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BROWNIAN PARTICLES WITH ELECTROSTATIC REPULSION
ON THE CIRCLE: DYSON’S MODEL FOR UNITARY RANDOM MATRICES
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Abstract. The Brownian motion model introduced by Dyson [7] for the eigenvalues of unitary random
matrices N × N is interpreted as a system of N interacting Brownian particles on the circle with
electrostatic inter-particles repulsion. The aim of this paper is to define the finite particle system in
a general setting including collisions between particles. Then, we study the behaviour of this system
when the number of particles N goes to infinity (through the empirical measure process). We prove
that a limiting measure-valued process exists and is the unique solution of a deterministic second-order
PDE. The uniform law on [−π;π] is the only limiting distribution of µt when t goes to infinity and µt
has an analytical density.
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1. Introduction

The aim of this paper is to study the behaviour of an interacting N -Brownian particles system on the circle
with electrostatic inter-particles repulsion, when the number of particles N tends to infinity. More precisely, we
are interested in the system of particles governed by

dX(j)
t = dB(j)

t +
λ

N

∑
16k 6=j6N

cot

(
X

(j)
t −X

(k)
t

2

)
dt , j = 1, 2, . . . , N, (1.1)

and then transported onto the circle by setting Z(j)
t = eiX

(j)
t , 16j6N . Firstly, we have to show the existence

of the solution for this system (with singular drift), and then the behaviour of the solution when N ↑ ∞ is
considered through the sequence of empirical measure processes

µ
(N)
t =

1
N

N∑
j=1

δ
Z

(j)
t

(1.2)

(where δx is the Dirac probability at x) by studying the weak convergence of this sequence and identifying the
limit.
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In a previous paper [4], the same program was applied to the interacting N -Brownian particles system on R
with electrostatic inter-particles repulsion

dX(j)
t = dB(j)

t +
2λ
N

∑
16k 6=j6N

dt

X
(j)
t −X

(k)
t

, j = 1, 2, . . . , N. (1.3)

The empirical distributions (µ(N))N were shown to converge towards the unique (deterministic) continuous
probability measure-valued function µ which is (classical) solution of the so-called McKean–Vlasov equation ∂µt

∂t
=

1
2
∂2µt
∂x2

− 2λ
∂(µtH(µt))

∂x
µ0 = δ0,

(1.4)

where H(µt) stands for the Hilbert transform of µt given by H(ν) = pv

(
1
x

)
∗ ν. Moreover, in [1], the

regularity results obtained for µt and H(µt) allowed us to show existence/uniqueness of the strong solution for
the non-linear SDE (in the sense of McKean) associated with (1.3) (see [23] for a general reference) Xt = Bt + 2λ

∫ t

0

Hµ(s,Xs)ds

X0 = 0 ; Xt ∼ µt , t > 0,
(1.5)

where the notation “Y ∼ ν” means that the random variable Y has the law ν.
In the present case, we will prove that the system (1.1) is well-defined for all λ > 0 and give necessary/sufficient

conditions for existence of collisions between particles Z(j). Furthermore, the limiting measure-valued process
µ of µ(N) exists and is the unique continuous probability measure-valued function which satisfies∫ π

−π
f(x)µt(dx) = f(0) +

1
2

∫ t

0

ds
(∫ π

−π
f ′′(x)µs(dx)

)

+
λ

2

∫ t

0
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[∫ π

−π

∫ π

−π
(f ′(x) − f ′(y))cot

(
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2

)
µs(dx)µs(dy)

] (1.6)

for all 2π−periodic C2 functions f . In other words, µ is the unique weak solution of ∂µt
∂t

=
1
2
∂2µt
∂x2

− 2λ
∂(µtH(µt))

∂x
µ0 = δ0,

(1.7)

where H(µt) is the periodic Hilbert transform of µt given by H(ν) =
1
2
pv
(

cot
(x

2

))
∗ ν.

If one thinks of the particles Z(j) on the circle, then the system (1.1) can be interpreted as a system of particles
driven by a Brownian motion, constrained to stay on the circle, and such that each pair of particles interacts
via a repulsion force proportional to the inverse distance between them. Note that each particle interacts with
all the others and because of the explosion of cot(./2) at 0 and 2π, all particles are mutually repelling: in
particular, the “last” one and the “first” one interact through an electrostatic repulsion as well. We can notice
that |2 sin(x−y2 )| = |eix − eiy | and that the cotangent factor is a result of projecting the force onto the tangent
to the circle at eix. In [15], Metivier suggested the problem of studying the behaviour of N -particles system
when N ↑ ∞ for an interaction exploding like 1/x near 0. Indeed, this situation was not covered by the papers
on this subject which use Lipschitz/boundedness conditions in the drift term. In [16], a class of singular drift is
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considered with a different setting: a boundary (local time) term exists in the non-linear SDE and the approach
is based on the Skorohod problem. The natural and physical interpretation of systems like (1.1) and (1.3) as
systems of Brownian particles submitted to an electrostatic repulsion and living on R or on the circle is the
first obvious motivation. One can give other reasons making this kind of singular particle system of particular
interest.

Let us begin with the main motivation of the systems (1.1) and (1.3), or the same equation as in (1.3) with
the interaction 1/x being replaced by the interaction coth(x) as well. In fact, these systems have much to do
with the eigenvalues of random matrices (see [14] for a general reference on the subject). In his pioneering
work, Dyson [7] proposed Brownian models for these eigenvalues. More precisely, if one considers a random
symmetric N ×N matrix whose coefficients are independent Brownian motions, then the eigenvalues perform
a diffusion satisfying an equation of the type (1.3). A sketch of this situation is given in [13] (p. 124). In [5]
and [19], Brownian motions are replaced by Ornstein–Uhlenbeck processes: the authors observe the asymptotic
behaviour as N goes to infinity and the semi-circle Wigner law emerges somewhere as a limit distribution,
which is consistent with the interpretation of random matrices in terms of free probability theory and the free
central limit theorem: see [25]. On the other hand, if one considers random unitary matrices with eigenvalues
Z(j) = eiX

(j)
, then the X(j) ’s satisfy a system of the class (1.1). In order to be complete, let us point out that

if {Gt} is a right-invariant Brownian motion on SL(2;R) and if eUt , e−Ut denote the eigenvalues of GTt Gt, the
process Ut is a solution of the equation

dUt =
√

2dBt + coth(Ut)dt. (1.8)

The reader can consult [20] (p. 241) for these links as well as other motivations for singular systems from
stochastic differential geometry: Dynkin’s Brownian motion of ellipses, Brownian motion on Lie groups, ...

