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LIMIT THEOREMS FOR THE PAINTING OF GRAPHS BY CLUSTERS

Olivier Garet
1

Abstract. We consider a generalization of the so-called divide and color model recently introduced
by Häggström. We investigate the behavior of the magnetization in large boxes of the latticeZd and its
fluctuations. Thus, Laws of Large Numbers and Central Limit Theorems are proved, both quenched
and annealed. We show that the properties of the underlying percolation process deeply influence
the behavior of the coloring model. In the subcritical case, the limit magnetization is deterministic
and the Central Limit Theorem admits a Gaussian limit. Conversely, the limit magnetization is not
deterministic in the supercritical case and the limit of the Central Limit Theorem is not Gaussian,
except in the particular model with exactly two colors which are equally probable. We also prove
a Central Limit Theorem for the size of the intersection of the infinite cluster with large boxes in
supercritical bond percolation.
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Introduction

The aim of this paper is to give some results concerning a pretty and natural model for the dependent
coloring of vertices of a graph. This model has recently been introduced by Häggström [7], who presented the
first results, especially concerning the presence (or absence) of percolation and the quasilocality properties. The
model is easily described: choose a graph at random according to bond percolation, and then paint randomly
and independently the different clusters, each cluster being monochromatic. There are several motivations for
the study of such a model, the most relevant being its links with Ising or Potts models. We refer to the examples
of the present article and to the introduction of Häggström’s paper for detailed motivations.

In Häggström’s model, the panel consisted of a finite number of colors, which were chosen according to a
measure ν on R with finite support. For our purpose, the natural assumptions will only be the existence of a
first or a second moment for ν.

We will study the mean magnetization of the random field (X(x))x∈Zd in large boxes Λn = {−n, . . . , n}d: we
will identify the limit

M = lim
n→∞

1
|Λn|

∑
x∈Λn

X(x),
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and determinate its variations: we will prove Central Limit Theorems for quantities such as

1

(|Λn|)1/2

((∑
x∈Λn

X(x)

)
− |Λn|M

)
.

There are several natural questions: when is M deterministic? What is the influence of the underlying bond
percolation? When is there convergence to a normal law in the Central Limit Theorem?

These questions can be asked in two different approaches. Here we shall use the vocabulary usually used in
the theory of random media.
• The quenched point of view: Limit Theorems are formulated once the graph has been (randomly) fixed.
• The annealed point of view: Limit Theorems are formulated under the randomization of the graph. We

average over the possible issues of the bond percolation process.
Indeed, we will show that the properties of the underlying percolation process deeply influence the behavior
of the coloring model. In the subcritical case, the limit magnetization is deterministic and the Central Limit
Theorem admits a Gaussian limit. Conversely, the limit magnetization is not deterministic in the supercritical
case and the limit of the Central Limit Theorem is not Gaussian, except in the particular model with exactly
two colors which are equally probable. As examples, we will study the case where ν is “+/−” valued and the
case where ν is a Gaussian measure.

1. Notations

We will deal here with stochastic processes indexed by Zd. Their definition will be related to some subgraphs
of the d-dimensional cubic lattice Ld, which is defined by Ld = (Zd,Ed), where Ed = {{x, y} ⊂ Zd;

∑d
i=1 |xi−yi|

= 1}. In the following, the expression “subgraph of Ld” will always be employed for each graph of the form
G = (Zd, E) where E is a subset of Ed. We denote by S(Ld) the set of all subgraphs of Ld. We say that two
vertices x, y ∈ Zd are adjacent in G if {x, y} ∈ E. Two vertices x, y ∈ Zd are said to be connected in G if
one can find a sequence of vertices containing x and y such that each element of the sequence is adjacent in G
with the next one. A subset C of Zd is said to be connected if each pair of vertices in C is connected. The
maximal connected sets are called the connected components. They partition Zd. The connected component
of x is denoted by C(x). The connected components are also called clusters. A subset D of Zd is said to be
independent if no pair in D is constituted by adjacent vertices.

