0, q)
)2

≤ 2
η
·

Thus

E

∣∣∣∣∂2pk+1

∂u2
(0, q)

∣∣∣∣ ≤ 8
ηN2

+ (1− q)E
∣∣∣∣∂2pk
∂u2

(0, q)
∣∣∣∣

and, by induction, for any integer k,

E

∣∣∣∣∂2pk+1

∂u2
(0, q)

∣∣∣∣ ≤ 8
ηN2q

·

Point 1 of (T1) holds with g(x, y, z) = x2 + y2 + |z|. To prove Point 2, notice first that the Wk are i.i.d. so
that it is enough to prove it for the second and third coordinates of Φk. Let v1 = (y1, z1) and v2 = (y2, z2) be
two different initial points for (∂pk∂u (0, q), ∂

2pk
∂u2 (0, q)). Let ∆k(y1, y2) be the difference of ∂pk

∂u (0, q) with initial
values y1 and y2. Let now Sk(y1, y2) be the sum of ∂pk

∂u (0, q) with initial values y1 and y2, and ∆2
k(v1, v2) be

the difference of ∂2pk
∂u2 (0, q) when the initial values are v1 and v2. Equations (22) and (23) give

∆k+1(y1, y2) = (1− q)Wk∆k(y1, y2)
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Sk+1(y1, y2) = 2q + (1− q)WkSk(y1, y2)

∆k+1(y1, y2)Sk+1(y1, y2) = 2q(1− q)Wk∆k(y1, y2) + (1− q)2W 2
k∆k(y1, y2)Sk(y1, y2)

∆2
k+1(v1, v2) = −2qWk∆k(y1, y2)− 2(1− q)(Wk − 1)Wk∆k(y1, y2)Sk(y1, y2) + (1− q)Wk∆2

k(v1, v2)

By iterating these equations, one obtains that, for any integer k,

E|∆k(y1, y2)| = (1− q)k−1|y1 − y2|,

E|∆k(y1, y2)Sk(y1, y2)| ≤ 2q
η∗

(1− q)k−1|y1 − y2|,

as soon as η∗ is such that η∗ ≤ η and |x2
1 − y2

1| ≤ 2q/η∗, and then

E|∆2
k(v1, v2)| ≤ 2(1− q)k−1|y1 − y2|+

4
η∗

(1− q)kN2|y1 − y2|

as soon as also |z1 − z2| ≤ 2|y1 − y2| + 4
η∗

(1 − q)N2|y1 − y2|, which is always possible by choosing η∗ small
enough. Consequently, ∆k(y1, y2) and ∆2

k(v1, v2) tend in distribution to 0, and point 2 of (T1) holds. Since by
using assumption (A2) the point (0, q, 2q) is obviously reachable, point 4. also holds, and for any q in Qη, the
random variable

∂2

∂u2
Sn(0, q)

converges in probability to N2C(q, q).
Let us now prove that this convergence is uniform. We have, using (22), for any q and q′:

∂pk+1

∂u
(0, q)− ∂pk+1

∂u
(0, q′) = (q − q′)

[
1−Wk

∂pk
∂u

(0, q)
]

+ (1− q′)Wk

(
∂pk
∂u

(0, q)− ∂pk
∂u

(0, q′)
)
.

Using Lemma 4.3 one obtains by induction

E sup
|q−q′|≤δ,q,q′∈Qη

∣∣∣∣∂pk∂u (0, q)− ∂pk
∂u

(0, q′)
∣∣∣∣ ≤ δ · 1 +M1

qη
· (24)

Also,

(
∂pk+1

∂u
(0, q)

)2

= q2 + 2q(1− q)Wk
∂pk
∂u

(0, q) + (1− q)2W 2
k

(
∂pk
∂u

(0, q)
)2

,

so that,

E sup
q∈Qη

(
∂pk
∂u

(0, q)
)2

≤ M1 + 2
η

· (25)
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Further, for any q and q′,

(
∂pk+1

∂u
(0, q)

)2

−
(
∂pk+1

∂u
(0, q′)

)2

= q2 − q′2 + (2q(1− q)− 2q′(1− q′))Wk
∂pk
∂u

(0, q)