An extension of Dyson’s model has recently been developed by Grabiner [9]: he considers a Brownian motion
conditioned never to exit the Weyl chamber of a semisimple Lie algebra. When the Weyl chamber is given by
the conditions x(1) < x(2) < · · · < x(N), he finds again Dyson’s model of N particles moving in a diffusion with
a repelling force proportional to the inverse of the distance between two particles. As a matter of fact, singular
diffusions like (1.1) or (1.3) have strong connections with conditioned processes and h-processes. For example,
it is shown in [17] that the process in (1.1) with the term λ/N equal to 1/2 corresponds to a system of N
Brownian particles conditioned never to collide. More precisely, this result means that the law of (Bt∧M , t>0)
conditional to T > M (T is the first collision time) converges towards the law of the process X in (1.1) when
M →∞.

In [10], the probability transition density for N Brownian motions on the circle killed when any pair collide
is calculated. The problem is therefore linked with the exit time of the domain

DN = {x = (x(1), x(2), . . . , x(N)) ∈ RN : x(1) < x(2) < · · · < x(N) < x(1) + 2π}, (1.9)

by a N−dimensional Brownian motion: this problem may also be interpreted in terms of eigenvalues/eigenfunc-
tions of the Laplacian in DN with Dirichlet boundary conditions.

Let us notice that one of the motivations of [10] was to help develop an intuition for the behaviour of
non-intersection exponents for N Brownian motions in the plane as N →∞: see [10] and [6] for this analogy.

Finally, we point out that in [22], the behaviour of (1.1) when N → ∞ is considered under the assumption
of stationarity.

We will give in the last section some results without proof for the case when the interaction cot in (1.1) is
replaced by coth.

As a conclusion, the stochastic differential system

dX(j)
t = dB(j)

t +
γ

2

∑
16k 6=j6N

cot

(
X

(j)
t −X

(k)
t

2

)
dt , j = 1, 2, . . . , N, (1.10)
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is proved to be well-defined for all γ > 0 and general initial conditions, which is necessary to study the behaviour
of this singular particle system when the number N of particles tends to infinity and for the normalization
γ ∼ 1/N . Let us notice that one has to deal with collisions in this equation because collisions happen if
and only if γ < 1/2; for γ ∼ 1/N , there are “more and more” collisions. Among the asymptotic results, a
limiting non-linear PDE on the torus is obtained and studied for the empirical measure processes. The results
proved in [1] and [4] are still valid in the present periodic situation (particularly, the same holomorphic Burgers
equation appears at the end of the paper); in addition, the convergence of µt towards a limit distribution is
an easy consequence of the compactness of the state space. Furthermore, the results allow us to wait for a
convergence at the level of processes when N ↑ ∞ (propagation of chaos) and the possibility of a non-linear
SDE on the torus. For the reader’s convenience, the proofs are (essentially) completely given even if some ideas
are not new as previously quoted.

2. Stochastic variational inequalities revisited

The question of stochastic variational inequalities (SVI) is part of the general theory of multivalued SDE’s.
For the reader’s convenience, we recall basic facts on SVI’s in a simplified but classical situation. The reader
will find in [2] a probabilistic approach to SVI, in [3] a deterministic one and [4] gives a representation of the
solution which is applied to the system of real Brownian particles with electrostatic repulsion.

2.1. Assumptions

∗ N ∈ N∗;
∗ D convex non-empty open set in RN ;
∗ Φ : RN →]−∞ ; +∞] a l.s.c. convex function on RN such that D = {Φ < +∞} and Φ is C1 in D;
∗ g : RN → RN and σ : RN → RN ⊗ RN satisfy a global Lipschitz condition;
∗ x0 ∈ D.

The next lemma was very useful in [2] in order to obtain existence results for SVI’s.

Lemma 2.1. For every a ∈ D, there exist α > 0, β > 0 and δ > 0 such that for all x ∈ D:

〈∇Φ(x), x− a〉> α|∇Φ(x)| − β|x− a| − δ. (2.1)

Example 1. Set F = D and define

Φr(x) =
{

0 if x ∈ F
+∞ if x /∈ F.

(2.2)

Remark. In fact, this example is not a good one since the domain of the convex function is not open in this
case. Nevertheless, we keep it in mind as a reference.

Other interesting examples of convex function are provided by the following construction where the basic
ingredient is a convex function on R.

Proposition 2.2. Let 0 < M6∞, I =]0;M [, φ : R→]−∞ ; +∞] a convex function on I such that φ = +∞
in R\I , φ is C1 in I and φ(0+) = +∞, φ(M−) = +∞ if M <∞ . We define a new function on RN (N>2) by

Φ(x) =


∑

16j<k6N
φ(x(k) − x(j)) if x(1) < x(2) < · · · < x(N) < x(1) +M

+∞ if not,
(2.3)
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where x = (x(1), x(2), . . . , x(N)). Then Φ is a l.s.c. convex function on RN satisfying the previous hypothesis
with the open domain

D = {x = (x(1), x(2), . . . , x(N)) ∈ RN : x(1) < x(2) < · · · < x(N) < x(1) +M} · (2.4)

Moreover, the inequality (2.1) can be improved to give (in the same context as before) for any a ∈ D

〈∇Φ(x), x− a〉> α
∑∑
j<k

|φ′(x(k) − x(j))| − β|x− a| − δ . (2.5)

Proof. Inequality (2.5) is obtained by several applications of (2.1) to φ, a sum of the inequalities over the indices
(j, k) and a good choice of the constants. Simple calculations show that:

〈∇Φ(x), x− a〉 =
∑∑
j<k

φ′(x(k) − x(j))(x(k) − a(k)) −
∑∑
j>k

φ′(x(j) − x(k))(x(k) − a(k))

=
∑∑
j<k

φ′(x(k) − x(j))[(x(k) − x(j))− (a(k) − a(j))] ,

and, using (2.1)

φ′(x(k) − x(j))[(x(k) − x(j))− (a(k) − a(j))] > αj,k|φ′(x(k) − x(j))|
−βj,k|(x(k) − x(j))− (a(k) − a(j))| − δj,k (2.6)

and the optimization over the finite families (αj,k), (βj,k) finishes the proof.