Here we will consider subgraphs of Ld which are generated by Bernoulli bond percolation on Ld. Thus, we
will denote by µp the image measure of ({0, 1}Ed,B({0, 1}Ed), ((1− p)δ0 + pδ1)⊗E

d

) by

x 7→ (Zd, {e ∈ Ed; xe = 1}),

where p ∈ (0, 1).
Let us choose a graph G at random under µp and recall the definition of some basic objects in percolation

theory (for more details, see for example Grimmett [4]).
• The probability that 0 belongs to an infinite cluster:
θ(p) = µp(|C(0)| = +∞).
• The critical probability:
pc = inf{p ∈ (0, 1); θ(p) > 0}.
• The mean size of a finite cluster:
χf (p) =

∑+∞
k=1 kµp(|C(0)| = k).

The following results will be frequently used:

• µp is translation-invariant. As it is isomorphic to ({0, 1}Ed ,B({0, 1}Ed), ((1−p)δ0 +pδ1)⊗E
d

), its tail σ-field
is trivial and the ergodic theorem can be employed with full power.
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• If p ∈ (0, pc), then G contains no infinite cluster.
• If p ∈ (pc, 1), then G contains µp-almost surely one unique infinite cluster.
• If p 6= pc, then χf(p) < +∞.

If G is a subgraph of Ld and if ν is a probability measure on R, we will define the color-probability PG,ν as
follows: PG,ν is the unique measure on (RZd ,B(RZd)) under which the canonical projections Xi – defined, as
usual by Xi(ω) = ωi – satisfy
• for each i ∈ Zd, the law of Xi is ν;
• for each independent set S ⊂ Zd, the variables (Xi)i∈S are independent;
• for each connected set S ⊂ Zd, the variables (Xi)i∈S are identical.

The randomized color-measure is defined by

P p,ν =
∫
S(Ld)

PG,ν dµp(G).

We also note Λn = {−n, . . . , n}d and define the tail σ-field T by

T = ∩
n≥1
FZd\Λn ,

where FS is the σ-field generated by the (Xi)i∈S .

2. Laws of large numbers

2.1. Annealed law of large numbers

Theorem 2.1. Let ν be a probability measure on R with a first moment. We put m =
∫
R x dν(x).

Then, for p ∈ (0, 1)\{pc}:

lim
n→+∞

1
|Λn|

∑
x∈Λn

X(x) = (1− θ(p))m + θ(p)Z P p,ν-almost surely,

where Z is the value taken by X() along the infinite component if it exists, and 0 else.

Proof. We will build here P p,ν as the image of a product measure by an appropriate transform.
Let Ω = {0, 1}Ed ×RZd and consider the probability measure P = ((1− p)δ0 + pδ1)⊗E

d ⊗ ν⊗Zd on (Ω,B(Ω)).
We define G((η, ω)) as the subgraph of Ld which is such that for each i ∈ Ed, the vertex i is open if and

only if ηi = 1. For x ∈ Zd, C(x)((η, ω)) is the cluster of x in this graph. We also define the random set
I = {x ∈ Zd; |C(x)| = +∞}. For each subset A ⊂ Zd, we define inf A as the smallest edge of A in the lexical
ordering.

We can now define the random field (X(k))k∈Zd by X(k)((η, ω)) = ωinf C(k)(η,ω). It is easy to see that
PX = P p,ν. Z is defined by Z((η, ω)) = 0 if I(η, ω) = ∅ and Z(η, ω) = ωinf I(η,ω) else.

Let us define

Qn =
1
|Λn|

∑
x∈Λn

X(x).

Since P p,ν is translation-invariant, the ergodic Theorem ensures that Qn would P p,ν-almost surely and in L1(P p,ν)
converge. Our goal is now to identify this limit.

Since G has almost surely at most one infinite cluster, we have

Qn = Dn +
|I ∩ Λn|
|Λn|

Za.s.,
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where

Dn =
1
|Λn|

∑
x∈Λn

X′(x) with X′(x) = X(x)11|C(x)|<+∞.