2q′(1− q′)Wk

(
∂pk
∂u

(0, q)− ∂pk
∂u

(0, q′)
)

+((1− q)2 − (1− q′)2)W 2
k

(
∂pk
∂u

(0, q)
)2

+(1− q′)2W 2
k

[(
∂pk
∂u

(0, q)
)2

−
(
∂pk
∂u

(0, q′)
)2
]

and by induction,

E sup
|q−q′|≤δ,q,q′∈Qη

∣∣∣∣∣
(
∂pk
∂u

(0, q)
)2

−
(
∂pk
∂u

(0, q′)
)2
∣∣∣∣∣ ≤ δ ·M4 (26)

with

M4 =
1
η
·
[
2 + 2M1 +

1 +M1

qη
+

2(N2 + 1)M1

η

]
·

Following the same lines, using (23) one obtains

E sup
|q−q′|≤δ,q,q′∈Qη

∣∣∣∣∂2pk
∂u2

(0, q)− ∂2pk
∂u2

(0, q′)
∣∣∣∣ ≤ δ

qη
·
[
2 + 2M1 + 2

1 +M1

qη
+ 2N2

(
M1

η
+M4

)]
. (27)

Using (25) and (27), it follows that for some constant M5 one has

E sup
|q−q′|≤δ,q,q′∈Qη

∣∣∣∣ ∂2

∂u2
Sn(0, q)− ∂2

∂u2
Sn(0, q′)

∣∣∣∣ ≤ δ ·M5

and Lemma 4.4 follows.
To finish the proof of Proposition 2.3 we shall prove:

Lemma 4.5. Assume that (A2, A3) and (A4) hold. Then, for any random ũ converging to 0 uniformly in q,

∂2

∂u2
Sn(ũ, q)− ∂2

∂u2
Sn(0, q)

converges in probability to 0 uniformly over Qη.
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Proof of Lemma 4.5. For any non negative u, we have

∂2

∂u2
Sn(u, q)− ∂2

∂u2
Sn(0, q) =

1
n

n∑
k=1

(Wk − 1)2

[
∂pk
∂u

(0, q)2 − ∂pk
∂u

(u, q)2

+
∂pk
∂u

(u, q)2

(
1− 1

(1− pk(u, q) + pk(u, q)Wk)2

)]
+

1
n

n∑
k=1

(Wk − 1)
[
−∂

2pk
∂u2

(0, q) +
∂2pk
∂u2

(u, q)

+
∂2pk
∂u2

(u, q)
(

1
(1− pk(u, q) + pk(u, q)Wk)

− 1
)]

.

We shall use the following fact that holds as soon as u is small enough. For any integer k, any q and any u ≤ u:

qu

1− u ≤ pk(u, q) ≤ 1− q. (28)

Also,

1− 1
1− pk(u, q) + pk(u, q)Wk

=
pk(u, q)(Wk − 1)

1− pk(u, q) + pk(u, q)Wk

and ∣∣∣∣ 1
1− pk(u, q) + pk(u, q)Wk

∣∣∣∣ ≤ 1
qη

so that

E

(
sup
q,u≤u

∣∣∣∣ ∂2

∂u2
Sn(u, q)− ∂2

∂u2
Sn(0, q)

∣∣∣∣) ≤ 1
n

n∑
k=1

[
N2h1(u) +

1 + qη
q2
η

E|Wk − 1|3h2(u)

+ E|Wk − 1|h3(u) +
1
qη
E|Wk − 1|2h4(u)

]
with

h1(u) ≥ E
(

sup
q,u≤u

∣∣∣∣∂pk∂u (0, q)2 − ∂pk
∂u

(u, q)2

∣∣∣∣) ,
h2(u) ≥ E

(
sup
q,u≤u

∣∣∣∣pk(u, q)
∂pk
∂u

(u, q)2

∣∣∣∣) ,
h3(u) ≥ E

(
sup
q,u≤u

∣∣∣∣∂2pk
∂u2

(0, q)− ∂2pk
∂u2

(u, q)
∣∣∣∣)

and

h4(u) ≥ E
(

sup
q,u≤u

∣∣∣∣pk(u, q)
∂2pk
∂u2

(u, q)
∣∣∣∣) .