The three following examples will be our references below:
Example 2. Let d > 1 and

φb(x) =

{
−d− 1

2
ln(x) if x > 0

+∞ if x6 0.
(2.7)

We set γ =
d− 1

2
> 0. The associated function Φb on RN is:

Φb(x) =

 −γ
∑

16j<k6N
ln(x(k) − x(j)) if x(1) < x(2) < · · · < x(N)

+∞ if not.
(2.8)

Example 3. Let γ > 0 and

φl(x) =

 −γ ln
[

sin
(
x

2

)]
if 0 < x < 2π

+∞ if not.
(2.9)

The associated function Φl on RN is:

Φl(x) =

 −γ
∑

16j<k6N
ln
[
sin
(
x(k) − x(j)

2

)]
if x(1) < x(2) < · · · < x(N) < x(1) + 2π

+∞ if not.

(2.10)
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Example 4. Let γ > 0 and

φh(x) =
{
−γ ln [sinh (x)] if x > 0
+∞ if not. (2.11)

The associated function Φh on RN is:

Φh(x) =

 −γ
∑

16j<k6N
ln
[
sinh (x(k) − x(j))

]
if x(1) < x(2) < · · · < x(N)

+∞ if not.
(2.12)

2.2. Problem

We take (Ω,F , {Ft},P) a filtered probability space satisfying the usual conditions, B = {Bt,Ft; 06t < ∞}
a N-dimensional Brownian motion on (Ω,F ,P) with B0 = 0. Then, we are looking for a continuous adapted
process X = {Xt,Ft; 06t < ∞} whose values belong to D with X0 = x0 and a continuous real increasing
adapted process L = {Lt,Ft; 06t <∞} with L0 = 0, such that

dXt = g(Xt)dt + σ(Xt)dBt − ∇Φ(Xt)dt − n(Xt)dLt ; 06t <∞ (2.13)

with n(x) ∈ π(x) (π(x): set of unitary outward normals to D at x), L is a boundary process

Lt =
∫ t

0

I{Xs∈∂D} dLs, (2.14)

and for every 0 < T <∞, we have the two following conditions

E

[∫ T

0

I{Xs∈∂D} ds

]
= 0 , (2.15)

E

[∫ T

0

|∇Φ(Xs)|ds
]
< ∞. (2.16)

The previous problem will be called SV I(Φ; g;σ;x0).

Remark. In the case of the Example 1, we can still define the same kind of problem but without the term
∇Φ(Xt)dt in the SDE (note that Φ is constant in this case) and without the conditions (2.15) and (2.16): it
will be called RSV I(g;σ;x0).

2.3. Results

We can use the general theorem of existence/uniqueness for multivalued stochastic differential equations
obtained in [2] (see also [4] for a complement on the representation of the solutions) to state.

Theorem 2.2. Under the previous assumptions on the data, the problem SV I(Φ; g;σ;x0) has an unique (strong)
solution. Moreover, when Φ is associated with a real convex function φ in the sense of (2.3), then inequal-
ity (2.16) is strenghtened into

E

[∫ T

0

|φ′(X(k)
s −X(j)

s )|ds
]
< ∞, (2.17)

for every 0 < T <∞ and j < k, and the boundary process is identically zero.
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Proof. Given the general theorem in [2], it remains only to prove the results concerning the situation covered
by the setting (2.3). Inequalities (2.5, 2.17) are not stated in [2]; inequality (2.17) is obtained with the method
used to show (2.16) but here the trick is to use the stronger inequality (2.5) instead of (2.1). Let us first give
this proof.

Step 1: Proof of (2.17). Set

Sp = inf{t>0 : |Xt|> p} ; p ∈ N∗. (2.18)

Then Sp is a {Ft}− stopping time for all p ∈ N∗ and Sp ↑ ∞ when p ↑ ∞. Applying Itô’s formula, we obtain
for a ∈ D and 06s6t <∞:

1
2
|Xs∧Sp − a|2 =

1
2
|x0 − a|2 +

∫ s∧Sp

0

〈g(Xu), Xu − a〉du

+
∫ s∧Sp

0

〈Xu − a, σ(Xu).dBu〉 −
∫ s∧Sp

0

〈∇Φ(Xu), Xu − a〉du

−
∫ s∧Sp

0

〈n(Xu), Xu − a〉dLu +
1
2

∫ s∧Sp

0

tr(σσ∗(Xu))du,

and using the elementary inequality

x.y 6 1
2
x2 +

1
2
y2, ∀x, y ∈ R, (2.19)

the assumptions on g, σ, the inequality (2.5) and the fact that 〈n(Xu), Xu−a〉> 0 by definition of the outward
normal cone:

1
2
|Xs∧Sp − a|2 6

1
2
|x0 − a|2 + Ct + C

∫ s∧Sp

0

|Xu − a|2du

+
∫ s∧Sp

0

〈Xu − a, σ(Xu).dBu〉 + δt

− α
∑∑
j<k

∫ s∧Sp

0

|φ′(X(k)
u −X(j)

u )|du + β

∫ s∧Sp

0

|Xu − a|du.

Thanks to Davis inequality, the assumption on σ and the same elementary inequality as above, the following
estimate is valid:

E

[
sup

06s6t

∫ s∧Sp

0

〈σ(Xu), Xu − a〉dBu

]
6 CE

(∫ t∧Sp

0

|Xu − a|4du

) 1
2
+ Ct

1
2

6 1
4E

[
sup

06s6t
|Xs∧Sp − a|2

]
+ Ct

1
2

+CE
∫ t∧Sp

0

|Xu − a|2du.

We get

E

[
sup

06s6t
|Xs∧Sp − a|2

]
6 C(t+ 1) + C

∫ t

0

E

(
sup

06v6u
|Xv∧Sp − a|2

)
du, (2.20)
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Using Gronwall’s lemma, we obtain

E

[
sup

06s6t
|Xs∧Sp − a|2

]
6 C(t+ 1)eCt, (2.21)

and from the monotone convergence theorem:

E

[
sup

06s6t
|Xs − a|2

]
6 C. (2.22)

Coming back to the first inequality, we are now in a position to conclude.