Since |Λn ∩ I| =
∑
x∈Λn

11{|C(x)|=+∞}, it follows from the ergodic theorem that

lim
n→+∞

1
|Λn|
|Λn ∩ I| = E 11{|C(0)|=+∞} = θ(p) a.s. and in L1. (1)

It remains to identify the limit of (Dn)n≥1.
For each finite set Λ ⊂ Zd, let us denote by F ′Λ the σ-field generated by the independent variables indexed by

edges and vertices which stay in the outside of Λ. Precisely, F ′Λ = σ((η, ω) 7→ (ηe, ωk); e ∩ Λ = ∅ and k /∈ Λ).
For each (η, ω), we denote by (η̃Λ, ω

′
Λ) the configuration obtained from (η, ω) as follows: one removes the

vertices which intersect Λ and replaces the previous color of the edges inside Λ by the color 0. The colors in the
outside of Λ remain unchanged. Precisely, (ω′Λ)k = ωk 11k/∈Λ for each k ∈ Zd and (η̃Λ)e = ηe 11e∩Λ=∅ for each
e ∈ Ed.

Since X′((ω′Λ, η̃Λ)) only differs from X′((ω, η)) in the color of a finite number of edges, it follows that

lim
n→+∞

Dn((ω, η)) = lim
n→+∞

Dn((ω′Λ, η̃Λ)). But for each n, (ω, η) 7→ Dn((ω′Λ, η̃Λ)) is F ′Λ-measurable. Then

(ω, η) 7→ lim
n→+∞

Dn((ω, η)) is F ′Λ-measurable. Since this holds for each finite Λ, (ω, η) 7→ lim
n→+∞

Dn((ω, η))

is measurable with respect to the tail σ-field. Then, it is constant by Kolmogorov’s 0− 1 law.
Since E Dn = (1 − θ(p))m for each n, this constant is necessarily (1− θ(p))m.
This concludes the proof.

We will now formulate an easy, but important corollary:

Corollary 2.2. • Z is T -measurable.
• For p > pc, T is not trivial under P p,ν as soon as ν is not a Dirac measure.

Proof. The first point is a consequence of the formula given in Theorem 2.1 and the second point is a consequence
of the first one, because Z is non constant as soon as ν is not a Dirac measure.

The fact that Z is T -measurable is important for the formulation of annealed results, because the environment
is forgotten once we have randomized under µp. Indeed, despite the infinite component can not always be
recovered, the value of X() along this component can.

2.2. Quenched law of large numbers

Theorem 2.3. Let ν be a probability measure on R with a first moment. We put m =
∫
R x dν(x). Let

p ∈ (0, 1)\{pc}.
For µp-almost all G, the following holds:

lim
n→+∞

1
|Λn|

∑
x∈Λn

X(x) = (1− θ(p))m + θ(p)Z PG,ν-almost surely, (2)

where Z is the value taken by X() along the infinite component if it exists, and 0 else.
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Proof. Let C =
{

lim
n→+∞

1
|Λn|

∑
x∈Λn

X(x) = (1 − θ(p))m + θ(p)Z
}

. We have

0 = 1− P p,ν(C) =
∫
S(Ld)

(1− PG,ν(C)) dµp(G).

Since (1− PG,ν(C)) ≥ 0, it follows that 1− PG,ν(C) = 0 for µp-almost all G.

2.3. Examples

2.3.1. “+/−” valued spin system

It is the simplest model that we can study, since it only takes two values: “+1” and “−1”, with probability
α and 1− α. In the terminology of Häggström [5], it is denoted as the r + s-state fractional fuzzy Potts model
at inverse temperature −1

2
ln(1 − p), with r = α and s = 1− α. This name alludes to the fact that the fuzzy

Potts model can be realized using random clusters by an analogous painting procedure. For more details, see
Häggström [5].

