Minimax nonparametric hypothesis testing for ellipsoids and Besov bodies
ESAIM: Probability and Statistics, Tome 4 (2000), pp. 53-135.
@article{PS_2000__4__53_0,
     author = {Ingster, Yuri I. and Suslina, Irina A.},
     title = {Minimax nonparametric hypothesis testing for ellipsoids and {Besov} bodies},
     journal = {ESAIM: Probability and Statistics},
     pages = {53--135},
     publisher = {EDP-Sciences},
     volume = {4},
     year = {2000},
     mrnumber = {1784903},
     zbl = {1110.62321},
     language = {en},
     url = {http://archive.numdam.org/item/PS_2000__4__53_0/}
}
TY  - JOUR
AU  - Ingster, Yuri I.
AU  - Suslina, Irina A.
TI  - Minimax nonparametric hypothesis testing for ellipsoids and Besov bodies
JO  - ESAIM: Probability and Statistics
PY  - 2000
SP  - 53
EP  - 135
VL  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/PS_2000__4__53_0/
LA  - en
ID  - PS_2000__4__53_0
ER  - 
%0 Journal Article
%A Ingster, Yuri I.
%A Suslina, Irina A.
%T Minimax nonparametric hypothesis testing for ellipsoids and Besov bodies
%J ESAIM: Probability and Statistics
%D 2000
%P 53-135
%V 4
%I EDP-Sciences
%U http://archive.numdam.org/item/PS_2000__4__53_0/
%G en
%F PS_2000__4__53_0
Ingster, Yuri I.; Suslina, Irina A. Minimax nonparametric hypothesis testing for ellipsoids and Besov bodies. ESAIM: Probability and Statistics, Tome 4 (2000), pp. 53-135. http://archive.numdam.org/item/PS_2000__4__53_0/

[1] M.V. Burnashev, On the minimax detection of an inaccurately known signal in a Gaussian noise background. Theory Probab. Appl. 24 ( 1979) 107-119. | MR | Zbl

[2] A. Cohen, I. Daubechies, B. Jewerth and P. Vial, Multiresolution analysis, wavelets and fast algorithms on an interval. C. R. Acad. Sci. Paris (A) 316 ( 1993) 417-421. | MR | Zbl

[3] A. Cohen, I. Daubechies and P. Vial, Wavelets on an interval and fast wavelet transforms. Appl. Comput. Harmon. Anal 1 ( 1993) 54-81. | MR | Zbl

[4] D.L. Donoho and I.M. Johnstone, Minimax estimation via wavelet shrinkage. Technical Report 402 Dep. of Statistics, Stanford University ( 1992).

[5] D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Wavelet shrinkage: Asymptopia? J. Roy. Statist. Soc. 57 ( 1995) 301-369. | MR | Zbl

[6] M.S. Ermakov, Minimax detection of a signal in a Gaussian white noise. Theory Probab. Appl. 35 ( 1990) 667-679. | MR | Zbl

[7] I.A. Ibragimov and R.Z. Khasminskii, One problem of statistical estimation in a white Gaussian noise. Soviet Math. Dokl. 236 ( 1977) 1351-1354. | Zbl

[8] I.A. Ibragimov and R.Z. Khasminskii, Statistical Estimation: Asymptotic Theory. Springer, Berlin-New York ( 1981). | MR | Zbl

[9] Yu.I. Ingster, Minimax nonparametric detection of signals in white Gaussian noise. Problems Inform. Transmission 18 ( 1982) 130-140. | MR | Zbl

[10] Yu.I. Ingster, Minimax testing of nonparametric hypotheses on a distribution density in Lp-metrics. Theory Probab. Appl. 31 ( 1986) 333-337. | Zbl

[11] Yu.I. Ingster, Minimax detection of a signals in lp-metrics. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 184 ( 1990) 152-168 [in Russian, Transl: J. Soviet. Math. 68 ( 1994) 4]. | MR | Zbl

[12] Yu.I. Ingster, Asymptotically minimax hypothesis testing for nonparametric alternatives. I, II, III. Math. Methods Statist. 2 ( 1993) 85-114, 171-189, 249-268. | MR | Zbl

[13] Yu.I. Ingster, Minimax hypotheses testing for nondegenerate loss functions and extreme convex problems. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 228 ( 1996) 162-188 (in Russian). | MR | Zbl

[14] Yu.I. Ingster, Some problems of hypothesis testing leading to infinitely divisible distributions. Math. Methods Statist. 6 ( 1997) 47-69. | MR | Zbl

[15] Yu.I. Ingster, Adaptation in Minimax Nonparametric Hypothesis Testing for ellipsoids and Besov bodies. Technical Report 419, Weierstrass Institute, Berlin ( 1998).

[16] Yu.I. Ingster and I.A. Suslina, Minimax signal detection for Besov balls and bodies. Problems Inform. Transmission 34 ( 1998) 56-68. | MR | Zbl

[17] O.V. Lepski, On asymptotical exact testing of nonparametric hypotheses. CORE D.P. 9329, Université Catholique de Louvain ( 1993).

[18] O.V. Lepski, E. Mammen and V.G. Spokoiny, Optimal spatial adaptation to ingomogeneous smoothness: An approach based on kernal estimates with variable bandwidth selectors. Ann. Statist. 25 ( 1997) 929-947. | MR | Zbl

[19] O.V. Lepski and V.G. Spokoiny, Minimax nonparametric hypothesis testing: the case of an inhomogeneous alternative. Bernoulli 5 ( 1999) 333-358. | MR | Zbl

[20] O.V. Lepski and A.B. Tsybakov, Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point. Discussion Paper 91, Humboldt-Univ., Berlin. Probab. Theory Related Fields (to be published). | Zbl

[21] Y. Meyer, Ondlettes. Herrmann, Paris ( 1990).

[22] M.S. Pinsker, Optimal filtration of square-integrable signals in Gaussian noise. Problems Inform. Transmission 16 ( 1980) 120-133. | MR | Zbl

[23] M. Sion, On general minimax theorems. Pacific J. Math. 58 ( 1958) 171-176. | MR | Zbl

[24] V.G. Spokoiny, Adaptive hypothesis testing using wavelets. Ann. Stat. 24 ( 1996) 2477-2498. | MR | Zbl

[25] V.G. Spokoiny, Adaptive and spatially adaptive testing of nonparametric hypothesis. Math. Methods Statist. 7 ( 1998) 245-273. | MR | Zbl

[26] I.A. Suslina, Minimax detection of a signal for lq-ellipsoids with a removed lp-ball. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 207 ( 1993) 127-137 (in Russian). | Zbl

[27] I.A. Suslina, Extreme problems arising in minimax detection of a signal for lq-ellipsoids with a removed lp-ball. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 228 ( 1996312-332 (in Russian).