Step 2: L = 0 that is to say the explosive drift is enough to keep the diffusion inside the domain. Let us now
prove that the boundary term L = 0. The proof is written in the case M <∞: the case M =∞ is just an easy
adaptation. Let us introduce some notations: for 16j6k6N , we set

V (j; k) =
{
x : x(0)6x(1)6 · · ·6x(j−1) < x(j) = · · · = x(k) < x(k+1)6 · · ·6x(N)6x(N+1)

}
, (2.23)

I(j; k) = {j, j + 1, . . . , k}, (2.24)

where x(0) = x(N) −M , x(N+1) = x(1) +M , and for 16j < k6N

V (j; k) =
{
x : x(1) = · · · = x(j) < x(j+1)6 · · ·6x(k−1) < x(k) = · · · = x(N) = x(1) +M

}
, (2.25)

I(j; k) = {k, k + 1, . . . , N, 1, 2, . . . , j}, (2.26)

Gt =
∫ t

0

n(Xs)dLs , 06t <∞, (2.27)

whose coordinates are (G(1), G(2), . . . , G(N)) and we wish to show that G identically vanishes. The following
lemma describes the normals to D; its proof is adapted from [4] but we give it for the reader’s convenience.

Lemma 2.3. Let x ∈ ∂D such that x ∈ V (j; k) (respectively x ∈ V (j; k)) and let n = (n(1), n(2), . . . , n(N))
belong to the outward normal cone of D at x. Then

∑
l∈I(j;k)

n(l) = 0 (respectively
∑

l∈I(j;k)

n(l) = 0).

Proof. The proof is given for the case V (j; k). By definition of the outward normal cone of D at x, we have:

〈x− α, n〉> 0 , ∀α ∈ D =
{
y : y(1)6y(2)6 · · ·6y(N)6y(1) +M

}
· (2.28)

Let ε > 0 such that x(j−1) < x(j)−ε < x(k) +ε < x(k+1). The previous inequality for α = (x(1), x(2), · · · , x(j−1),
x(j)− ε, x(j+1)− ε, . . . , x(k−1)− ε, x(k)− ε, x(k+1), . . . , x(N)) ∈ D gives ε(n(j) +n(j+1) + · · ·+n(k−1) +n(k))> 0,
and with α = (x(1), x(2), · · · , x(j−1), x(j) +ε, x(j+1) +ε, . . . , x(k−1) +ε, x(k) +ε, x(k+1), . . . , x(N)) ∈ D, we obtain
ε(n(j)+n(j+1) +· · ·+n(k−1)+n(k))6 0. Consequently, we have shown that n(j) +n(j+1)+· · ·+n(k−1)+n(k) = 0.
For the other case, it suffices to adapt the choices of α.
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Thanks to the lemma (with j = k), the measure dG(i) is supported for 26i6N − 1 by{
06u <∞ : X(i)

u = X(i+1)
u

}
∪
{

06u <∞ : X(i)
u = X(i−1)

u

}
, (2.29)

for i = 1 by {
06u <∞ : X(1)

u = X(2)
u

}
∪
{

06u <∞ : X(1)
u +M = X(N)

u

}
, (2.30)

for i = N by {
06u <∞ : X(N)

u = X(N−1)
u

}
∪
{

06u <∞ : X(N)
u = X(1)

u +M
}
· (2.31)

Therefore, it is enough to prove that for all j, k such that i ∈ I(j; k) or i ∈ I(j; k), then

I{Xu∈V (j;k)}dG(i)
u = 0, (2.32)

or in the other case

I{Xu∈V (j;k)}dG
(i)
u = 0. (2.33)

Let us suppose for a moment that the following equality is known

I{Xu∈V (j;k)}dG(l)
u = I{Xu∈V (j;k)}dG(m)

u (2.34)

as soon as l,m ∈ I(j; k), and for the second case

I{Xu∈V (j;k)}dG
(l)
u = I{Xu∈V (j;k)}dG

(m)
u (2.35)

as soon as l,m ∈ I(j; k). Then, the proof is finished. Indeed, considering v =
∑

l∈I(j;k)

el (or v =
∑

l∈I(j;k)

el)

where (e1, e2, . . . , eN ) is the canonical basis of RN , the previous lemma asserts that v is orthogonal to every
normal vector at a point of V (j; k) (or similarly of V (j; k)), which implies directly

I{Xu∈V (j;k)}〈v,dGu〉 = 0, (2.36)

I{Xu∈V (j;k)}〈v,dGu〉 = 0, (2.37)

and from the definition of v ∑
l∈I(j;k)

I{Xu∈V (j;k)}dG(l)
u = 0, (2.38)

∑
l∈I(j;k)

I{Xu∈V (j;k)}dG
(l)
u = 0, (2.39)
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and this result gives the conclusion. Consequently, the last element to be proved is the equality (2.34) (and
(2.35)). Using the occupation times formula, we claim that for 16l < m6N∫ M

0

Lat (X(m) −X(l)) |φ′(a)|da =
∫ t

0

|φ′(X(m)
s −X(l)

s )|[σσ∗ll − 2σσ∗lm + σσ∗mm](Xs)ds, (2.40)

where (La(X))a is the family of local times for the real continuous semimartingale X . From inequality (2.5),
the assumption on σ and the continuity of X , we deduce∫ t

0

|φ′(X(m)
s −X(l)

s )|[σσ∗ll − 2σσ∗lm + σσ∗mm](Xs)ds < ∞ (2.41)

and consequently ∫ M

0

Lat (X(m) −X(l)) |φ′(a)|da < ∞, (2.42)

which implies L0
t (X

(m) −X(l)) = 0 since the function a→ |φ′(a)| is not integrable at 0 as a consequence of the
explosion of φ at this point. From the identity