Lemma 4.5 will thus follow from the fact that it is possible to choose h1, h2, h3 and h4 such that for any
i = 1, . . . , 4, limu→0 hi(u) = 0.

From now on, Cte will designate a universal constant number. We shall use the fact (T2) that if the
deterministic real valued sequence (zk)k∈N satisfies, for a positive number δ, for any integer k

zk+1 ≤M + (1− δ)zk

and also z1 ≤M , then for any integer k
zk ≤ Cte ·M.
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(T2) will often be used with M involving u, and tending to 0 when u does.

Lemma 4.6. As soon as u is small enough,

E

(
sup
q,u≤u

∂pk
∂u

(u, q)2

)
≤ Cte < +∞.

Proof of Lemma 4.6. Direct computation leads to, for any integer k, any q and any u ≤ u:

1
(1− pk+1(u, q))4

(
∂pk+1

∂u
(u, q)

)2

≤ 1
q2(1− u)4

+
2

q4(1− u)2
(1− q)Wk

∂pk
∂u

(u, q)

(1− q
1−u)2

(1− qu
1−u)4

W 2
k

1
(1− pk(u, q))4

(
∂pk
∂u

(u, q)
)2

.

Now there exists u small enough such that:

sup
q,u≤u

(1− q
1−u )2

(1− qu
1−u )4

E(W 2
k ) ≤ 1− η

2
·

Taking the supremum over q and u ≤ u, then taking expectation, and then using (T2) one obtains that for any
integer k:

E

[
sup
q,u≤u

1
(1− pk(u, q))4

(
∂pk
∂u

(u, q)
)2
]
≤ Cte < +∞

and Lemma 4.6 follows:

Lemma 4.7. As soon as u is small enough,

E

(
sup
q,u≤u

∂pk
∂u

(u, q)2+ε∗

)
≤ Cte < +∞,

in which ε∗ is defined below.

Proof of Lemma 4.7. Using (A4),

3ε sup
q∈Qη

(1− q)2+εE(Wk)2+ε

is a finite, continuous function of (q, ε) for ε < ε0, which is upper bounded by 1 − η for ε = 0, so that there
exists a positive ε∗ such that

3ε∗ sup
q∈Qη

(1− q)2+ε∗E(Wk)2+ε∗ ≤ 1− η/2. (29)
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We now have for any integer k, any q and any u ≤ u:(
1

(1− pk+1(u, q))2

∂pk+1

∂u
(u, q)

)2+ε∗

=
(

1
(1− pk+1(u, q))4

∂pk+1

∂u
(u, q)2

)1+ε∗/2

≤
(

Cte + Cte Wk
∂pk
∂u

(u, q)

+
(1− q

1−u)2

(1− qu
1−u)4

W 2
k

1
(1− pk(u, q))4

∂pk
∂u

(u, q)2

)1+ε∗/2

≤ 3ε∗/2
(

Cte + Cte W 1+ε∗/2
k

∂pk
∂u

(u, q)1+ε∗/2

+
(1− q

1−u)2+ε∗

(1− qu
1−u)4+2ε∗

W 2+ε∗
k

(
1

(1− pk(u, q))4

∂pk
∂u

(u, q)2

)1+ε∗/2
)
.

Now there exists u small enough such that:

sup
q,u≤u

3ε∗
(1− q

1−u)2+ε∗

(1− qu
1−u)4+2ε∗

E(W 2+ε∗
k ) ≤ 1− η

4
·

Taking the supremum over q and u ≤ u, then taking expectation, and then using (T2) one obtains that for any
integer k:

E

[
sup
q,u≤u

1
(1− pk(u, q))4+2ε∗

(
∂pk
∂u

(u, q)
)2+ε∗

]
≤ Cte < +∞

and Lemma 4.7 follows:

Lemma 4.8. As soon as u is small enough,

E

(
sup
q,u≤u

pk(u, q)
)
≤ Cte · u.

Proof of Lemma 4.8. Direct computation leads to, for any integer k, any q and any u ≤ u:

pk+1(u, q)
1− pk+1(u, q)

≤ Cte · u+
1− qη

1− u
1−u

Wk
pk(u, q)

1− pk(u, q)
·

Notice that p1(u, q) = u. Taking the supremum over q and u ≤ u, then taking expectation, and then using (T2)
one obtains Lemma 4.8.