We point out that for µp-almost all G, we have

PG,(1−α)δ−1+αδ+1 = α lim
β→+∞

I+
G,β,h + (1− α) lim

β→+∞
I−G,β,h,

where lim
β→+∞

I+
G,β,h(

resp. lim
β→+∞

I−G,β,h
)

is the Ising Gibbs measure on G at inverse temperature β with the external field

h = 1
2

ln(α/(1− α)) which is maximal (resp. minimal) for the stochastic domination. Thus,

P p,(1−α)δ−1+αδ+1 = lim
β→+∞

∫
S(Ld)

αI+
G,β,h + (1− α)I−G,β,h dµp(G).

In this sense, we can say that P p,(1−α)δ−1+αδ+1 arises at the zero temperature limit of an Ising model on a
randomly diluted lattice. For precise definitions and results relative to Ising ferromagnets on random subgraphs
generated by bond percolation, see Georgii [3] and as well the recent article of Häggström et al. [6].

If we choose ν = (1− α)δ−1 + αδ1 with α ∈ (0, 1), it follows that the magnetization is

M = lim
n→+∞

1
|Λn|

∑
x∈Λn

X(x) =

{
2α(1− θ(p)) + 2θ(p) − 1 with probability α
2α(1− θ(p)) − 1 with probability 1− α.

(3)

When p ∈ (0, pc), the magnetization is deterministic. Moreover, it follows from (3) that the sign of the
magnetization is deterministic if and only if

max(α, 1− α)(1− θ(p)) ≥ 1
2
·

Note that if θ(p) ≥ 1
2 the sign of the magnetization can not be deterministic.

In the case α = 1
2 , the annealed law of the magnetization has been identified by Häggström ([7], Prop. 2.1)

using a spin-flip argument.
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2.3.2. A quenched Gaussian system

Here we choose ν = N (0, 1). For each G, PG,ν is a Gaussian measure. Here, we have

M = lim
n→+∞

1
|Λn|

∑
x∈Λn

X(x) = θ(p)Z. (4)

In other words, M is almost surely null when p < pc and M ∼ N (0, θ(p)2) when p > pc.
We emphasize that these Large Numbers Theorems are valid both quenched and annealed. This will no

longer be so simple for Central Limit Theorems.

3. Central Limit Theorems

In the following, we write Xn =⇒ µ to denote the weak convergence of a sequence of random variables
(Xn)n≥1 to a probability measure µ.

3.1. Quenched Central Limit Theorem

Theorem 3.1. Let ν be a probability measure on R with a second moment. We put m =
∫
R x dν(x) and

σ2 =
∫
R(x−m)2 dν(x).

For µp-almost all G, the following holds:

• The subcritical case
If p ∈ (0, pc), then

1
|Λn|1/2

(∑
x∈Λn

(X(x) −m)

)
=⇒ N (0, χf(p)σ2).

• The supercritical case
If p ∈ (pc, 1), then

1
|Λn|1/2

 ∑
x∈Λn\I

(X(x) −m)

 =⇒N (0, χf(p)σ2)

where I is the infinite component of G.

The following lemma will be very useful:

Lemma 3.2. For each subgraph G of Ld, let us denote by (Ai)i∈I the partition of G into connected components.
Then, if p 6= pc, we have for µp-almost all G:

lim
n→∞

1
|Λn|

∑
i∈I;|Ai|<+∞

|Ai ∩ Λn|2 = χf(p),

where

χf(p) =
+∞∑
k=1

kP (|C(0)| = k).
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Proof. Let us define C ′(x) by

C ′(x) =

{
C(x) if |C(x)| < +∞
∅ otherwise

and C ′n(x) = C ′(x) ∩ Λn.
It is easy to see that ∑

i∈I;|Ai|<+∞
|Ai ∩ Λn|2 =

∑
x∈Λn

|C ′n(x)|. (5)

We have |C ′n(x)| ≤ |C(x)|, and the equality holds if and only if C ′(x) ⊂ Λn.
The quantity residing in connected components intersecting the boundary of Λn can be controlled using

well-known results about the distribution of the size of finite clusters. In both subcritical case and supercritical
case, we can found K > 0 and β > 0 such that

P (+∞ > |C(x)| ≥ n) ≤ exp(−Knβ).