X(m)
u −X(l)

u = (X(m)
u −X(l)

u )+, (2.43)

calculating (X(m)
u −X(l)

u )+ with Tanaka’s formula and since L0(X(m) −X(l)) ≡ 0, we have∫ t

0

(dG(m)
u − dG(l)

u ) =
∫ t

0

I{X(m)
u >X

(l)
u }

(dG(m)
u − dG(l)

u ), (2.44)

where we have used (2.15) to assert that
∫ t

0
I{X(m)

s −X(l)
s =0} ds = 0 in order to identify the others terms in the

semimartingale decompositions of X(m)
u −X(l)

u and (X(m)
u −X(l)

u )+. The last equality can be written∫ t

0

I{X(l)
u =X

(m)
u }dG

(m)
u =

∫ t

0

I{X(l)
u =X

(m)
u }dG

(l)
u , (2.45)

hence also (2.34). Let us considering now the proof of (2.35). The proof will be identical if k6l < m6N or
if 16l < m6j and differences only appear when l6j and m>k. Using the same method as before and the
fact that here the function a → |φ′(a)| is not integrable at M (as a consequence of the explosion of φ at this
point), the occupation times formula essentially enables us to obtain LM

−

t (X(m)−X(l)) = 0. Using the general
relation Lat (−X) = L

(−a)−

t (X) ([18], p. 217), the following equalities hold:

LM
−

t (X(m) −X(l)) = L−Mt (X(l) −X(m)) = L0
t (X

(l) +M −X(m)).

From the identity

X(l)
u +M −X(m)

u = (X(l)
u +M −X(m)

u )+, (2.46)

calculating (X(l)
u +M −X(m)

u )+ with Tanaka’s formula and since L0(X(l) +M −X(m)) ≡ 0, we have∫ t

0

(dG(m)
u − dG(l)

u ) =
∫ t

0

I{X(m)
u <X

(l)
u +M}(dG

(m)
u − dG(l)

u ), (2.47)
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where we have used again (2.15) to assert that
∫ t

0
I{X(m)

s −X(l)
s =M} ds = 0 in order to identify the others terms

in the semimartingale decompositions of X(l)
u +M −X(m)

u and (X(l)
u +M −X(m)

u )+. The last equality can be
written ∫ t

0

I{X(l)
u +M =X

(m)
u }dG

(m)
u =

∫ t

0

I{X(l)
u +M =X

(m)
u }dG

(l)
u , (2.48)

hence also (2.35).

Remark. The general theorem in [2] gives also strong existence and uniqueness for the problem RSV I(g;σ;x0).

2.4. Examples

Let us now apply this theorem to our previous examples:

Example 1. For Φ = Φr, the problem RSV I(g;σ;x0) is exactly equivalent to the problem of reflecting diffusion
with normal reflection in the convexD, with the coefficients g, σ: see [12,21,24]. In this case, the convex function
only gives a drift term on the boundary:

dXt = g(Xt)dt + σ(Xt)dBt − n(Xt)dLt. (2.49)

Example 2. For N = 1, Φ = φb, g = 0 and σ = 1, the boundary term is identically zero and X is the Bessel
process BES(1 + 2γ)

dXt = dBt +
γ

Xt
dt. (2.50)

It is well known that 0 is reached if and only if γ < 1/2.
In the same way, for Φ = Φb, there is no boundary term L and the process X has been constructed and

studied in [4]:

dX(j)
t = g(X(j)

t )dt + σ(X(j)
t )dB(j)

t + γ
∑

16k 6=j6N

dt

X
(j)
t −X

(k)
t

, 16j6N. (2.51)

Comparing the distance between particles with a Bessel process, we can show that any pair of neighbouring
particles collide at finite time a.s. (in the case g = 0, σ = 1) if γ < 1/2. Conversely, it has been proved in [5]
and [19] that the particles cannot collide if γ>1/2.

Example 3. For N = 1, Φ = φl, g = 0 and σ = 1, the boundary term is identically zero and X is the Legendre
process with parameter γ living on [0; 2π] (see [18], p. 331)

dXt = dBt +
γ

2
cot
(
Xt

2

)
dt. (2.52)

Using the method of the scale function (see [11], p. 339 for example), we obtain that 0 and 2π are reached if

and only if γ < 1/2. Let us notice that the process Jt = cos
(
Xt

2

)
is then a Jacobi process on [−1; 1] : see [8].

In the same way, for Φ = Φl, there is no boundary term L and the process X will be studied in this paper
for g = 0 and σ = Id (we could obtain more generality but simple coefficients are necessary in the following to
study the system):
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Corollary 2.4. For every N ∈ N with N>2, γ > 0, −∞ < x
(1)
0 6x(2)

0 6 · · ·6x(N)
0 6x(1)

0 +2π, there is a unique
X = (X(1), X(2), . . . , X(N)) which is the strong solution of the following stochastic differential system:

dX(1)
t = dB(1)

t +
γ

2

∑
16k 6=16N

cot

(
X

(1)
t −X

(k)
t

2

)
dt

· · · = · · ·

dX(j)
t = dB(j)

t +
γ

2

∑
16k 6=j6N

cot

(
X

(j)
t −X

(k)
t

2

)
dt

· · · = · · ·

dX(N)
t = dB(N)

t +
γ

2

∑
16k 6=N6N

cot

(
X

(N)
t −X(k)

t

2

)
dt,

(2.53)

under the conditions:

X0 =
(
x

(1)
0 , x

(2)
0 , . . . , x

(N)
0

)
(2.54)

X
(1)
t 6X(2)

t 6 · · · 6X(N)
t 6X(1)

t + 2π , 06t <∞, P− a.s. (2.55)

The issue of collisions of particles in this multidimensional setting will be studied in the next section.

Remark. Using a deterministic time change and the scaling property of the Brownian motion B, we may study
the system with σ.B (for 0 < σ <∞) instead of B, so it is clear that one parameter γ is enough.

Example 4. For N = 1, Φ = φh, g = 0 and σ = 1, the boundary term is identically zero and X is the following
process living on [0; +∞[

dXt = dBt + γ coth(Xt)dt. (2.56)

Using again the method of the scale function, we obtain that 0 is reached with positive probability if and only
if γ < 1/2.

In the last section of this paper, we will state the results concerning the situation Φ = Φh, g = 0 and σ = Id,
which gives the system

dX(j)
t = dB(j)

t + γ
∑

16k 6=j6N
coth

(
X

(j)
t −X

(k)
t

)
dt, 16j6N. (2.57)

The same necessary and sufficient condition for the existence of collisions (γ < 1/2) will be given there.