Lemma 4.9. As soon as u is small enough, it is possible to choose h2 such that

lim
u→0

h2(u) = 0.

Proof of Lemma 4.9. Using Minkowsky’s inequality, one may choose

h2(u) ≤ E
((

sup
q,u≤u

pk(u, q)
)1+2/ε∗

)1/(1+2/ε∗)

E

(
sup
q,u≤u

∂pk
∂u

(u, q)2+ε∗

)1/(1+ε∗/2)

.

Since the pk are ≤ 1, we have for any integer k, any q and any u

apk(u, q))1+2/ε∗ ≤ pk(u, q)
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and using Lemma 4.7 and Lemma 4.8 one may choose

h2(u) = Cte · (u)1/(1+2/ε∗).

Lemma 4.10. As soon as u is small enough, it is possible to choose h1 such that

lim
u→0

h1(u) = 0.

Proof of Lemma 4.10. Direct computation leads to, for any integer k, any q and any u ≤ u:∣∣∣∣∂pk+1

∂u
(u, q)− ∂pk+1

∂u
(0, q)

∣∣∣∣ ≤ Cte · u+ Cte ·Wkpk(u, q) + Cte · uWk
∂pk
∂u

(u, q)

+ Cte ·W 2
k pk(u, q)

∂pk
∂u

(u, q) + (1− q)Wk

∣∣∣∣∂pk∂u (u, q)− ∂pk
∂u

(0, q)
∣∣∣∣ .

Taking the supremum over q and u ≤ u, then taking expectation, and then using (T2), Lemma 4.3 and
Lemma 4.8, one obtains that for any integer k,

E

(
sup
q,u≤u

∣∣∣∣∂pk∂u (u, q)− ∂pk
∂u

(0, q)
∣∣∣∣) ≤ h5(u) (30)

with

h5(u) =
1
qη
· Cte · u. (31)

Now, since ∣∣∣∣∂pk∂u (u, q)2 − ∂pk
∂u

(0, q)2

∣∣∣∣ =
∣∣∣∣∂pk∂u (u, q)− ∂pk

∂u
(0, q)

∣∣∣∣ · (∂pk∂u (u, q) +
∂pk
∂u

(0, q)
)

direct computation leads to, for any integer k, any q and any u ≤ u:∣∣∣∣∂pk+1

∂u
(u, q)2 − ∂pk+1

∂u
(0, q)2

∣∣∣∣ ≤ Cte · u+ Cte · u sup
q,u≤u

∂pk
∂u

(u, q)

+ Cte ·Wk sup
q,u≤u

pk(u, q) sup
q,u≤u

∂pk
∂u

(u, q)

+ Cte · uWk sup
q,u≤u

∂pk
∂u

(u, q)2

+ Cte ·W 2
k sup
q,u≤u

pk(u, q)
∂pk
∂u

(u, q)2

+ Cte ·Wk

∣∣∣∣∂pk∂u (u, q)− ∂pk
∂u

(0, q)
∣∣∣∣

+ Cte · uW 2
k

∂pk
∂u

(u, q)2

+ Cte ·W 3
k sup
q,u≤u

pk(u, q) sup
q,u≤u

∂pk
∂u

(u, q)2

+ (1− q)2W 2
k

∣∣∣∣∂pk∂u (u, q)2 − ∂pk
∂u

(0, q)2

∣∣∣∣ .
Taking the supremum over q and u ≤ u, then taking expectation, and then using (T2), Lemma 4.6,
Lemma 4.8, equation (30) and equation (31) one obtains Lemma 4.10.
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Lemma 4.11. As soon as u is small enough,

E

(
sup
q,u≤u

∣∣∣∣∂2pk
∂u2

(u, q)
∣∣∣∣) ≤ Cte < +∞.