(We can take β = 1 when p < pc and β = (d−1)/d if p > pc. See for example the reference book of Grimmett [4]
for a detailed historical bibliography.) It follows from a standard Borel–Cantelli argument that for µp-almost
all G, there exists a (random) N such that

∀n ≥ N max
x∈Λn

|C ′(x)| ≤ (lnn)2/β.

If follows that for each x ∈ Λn−(lnn)2/β , C ′(x) is completely inside Λn, and therefore C ′(x) = C ′n(x). Then,∑
x∈Λ

n−(ln n)2/β

|C ′(x)| ≤
∑
x∈Λn

|C ′n(x)| ≤
∑
x∈Λn

|C ′(x)|

1
|Λn|

∑
x∈Λ

n−(ln n)2/β

|C ′(x)| ≤ 1
|Λn|

∑
x∈Λn

|C ′n(x)| ≤ 1
|Λn|

∑
x∈Λn

|C ′(x)|.

By the ergodic Theorem, we have µp-almost surely

lim
n→+∞

1
|Λn|

∑
x∈Λn

|C ′(x)| = E |C ′(0)| = χf (p).

Since limn→+∞
|Λ
n−(lnn)2/β

|
|Λn| = 1, the result follows:

Remark. If we forget technical controls, the key point of this proof is the identity (5). It is interesting to note

that Grimmett [4] used an analogous trick to prove that lim
n→+∞

k(n)/|Λn| = κ(p)-almost surely, where k(n) is

the number of open clusters in Λn and κ(p) = E |C(0)|−1.
We can now proof Theorem 3.1. For simplicity, we will give the proof in the supercritical case – which

contains the proof of the subcritical case.

Proof. ∑
x∈Λn\I

(X(x) −m) =
+∞∑
i=1
|C ′n(ai)|(X(ai)−m).
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Then

1
|Λn|1/2

∑
x∈Λn\I

(X(x) −m) =
(
s2
n

|Λn|

)1/2 1
sn

+∞∑
i=1
|C ′n(ai)|(X(ai) −m),

with

s2
n =

+∞∑
i=1
|C ′n(ai)|2.

By Lemma 3.2, we have for µp-almost all G limn→+∞
s2n
|Λn| = χf(p).

Now, it remains to prove that

1
sn

+∞∑
i=1
|C ′n(ai)|(X(ai)−m) =⇒N (0, σ2). (6)

Therefore, we will prove that for µp-almost allG, the sequence Yn,k = |C ′n(ai)|(X(ai)−m) satisfies the Lindeberg
condition. For each ε > 0, we have

+∞∑
k=1

1
s2
n

∫
|Yn,k|≥εsn

Y 2
n,k dPG,ν =

+∞∑
k=1

|C ′n(ak)|2
s2
n

∫
|C′n(ak)||x|≥εsn

(x−m)2 dν(x)

≤
∫
|x|≥ ε

ηn

(x−m)2 dν(x),

with ηn = supk≥1 |C′n(ak)|
sn

. Thus, the Lindeberg condition is fulfilled if lim ηn = 0. But we have already seen that
sn ∼ (χf (p)|Λn|)1/2, whereas supk≥1 |C ′n(ak)| = O((lnn)2/β). This concludes the proof.

3.2. Annealed Central Limit Theorem

Theorem 3.3. Let ν be a probability measure on R with a second moment. We put m =
∫
R x dν(x) and

σ2 =
∫
R(x−m)2 dν(x). Let p ∈ (0, 1)\{pc}. We emphasize that G is randomized under µp.

• The subcritical case
If p ∈ (0, pc), then

1
|Λn|1/2

(∑
x∈Λn

(X(x) −m)

)
=⇒ N (0, χf(p)σ2).

• The supercritical case
If p ∈ (pc, 1), then

1
|Λn|1/2

(∑
x∈Λn

X(x) − ((1− θ(p))m + θ(p)Z)|Λn|)
)

=⇒ γ
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where γ is the image of N (0, χf(p)σ2) ×N (0, σ2
p)× ν by (x, y, z) 7→ x+ y(z −m), with

σ2
p =

∑
k∈Zd

(P (0 ∈ Iand k ∈ I) − θ(p)2),

where I is the infinite component of G.