3. Collisions

In the four following sections, we consider the system (2.53). It is quite natural to wonder whether the
particles Z(j) = eiX

(j)
may collide: the following theorem gives a complete answer:

Theorem 3.1. There are collisions between particles if and only if γ < 1/2. More precisely, if τ = inf{t >
0 : Z(j)

t = Z
(k)
t for 16j 6= k6N}, then P(τ <∞) = 1 or 0 according to γ < 1/2 or γ>1/2.

Proof. Let us prove the necessary and sufficient conditions separately. Let γ>1/2. The proof follows partly [19]
and in fact the method has something to do with the ideas used to attack the problem of recurrence for Bessel
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processes as it can be seen in [11] (p. 158). Let us first notice that

1
2

∆Φl(x) − |∇Φl(x)|2 =
γ

2

(
1
2
− γ
)∑
j 6=k

sin−2

(
xj − xk

2

)
+ C − γ2

2

∑
j,k,l 6=

cot
(
xj − xk

2

)
cot
(
xj − xl

2

)
(3.1)

and, on the other hand, the following circular formula will be useful

cot(a)cot(b) + cot(a)cot(c) + cot(b)cot(c) = 1, (3.2)

as soon as a + b + c = 0. (An analogous circular formula was used in the case of the interaction 1/x where
the right-hand side is 0 and another one is valid for coth(x) where the right-hand side is −1.) By convention,
if x ∈ RN , x(N+1) = x(1) + 2π. For 0 < ε < min

i6=j
|x(j)

0 − x
(i)
0 | (with 16i, j6N + 1) , one defines

τε = inf
{
t > 0 :

∣∣∣X(i)
t −X

(j)
t

∣∣∣ = ε for 16i 6= j6N + 1
}
, (3.3)

in the manner that

τε ↑ τ, when ε ↓ 0 . (3.4)

Since φl is C2 in [ε;M − ε], it is possible to apply Itô ’s formula and obtain

Φl(Xt∧τε) = Φl(x0) +
∫ t∧τε

0

〈∇Φl(Xs),dBs〉 −
∫ t∧τε

0

|∇Φl(Xs)|2ds+ 1/2
∫ t∧τε

0

∆Φl(Xs)ds,

and thanks to (3.1, 3.2), it is clear that there exists C > 0 such that the process Φl(Xt∧τε) − C(1 + t∧ τε) is a
supermartingale, hence particularly

E
(

Φl(Xt∧τε)
)
6 C(1 + t), (3.5)

and considering the event B = {τε6 t}, the positivity of φl and Φl give

−γ ln
(

sin
(ε

2

))
P(B)6 C, (3.6)

which implies then

P(τε6 t) → 0, when ε→ 0, (3.7)

that is to say

P(τ 6 t) = 0. (3.8)

It is now easy to conclude by letting t tend to infinity.
Let γ < 1/2. Considering the difference X(j+1)

t −X(j)
t and having in mind the fact that cot is decreasing

on [0;π] and odd on [−π;π], we succeed in finding the sign of the various bounded variation elements of this
semimartingale. Let Y the [0; 2π]-valued solution to

dYt = dB(j+1)
t − dB(j)

t + γ cot
(
Yt
2

)
dt, (3.9)
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with Y0 = x
(j+1)
0 −x(j)

0 . Using a time scale, it is easy to see that this process has the same boundary properties
as the Legendre process in (2.52). Since the process Ht = (X(j+1)

t − X
(j)
t ) − Yt has bounded variation, it

satisfies: L0
t (H) = 0 and Tanaka’s formula takes on the simple form

H+
t =

∫ t

0

I{Hs>0}

 ∑
k 6=j+1

γ

2
cot

(
X

(j+1)
s −X(k)

s

2

)
−
∑
k 6=j

γ

2
cot

(
X

(j)
s −X(k)

s

2

)
− γ cot

(
Ys
2

) ds

6 γ

∫ t

0

I{Hs>0}

[
cot

(
X

(j+1)
s −X(j)

s

2

)
− cot

(
Ys
2

)]
ds60.

This proves

06 X
(j+1)
t −X(j)

t 6 Yt, (3.10)

and an analogous proof yields

Yt 6 X
(N)
t −X(1)

t 6 2π. (3.11)

As 0 and 2π are reached a.s. by Y if γ < 1/2, we deduce the existence of collisions for particles in this case.

4. Convergence

We will now consider the behaviour of the interacting particles system (2.53) when

γ =
2λ
N

(4.1)

(for λ > 0) as the number N of particles tends to infinity, which we study through the empirical measure
process:

µ
(N)
t =

1
N

N∑
j=1

δ
Z

(j)
t
. (4.2)

We consider each µ
(N)
t as a probability measure on [−π;π[ after homeomorphic identification of [−π;π[ with

the unit circle. Henceforth, we will consider initial conditions for the particles still given by (2.54) such that

µ
(N)
0 −−−−→

N→∞
µ0, (4.3)

where µ0 is a probability measure on [−π;π[. The following result gives the weak convergence of (µ(N))N when
N ↑ ∞ to a measure - valued process µ.

Theorem 4.1. With the same assumptions as in Corollary 2.4 except λ is given by (4.1) and the initial data
by (4.3), the sequence of measure-valued processes (µ(N))N is (weakly) convergent and the limit µ is the unique
continuous probability measure-valued function satisfying∫ π

−π
f(x)µt(dx) =

∫ π

−π
f(x)µ0(dx) +

1
2

∫ t

0

ds
(∫ π

−π
f ′′(x)µs(dx)

)
+
λ

2

∫ t

0

ds
(∫ π

−π

∫ π

−π
(f ′(x) − f ′(y))cot

(
x− y

2

)
µs(dx)µs(dy)

) (4.4)

for all f ∈ C2(R) 2π-periodic.
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Proof. First part: tightness.