Proof of Lemma 4.11. First of all, let us give the recursive equations for the second derivative of the prediction
filter:

∂2pk+1

∂u2
(u, q) =

2q
(1− u)3

(1− pk)
(1− pk) + pkWk

(32)

− 2q
(1− u)2

Wk

[(1− pk) + pkWk]2
∂pk
∂u

(u, q)

−2
(

1− q

(1− u)

)
· (Wk − 1)

Wk

[(1− pk) + pkWk]3

(
∂pk
∂u

(u, q)
)2

+
(

1− q

(1− u)

)
Wk

[(1− pk) + pkWk]2
∂2pk
∂u2

(u, q)

with initial value ∂2p1
∂u2 (u, q) = 0. Direct computation leads to, for any integer k, any q and any u ≤ u:

1
(1− pk+1(u, q))2

∣∣∣∣∂2pk+1

∂u2
(u, q)

∣∣∣∣ ≤ Cte + Cte ·Wk
∂pk
∂u

(u, q) + Cte ·W 2
k

∂pk
∂u

(u, q)2

+
(1− q

1−u)
(1− qu

1−u)2
Wk

1
(1− pk(u, q))2

∣∣∣∣∂2pk
∂u2

(u, q)
∣∣∣∣ .

Now there exists u small enough such that:

sup
q,u≤u

(1− q
1−u)

(1− qu
1−u )2

≤ 1− η

2
·

Taking the supremum over q and u ≤ u, then taking expectation, and then using (T2) one obtains that for any
integer k:

E

[
sup
q,u≤u

1
(1− pk(u, q))2

∣∣∣∣∂2pk
∂u2

(u, q)
∣∣∣∣] ≤ Cte < +∞

and Lemma 4.11 follows:

Lemma 4.12. As soon as u is small enough, it is possible to choose h4 such that

lim
u→0

h4(u) = 0.
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Proof of Lemma 4.12. Follows from the recursive inequality.

pk+1(u, q)
(1− pk+1(u, q))3

∣∣∣∣∂2pk+1

∂u2
(u, q)

∣∣∣∣ ≤ Cte · pk+1(u, q) + Cte · u ·Wk
∂pk
∂u

(u, q)

+ Cte · uW 2
k

∂pk
∂u

(u, q)2

+ Cte ·W 2
k pk(u, q)

∂pk
∂u

(u, q)

+ Cte ·W 3
k pk(u, q)

∂pk
∂u

(u, q)2

+ Cte · uWk

∣∣∣∣∂2pk
∂u2

(u, q)
∣∣∣∣

+
(1− q

1−u)2

(1− qu
1−u)3

W 2
k

pk(u, q)
(1− pk(u, q))3

∣∣∣∣∂2pk
∂u2

(u, q)
∣∣∣∣ .

Lemma 4.13. As soon as u is small enough, it is possible to choose h3 such that

lim
u→0

h3(u) = 0.

Proof of Lemma 4.13. Follows from the recursive inequality:∣∣∣∣∂2pk+1

∂u2
(u, q)− ∂2pk+1

∂u2
(0, q)

∣∣∣∣ ≤ Cte · u+ Cte ·Wkpk(u, q)

+ Cte ·Wk

∣∣∣∣∂pk∂u (u, q)− ∂pk
∂u

(0, q)
∣∣∣∣

+ Cte · uWk
∂pk
∂u

(u, q) + Cte ·W 2
k pk(u, q)

∂pk
∂u

(u, q)

+ Cte ·W 2
k

∣∣∣∣∂pk∂u (u, q)2 − ∂pk
∂u

(0, q)2

∣∣∣∣
+ Cte · uW 2

k

∂pk
∂u

(u, q)2

+ Cte ·W 3
k pk(u, q)

∂pk
∂u

(u, q)2

+ Cte · uWk

∣∣∣∣∂2pk
∂u2

(u, q)
∣∣∣∣

+ Cte ·W 2
k pk(u, q)

∣∣∣∣∂2pk
∂u2

(u, q)
∣∣∣∣

+ (1− q)Wk

∣∣∣∣∂2pk
∂u2

(u, q)− ∂2pk
∂u2

(0, q)
∣∣∣∣ .