In the subcritical case, the Annealed Central Limit Theorem is a simple consequence of the Quenched Central
Limit Theorem.

In order to prove this result in the supercritical case, we will need a Central Limit Theorem related to the
variations of the size of the intersection of the infinite cluster with large boxes.

Yu Zhang had recently proved the following [12]:

|Λn ∩ I| − θ(p)|Λn|
rn1/2

=⇒N (0, 1),

with rn = Var |Λn∩ I|. Our result is a little bit more precise, in the following sense that it gives the asymptotic
behavior of (rn)n≥1: rn ∼ σ2

p|Λn|. Thus, independently of [12], we will prove:

Proposition 3.4. Under µp, we have

|Λn ∩ I| − θ(p)|Λn|
|Λn|1/2

=⇒N (0, σ2
p),

where I is the infinite component of G.

Proof.

|Λn ∩ I(ω)| − θ(p)|Λn| =
∑
k∈Λn

f(T kω),

where T k is the translation operator defined by T k(ω) = (ωn+k)n∈Zd and f = 11{|C(0)|=+∞} − θ(p). Moreover,
f is an increasing function and µp satisfies the F.K.G. inequalities. Then (f(T kω))k∈Zd) is a stationary random
field of square integrable variables satisfying to the F.K.G. inequalities. Therefore, according to Newman [9],
the Central Limit Theorem is true if we prove that the quantity∑

k∈Zd
Cov(f, f ◦ T k) (7)

is finite.
This way of proving Central Limit Theorems for the density of infinite clusters in percolation models satisfying

to the F.K.G. inequalities is not new, because it has already been pointed out by Newman and Schulman [10,11].
The new result is that it applies to classical independent bond percolation, i.e. that the series in (7) is convergent.

Next, Cov(f, f ◦ T k) = Cov(Y0, Yk), with Yk = 11{|C(k)|<+∞}. Now,

Yk =
+∞∑
n=0

Fn,k,with Fn,k = 11{|C(k)|=n}.
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Now

Cov(Y0, Yk) =
+∞∑
n=0

+∞∑
m=0

Cov(Fn,0, Fm,k)

=
+∞∑
n=0

(
Cov(Fn,0, Fn,k) + 2

n−1∑
m=0

Cov(Fn,0, Fm,k)

)

=
+∞∑

n>‖k‖/2−1

(
Cov(Fn,0, Fn,k) + 2

n−1∑
m=0

Cov(Fn,0, Fm,k)

)

=
+∞∑

n>‖k‖/2−1

Cov

(
Fn,0, Fn,k + 2

n−1∑
m=0

Fm,k

)
,

because Fn,0 and Fm,k are independent as soon as ‖k‖ ≥ m+ n+ 2.

Since Fn,0 ≥ 0 and 0 ≤ Fn,k + 2
n−1∑
m=0

Fm,k ≤ 2, we have

∣∣∣∣∣Cov

(
Fn,0, Fn,k + 2

n−1∑
m=0

Fm,k

)∣∣∣∣∣ ≤ 2E Fn,0 = 2P (|C(0)| = n).

Then, Cov(Y0, Yk)| ≤
∑

n>‖k‖/2−1
2P (|C(0)| = n) and

∑
k∈Zd

Cov(f, f ◦ T k) ≤ 2
+∞∑
n=1
|Λ2(n+1)|P (|C(0)|= n).

Since Kesten and Zhang [8] have proved the existence of η(p) > 0 such that

∀n ∈ Z+ P (|C(0)| = n) ≤ exp(−η(p)n(d−1)/d),

it follows that the series converges. Of course, such a sharp estimate is not necessary for our purpose. Estimates
derived from Chayes et al. [2], and from Chayes et al. [1] would have been sufficient.