In order to obtain the tightness of (µ(N))N , it is sufficient as in [5] to prove that the sequence of continuous

real–valued processes
(∫

f(x)dµ(N)
. (x)

)
N

is tight for all f ∈ C2(R) being 2π-periodic. From (2.53) and Itô’s

formula, we have:

∫ π

−π
f(x)µ(N)

t (dx) =
1
N

N∑
j=1

f
(
X

(j)
t

)
=

1
N

N∑
j=1

f
(
x

(j)
0

)
+

1
N

N∑
j=1

∫ t

0

f ′
(
X(j)
s

)
dB(j)

s

+
1
N

N∑
j=1

∫ t

0

f ′
(
X(j)
s

) λ

N

∑
16k 6=j6N

cot

(
X

(j)
s −X(k)

s

2

)ds

+
1

2N

N∑
j=1

∫ t

0

f ′′
(
X(j)
s

)
ds.

(4.5)

Hence, using the definition (4.2) of (µ(N))N and the symmetry of the interaction, the above equality may also
be written:∫ π

−π
f(x)µ(N)

t (dx) =
∫ π

−π
f(x)µ(N)

0 (dx) + M
(N)
t

+
λ

2

∫ t

0

ds

(∫ ∫
{x 6=y}

(f ′(x)− f ′(y))cot
(
x− y

2

)
µ(N)
s (dx)µ(N)

s (dy)

)
+

1
2

∫ t

0

ds
(∫ π

−π
f ′′(x)µ(N)

s (dx)
)
,

(4.6)

where M (N) is a continuous martingale such that:

〈
M (N)

〉
t

=
1
N2

N∑
j=1

∫ t

0

{
f ′(X(j)

s )
}2

ds. (4.7)

Taking into account the fact that (f ′(x) − f ′(y))cot
(
x−y

2

)
→ 2f ′′(z) when (x, y) → (z, z), the triple integral

in (4.6) is

λ

2

∫ t

0

ds
(∫ π

−π

∫ π

−π
(f ′(x)− f ′(y))cot

(
x− y

2

)
µ(N)
s (dx)µ(N)

s (dy)
)
− λ

N

∫ t

0

ds
(∫ π

−π
f ′′(x)µ(N)

s (dx)
)

(4.8)

so that∫ π

−π
f(x)µ(N)

t (dx) =
∫ π

−π
f(x)µ(N)

0 (dx) + M
(N)
t

+
λ

2

∫ t

0

ds
(∫ π

−π

∫ π

−π
(f ′(x)− f ′(y))cot

(
x− y

2

)
µ(N)
s (dx)µ(N)

s (dy)
)

− λ

N

∫ t

0

ds
(∫ π

−π
f ′′(x)µ(N)

s (dx)
)

+
1
2

∫ t

0

ds
(∫ π

−π
f ′′(x)µ(N)

s (dx)
)
.

(4.9)
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Now, using (4.9), the assumption on f and Aldous criterion applied to the four processes in the righthand

side, the sequence of continuous real-valued processes
(∫

f(x)µ(N)
. (dx)

)
N

is easily shown to be tight and,

consequently, the laws of the processes (µ(N)))N are tight. From the tightness, we have at least convergence
µ(N) ⇒ µ along a subsequence (Nk). Let k tend to infinity in (4.9) (written for N = Nk) for suitable f and use
the convergence µ(Nk) ⇒ µ: thus, we show that any limit process µ satisfies (4.4).

Second part: convergence.

From the first part, it remains to prove there is only one possible limit for all subsequences (µ(Nk))k. More
precisely, we know that µ(N) ⇒ µ along a subsequence and any such limit process µ = {µt, t ∈ R+} satisfies
(4.4). If we can show that (4.4) has a unique solution, we actually prove the convergence of (µ(N))N , this
time not only up to subsequences, and thereby Theorem 4.1. To achieve this, we will prove that the Fourier
coefficients of a solution µ to (4.4) are uniquely determined: it is the reason why we apply (4.4) with the test
function x→ e−inx so that

〈µt, f〉 =
∫
f(x)dµt(x) = µ̂t (n). (4.10)

Using the basic formula

cot
(
x− y

2

)
= i

eix + eiy

eix − eiy
, (4.11)

elementary calculus shows that

d
dt
µ̂t (n) = −n(λ+ n/2)µ̂t (n) − λn

n−1∑
k=1

µ̂t (k)µ̂t (n− k) (4.12)

and, by induction, it is now easy to get uniqueness for (4.12) and so for (4.4). This ends the proof of Theorem 4.1.

Remark. It is clear that the tightness result (and the convergence in the next section) is obtained for µ(N)

being random variables with values in C(R+;M1(R)) (M1(E): probability measures on E), that is to say at the
level of the time-marginals, and not at the level of the processes when one works with M1(C(R+;R)) as a state
space. The problem of propagation of chaos for this class of singular model is not treated in this paper.

Remark. The method used here is very similar to the proof in [5] in an analogous situation: the test function
x→ xn (giving moments) is naturally replaced by x→ e−inx (giving Fourier coefficients).

5. Limit distribution

It is quite tempting to study the convergence of µt when t ↑ ∞ ... and to guess that the uniform distribution
will be the only possible limit. Indeed, this conjecture will be shown to be true. Before its proof, let us
recall that for the Brownian particles with electrostatic repulsion in R [5] and [19] solve the similar problem of
limit distribution (with a repelling force in the drift of (1.1) to prevent the particules from escaping to infinity),
showing that the semicircular Wigner law is a limit ditribution and is the only one with all finite moments. Their
results remind us of the link between Brownian particles with electrostatic repulsion, eigenvalues of random
matrices with Brownian motion entries on the one hand and, on the other hand, the key role of the Wigner law
in the theory of random matrices theory as stated in the classical Wigner’s theorem and Voiculescu’s theorem
in the free probability theory: see [14] and [25].
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Theorem 5.1. When t ↑ ∞, the probability µt obtained in Theorem 4.1 converges towards the uniform proba-
bility on [−π;π[.

Proof. Existence of a limit distribution is obvious since the state space here is compact. Let us now show
uniqueness and, in the same way, the nature of this law. The differential equations (4.12) allows us to get the
explicit expression of µ̂t(n) as a sum of exponentials terms which vanish as t ↑ ∞, therefore the only non-zero
Fourier coefficient is µ̂t(0) = 1 and the uniform distribution is the only limit.