4.3. Proof of Proposition 2.4

To prove Proposition 2.4, we shall prove the convergence of finite marginal distributions of the process and
its tightness. We shall use:

Lemma 4.14. Under the assumptions of Proposition 2.4, for any q in Qη,(
∂pk
∂u

(0, q);Wk

)
k∈N
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is a positive Harris Markov chain, g-uniformly ergodic for g(x) = 1+ ‖ x ‖2+ε∗
2 .

Proof of Lemma 4.14. It is enough to prove the results of the lemma for the Markov chain Φ = ( ∂pk∂u (0, q))k∈N.
Using (A2), and applying Proposition 4.2.1 of Meyn and Tweedie [31], Φ is ψ-irreducible with ψ the Lebesgue
measure on [q,+∞[. Then, since Φ is a Feller chain by (15), applying Propositions 6.2.8 and 6.2.9 of Meyn
and Tweedie [31], all compact subsets of [q,+∞[ are petite and Φ is a T-chain. Also, Φ is strongly aperiodic.
Taking now g(x) = 1+ ‖ x ‖2+ε∗

2 , we have

E

(
V

(
∂pk+1

∂u
(0, q)

)
/
∂pk
∂u

(0, q) = p

)
= E

(
(q + (1− q)fγ1

fγ0

(Y )p)2

)1+ε∗/2

+ 1

≤ 1 + 3ε∗
(
q2+ε∗

+[2q(1− q)]1+ε∗/2E

(
fγ1

fγ0

(Y )
)1+ε∗/2

p1+ε∗/2

+(1− q)2+ε∗E

(
fγ1

fγ0

(Y )
)2+ε∗

(g(p)− 1)
)
.

The right side of the last inequality divided by V (p) tends to

3ε∗(1− q)2+ε∗E

(
fγ1

fγ0

(Y )
)2+ε∗

as p tends to ∞, which is less or equal to 1− η/2, so that there exists a M such that, for p ≥M ,

E

(
V

(
∂pk+1

∂u
(0, q)

)
/
∂pk
∂u

(0, q) = p

)
≤ (1− η/3)g(p),

and we have for some positive b,

E

(
g

(
∂pk+1

∂u
(0, q)

)
/
∂pk
∂u

(0, q) = p

)
− g(p) ≤ −η/3 · g(p) + b1p≤M . (33)

Consequently Φ is Harris positive by Theorem 11.3.4 and V -uniformly ergodic by Theorem 16.1.2 of Meyn and
Tweedie [31].

Lemma 4.15. For any integer m and any q1, . . . , qm in Bη, the vector

√
n

(
∂

∂u
Sn(0, q1), . . . ,

∂

∂u
Sn(0, qm)

)
converges in distribution to the centered Gaussian distribution with covariance N2C(qi, qj).

Proof of Lemma 4.15. Define

Mn = n

(
∂

∂u
Sn(0, q1), . . . ,

∂

∂u
Sn(0, qm)

)
.

Mn is a martingale with respect to the σ-field Fn = σ(Y1, . . . , Yn), with bracket

〈Mn〉i,j = N2
n∑
k=1

∂pk
∂u

(0, qi)
∂pk
∂u

(0, qj).
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We shall apply Theorem 2.8.41 of Dacunha-Castelle and Duflo [8]. The Lindeberg condition holds since, for any
positive δ,

1
n

n∑
k=1

E
[
‖Mk −Mk−1 ‖2 1‖Mk−Mk−1‖≥δ

√
n/Fk−1

]
≤ Cte

(δ
√
n)ε∗

max
i=1,... ,m

1
n

n∑
k=1

(
∂pk
∂u

(0, qi)
)2+3ε∗

which converges to 0 as n tends to infinity thanks to Lemma 4.14. Theorem 1.IV.24 of Duflo [14] may be applied
(with a = 2 and α = 1− η) to the iterative markovian model leading to (∂pk∂u (0, q1), . . . , ∂pk∂u (0, qm)), so that

1
n

n∑
k=1

∂pk
∂u

(0, qi)
∂pk
∂u

(0, qj)

converges, as n tends to infinity, to the covariance of ∂pk
∂u (0, qi) and ∂pk

∂u (0, qj) with respect to the invariant
distribution of the Markov chain. This covariance with respect to the invariance distribution may be computed
using equation (15). The obtained limiting value is

1− (1− q1)(1− q2)
1− (1− q1)(1− q2)(N2 + 1)

so that
lim

n→+∞

1
n
〈Mn〉i,j = N2C(qi, qj)

and Lemma 4.15 follows:

Lemma 4.16. The process (√
n
∂

∂u
Sn(0, q)

)
q∈Qη

is uniformly tight.