Proof. In this proof, it will be useful to consider G as a random variable. Let Ω = S(Ld) ×RZd and define the
probability P on B(Ω) as a skew-product: for measurable A × B ∈ B(S(Ld)) × B(RZ

d

), we have P(A × B) =∫
A
PG,ν dµp(G). Then, the law of the marginals G and X are PG = µp and PX = P p,ν.
Rearranging the terms of the sum, we easily obtain(∑

x∈Λn

X(x) − ((1− θ(p))m + θ(p)Z)|Λn|)
)

=
∑

x∈Λn\I
(X(x) −m) + (Z −m)(|I ∩ Λn| − |Λn|θ(p)).

We will now put

Qn =
1

|Λn|1/2

(∑
x∈Λn

X(x) − ((1 − θ(p))m + θ(p)Z)|Λn|)
)
,
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and define

∀t ∈ R φn(t) = E exp(iQn)

and

∀t ∈ R φn,z(t) = E exp(iQn)|{Z = z} ·

As usual, it means that E (exp(iQn)|Z) = φn,z(Z). It is also important to emphasize that the following
properties are fulfilled under P:
• G is independent from Z;
• (Xk11k/∈I)k∈Zd is independent from Z.

Thereby, we have

φn,z(t) = E exp

− it

|Λn|1/2
∑

x∈Λn\I
(X(x) −m) + (z −m)(|I ∩ Λn| − |Λn|θ(p))

 .

Conditioning by σ(G) and using the fact that I is σ(G)-measurable, we get φn,z(t) = E fn(t, .)gn((z −m)t, .),
with

fn(t, ω) = E exp

− it

|Λn|1/2
∑

x∈Λn\I
(X(x) −m)|σ(G)


=
∫

exp

− it

|Λn|1/2
∑

x∈Λn\I(ω)

(X(x) −m) dPG(ω),ν


and

gn(t, ω) = exp
(
− it

|Λn|1/2
(|I(ω) ∩ Λn| − |Λn|θ(p))

)
.

By Theorem 3.1 we have for each t ∈ R and P p,ν-almost all ω: lim
n→+∞

fn(t, ω) = exp(− t22 χf (p)σ2). Then, by

dominated convergence

lim
n→+∞

E
(
fn(t, .)− exp

(
− t

2

2
χf (p)σ2

))
gn((z −m)t, .) = 0.

Next

lim
n→+∞

E fn(t, .)gn((z −m)t, .) = lim
n→+∞

exp
(
− t

2

2
χf(p)σ2

)
E gn((z −m)t, .)

= exp
(
− t

2

2
χf(p)σ2

)
exp

(
− t

2

2
(z −m)2σ2

p

)
where the last equality follows from Proposition 3.4. We have just proved that

lim
n→∞

φn,z(t) = exp
(
− t

2

2
(χf(p)σ2 + (z −m)2σ2

p)
)
.
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Since φn(t) =
∫
φn,z(t) dν(z), we get

lim
n→∞

φn(t) =
∫

exp
(
− t

2

2
(χf (p)σ2 + (z −m)2σ2

p)
)

dν(z)

=
∫

exp(itx)dγ(x).

By the theorem of Levy, it follows that Qn =⇒ γ.

3.3. Examples

3.3.1. “+/−” valued spin system

If we choose ν = (1− α)δ−1 + αδ1 with α ∈ (0, 1), it follows that:
• in the subcritical case p ∈ (0, pc), then the limit in the Central Limit Theorem is

αN (0, 4α(1− α)χf(p));

• in the supercritical case p ∈ (pc, 1), then the limit in the Central Limit Theorem is

αN (0, 4α(1− α)χf (p) + 4(1− α)2σ2
p) + (1− α)N (0, 4α(1− α)χf(p) + 4α2σ2

p).

Remarks.

1. For the “+/−” valued spin system in the subcritical case, the annealed Central Limit Theorem can be
simply proved without using the quenched one: since

∫
ωk dPG,ν = m for each k and each G, it follows

that the covariance of X0 and Xk under P p,ν is

Cov(X0, Xk) =
∫
S(Ld)

(∫
(ω0 −m)(ωk −m) dPG,ν

)
dµp(G)

=
∫
σ211{k∈C(0)}dµp(G)

= σ2P (k ∈ C(0)).