Proof of Lemma 4.16. For any q1, q2 and any positive integer k let

Zk =
(
∂pk
∂u

(0, q1)− ∂pk
∂u

(0, q2)
)

(Wk − 1).

Using the Rosenthal inequality for martingales (Hall and Heyde [18]) one has for any p ≥ 2:

E

∣∣∣∣√n( ∂

∂u
Sn(0, q1)− ∂

∂u
Sn(0, q2)

)∣∣∣∣p ≤ Cte ·E

( 1
n

n∑
k=1

E(Z2
k/Y1, . . . , Yk−1)

)p/2
+

1
np/2

n∑
k=1

E | Zk |p . (34)

We have now

E(Z2
k/Y1, . . . , Yk−1) =

(
∂pk
∂u

(0, q1)− ∂pk
∂u

(0, q2)
)2

N2.

By iterating equation (15), one obtains for any q:

∂pk
∂u

(0, q) = q +
k−2∑
l=1

q(1− q)lWk−1 · · ·Wk−l + (1− q)k−1Wk−1 · · ·W1
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so that ∣∣∣∣∂pk∂u (0, q1)− ∂pk
∂u

(0, q2)
∣∣∣∣ ≤| q1 − q2 |

[
1 +

k−1∑
l=1

(1− q̃)l−1 | 1− (l + 1)q̃ |Wk−1 · · ·Wk−l

]
where q̃ is some number between q1 and q2.

Define

α = 1− 2
2 + ε∗

log(1− η/4)
log(1− qη)

·

We have 0 < α < 1, and for big enough l one has

(l + 1)(1− qη)l−1 ≤ (1− qη)αl,

so that: ∣∣∣∣∂pk∂u (0, q1)− ∂pk
∂u

(0, q2)
∣∣∣∣ ≤ Cte | q1 − q2 |

[
1 +

k−1∑
l=1

(1− qη)αlWk−1 · · ·Wk−l

]
. (35)

Define the Markov chain (Dk)k∈N by D1 = 0 and

Dk+1 = 1 + (1− qη)αWkDk.

Following the arguments of the proof of Lemma 4.14, it can be proved that this Markov chain is Harris positive
and 1 + x2+ε∗ -uniformly ergodic. Now, equation (35) implies that∣∣∣∣∂pk∂u (0, q1)− ∂pk

∂u
(0, q2)

∣∣∣∣ ≤ Cte | q1 − q2 | Dk. (36)

We thus obtain

E

( 1
n

n∑
k=1

E(Z2
k/Y1, . . . , Yk−1)

)p/2 ≤ Cte | q1 − q2 |p E

( 1
n

n∑
k=1

D2
k

)p/2
≤ Cte | q1 − q2 |p E

[
1
n

n∑
k=1

Dp
k

]
(37)

where the last inequality follows by Jensen’s inequality since p/2 ≥ 1. But, as soon as p ≤ 2 + ε∗, 1
n

∑n
k=1 ED

p
k

converges and we get:

E

( 1
n

n∑
k=1

E(Z2
k/Y1, . . . , Yk−1)

)p/2 ≤ Cte | q1 − q2 |p (38)

for big enough n. Also, using (36), as soon as p ≤ 2 + ε∗:

1
np/2

n∑
k=1

E | Zk |p≤ Cte | q1 − q2 |p
1

np/2

n∑
k=1

EDp
k ≤ Cte | q1 − q2 |p (39)

for big enough n.
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It follows from equations (34, 38) and (39) that for big enough n, for any q1 and q2,

E

∣∣∣∣√n( ∂

∂u
Sn(0, q1)− ∂

∂u
Sn(0, q2)

)∣∣∣∣2+ε∗

≤ Cte · (q1 − q2)2+ε∗ , (40)

which is the Kolmogorov criterion for the uniform tightness of a continuous process, and Lemma 4.16 follows.
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