Then,

∑
k∈Zd

Cov(X0, Xk) =
∑
k∈Zd

∫
S(Ld)

σ211{k∈C(0)}dµp(G)

= σ2

∫
S(Ld)

∑
k∈Zd

11{k∈C(0)}dµp(G)

= σ2

∫
S(Ld)

|C(0)|dµp(G)

= σ2χ(p),

with χ(p) = E |C(0)| = χf(p) + θ(p)(+∞).
∑
k∈Zd

Cov(X0, Xk) is a convergent series when p < pc and a

divergent one else.
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In the subcritical case, the theorem of Newman [9] ensures that the Central Limit is valid as soon as the
translation-invariant measure P p,ν satisfy to the F.K.G. inequalities. Since Häggström and Schramm [7]
have proved the F.K.G. inequalities for the “+/−” valued spin system, we get a simple proof for the
annealed Central Limit Theorem in this case.

2. When α = 1
2 , γ is a Gaussian measure as well in the subcritical case (the limit is N (0, χf(p))) as in the

supercritical case (the limit is N (0, χf(p)+σ2
p)). It provides an example where there is a classical Central

Limit Theorem whereas the “susceptibility”
∑
k∈Zd

Cov(X0, Xk) is infinite.

It is the “only” case with a Gaussian limit in the supercritical case, as you see from the following remark.
3. If p ∈ (pc, 1), then γ is Gaussian if and only if there exist a, b ∈ R such that ν = 1

2(δa + δb).

Proof. Using the characteristic function, it is easy to see that γ is Gaussian if and only if γ′ =
∫
N (0,

(z −m)2σ2
p)(t)dν(z) is. Let us define, for k ∈ Z+: mk =

∫
z2k dγ(z). We have

mk =
∫
N (0, (z −m)2σ2

p)(x 7→ x2k)dν(z)

=
∫

(2k)!
k!2k

(z −m)2kdν(z)

=
(2k)!
k!2k

∫
(z −m)2kdν(z).

By definition of γ′, γ′ is a symmetric measure. So if γ′ if Gaussian, it is centered and we have

∀k ∈ Z+ mk =
(2k)!
k!2k

mk
1 .

Then, we have

∀k ∈ Z+

∫
(z −m)2kdν(z) = mk

1 .

If we denote by ν ′ the image of ν by z 7→ (z −m)2, we have

∀k ∈ Z+

∫
R+

zkdν ′(z) = mk
1 .

Then, we have

supp ess ν ′ = lim
k→+∞

(∫
R+

zkdν ′(z)

)1/k

= m1 =
∫
R+

zdν ′(z).

It follows that for ν ′-almost all z, z = supp ess ν ′: ν ′ is a Dirac measure.
Therefore, supp ν ⊂ {m − √m1, m +

√
m1}. Since m =

∫
z dν(z), we necessary have ν(m − √m1)

= ν(m+
√
m1) = 1

2 and then ν = 1
2(δm−√m1 + δm+

√
m1).
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3.3.2. The quenched Gaussian system

In the case ν = N (0, 1), Theorem 3.3 takes the following form:
• The subcritical case

If p ∈ (0, pc), then

1
|Λn|1/2

(∑
x∈Λn

X(x)

)
=⇒ N (0, χf(p)σ2).

• The supercritical case
If p ∈ (pc, 1), then

1
|Λn|1/2

(∑
x∈Λn

X(x) − θ(p)Z|Λn|
)

=⇒ γ

where γ is the image of N (0, IR3) by (x, y, z) 7→ (χf(p))1/2x+ σpyz, with

σ2
p =

∑
k∈Zd

(P (0 ∈ Iand k ∈ I) − θ(p)2),

where I is the infinite component of G.
In this case the limit is a Gaussian measure when p < pc whereas it is a Gaussian chaos of order 2 for p > pc.

I would like to thank the referees for their carefully reading, specially for suggesting me a simplification in the proof of

Theorem 2.1.
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