6. Existence of a smooth density

It was shown in [1] in the case of real electrostatic Brownian particles that the probability µt has a smooth
density. More precisely, starting from (4.4) with x0 = 0, it was known that µ is the only weak solution of the
following limiting non-linear second-order integro-partial differential equation ∂µt

∂t
=

1
2
∂2µt
∂x2

− 2λ
∂(µtH(µt))

∂x
µ0 = δ0,

(6.1)

the so-called McKean–Vlasov equation, where H stands for the Hilbert transform of µt given by H(ν) =

pv

(
1
x

)
∗ ν. We proved, using complex variable methods, that, for each t > 0, the probability µt has a density

u(t, .) = ut, and that ut and its Hilbert transform H(ut) are real analytic. Thus, u = (ut)t is a classical
solution of  ∂u

∂t
=

1
2
∂2u

∂x2
− 2λ

∂(uH(u))
∂x

u(t, x)dx→ δ0 as t→ 0.
(6.2)

Theorem 6.1. Let µ0 be a probability-measure on R. There is exactly one (classical) solution u for ∂ut
∂t

=
1
2
∂2u

∂x2
− 2λ

∂(uH(u))
∂x

u(t, x)dx→ µ0 as t→ 0.
(6.3)

The function ut is the density of the probability measure µt introduced in the Theorem 4.1. Moreover, u and its
Hilbert transform H(u) are real analytic functions in (t, x) ∈ R∗+× [−π;π[. For the particular case µ0 = δ0, we
have:

H(u(t, .))(x) =
1

2λt
lim
y→0

Re

∫
(x− v)e

−
(x− v)2

2t dv
R(v, y)∫

e
−

(x− v)2

2t dv
R(v, y)

, (6.4)

where R(v, y) =
k=+∞∑
k=−∞

[
sin
(
v − 2kπ + iy

2

)]2λ

e2ikπλ I{(2k−1)π6v<(2k+1)π}, with the principal branch for the

power function.

Remark. There is a similar way to write u(t, x). The proof below uses the method initiated in [1] but let us
notice that the present situation makes clear the periodic properties, the key role of the Poisson kernel in the
disk and some typical features in the estimates (uniqueness for the heat equation in a good class of solutions,
validity of Cauchy’s formula).
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Proof. For z = x+ iy ∈ C, y > 0, we consider the function

Mt(z) =
1
2

∫ π

−π
cot
(
z − u

2

)
µt(du), (6.5)

which is holomorphic in the upper half-plane. Simple calculations, with (4.4) written for the function f(u) =
1
2

cot
(
z − u

2

)
, show that M satisfies the holomorphic Burgers equation


∂Mt(z)
∂t

=
1
2
M ′′t (z) − 2λMt(z).M ′t(z)

M0(z) =
1
2

∫ π

−π
cot
(
z − u

2

)
µ0(du),

(6.6)

where F ′(z) denotes for a holomorphic function F its derivative with respect to the complex variable z. Using
the Poisson kernel in the disk, it is easy to show that Mt(. + iy) converges in the sense of distributions in the
x ∈ [−π;π[ variable to

1
2
pv
(

cot
(x

2

))
∗ µt − iπµt (6.7)

as y tends to 0. Here pv
(

cot
(x

2

))
is the Schwartz distribution f −→ lim

ε→0

∫
ε<|x|<π

f(x)cot
(x

2

)
dx, and by

the very definition of the periodic Hilbert transform H,

H(µt) =
1
2
pv
(

cot
(x

2

))
∗ µt. (6.8)

We set Nt(z) =
∫ z

i

Mt(v)dv, which defines a holomorphic function in the upper half-plane such that N ′t(z) =

Mt(z) and Nt(z + 2π) = Nt(z)− iπ. Moreover, after some calculations, we obtain

ReNt(z)> ln(sinh(y/2)) − ln(cosh(1/2)). (6.9)

Following the Hopf–Cole transformation, we define the new function

Ht(z) = exp (−2λNt(z)) , (6.10)

which is holomorphic in the upper half-plane and satisfies

H ′t(z) = −2λMt(z)Ht(z). (6.11)

We then obtain (
∂ Nt
∂t
− 1

2
N ′′t + λM2

t

)′
= 0, (6.12)

so that

∂ Nt
∂t
− 1

2
N ′′t + λM2

t = f(t) , (6.13)
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for a given continuous function f : R+ → C. We now set Kt = g(t)Ht, where the function g : R+ → C is such
that ġ = 2λfg and g(0) = 1 (the function g does not vanish). Thus K is the unique bounded solution (in x,
for fixed y) to

∂ Kt

∂t
(z) − 1

2
∂2Kt

∂x2
(z) = 0. (6.14)

Therefore, if we set Gt(z) =
1√
2πt

exp
(
− z2

2t

)
, Kt is given by the formula

Kt(x+ iy) =
∫
R
H0(u+ iy)Gt(x− u) du, (6.15)

which becomes, using Cauchy Formula

Kt(x+ iy) =
∫
R
H0(u+ iy)Gt(x− u) du =

∫
z=u+iy

H0(z)Gt(x+ iy − z) dz

=
∫
z=u+i

H0(z)Gt(x+ iy − z) dz =
∫
R
H0(u+ i)Gt(x+ iy − i− u) du

so that Kt is the restriction to the upper half-plane of the holomorphic function (also denoted by K) defined
over the whole complex plane by

Kt(z) =
∫
R
H0(u+ i)Gt(z − i− u)du. (6.16)

We already know that Kt does not vanish in the upper half-plane. Let us suppose that Kt(x0) = 0 for x0 on
the real axis. Since Kt is holomorphic, there exist k ∈ N∗ and a holomorphic function R such that R does not
vanish in the ball B(x0; δ) and

Kt(z) = (z − x0)k R(z). (6.17)

Thus, for z ∈ B(x0; δ) \ {x0},

K ′t(z)
Kt(z)

=
k

z − x0
+
R′(z)
R(z)

· (6.18)

In particular, for 0 < ε < δ

K ′t(x0 + iε)
Kt(x0 + iε)

= −k
ε
i + O(1), (6.19)

when ε tends to 0. On the other hand, we have for y > 0

K ′t(z)
Kt(z)

= −2λMt(z). (6.20)

But the imaginary part of Mt(z) is negative since it is equal to

−1
2

(1− e−2y)
∫ π

−π

µt(du)
1 + e−2y − 2e−y cos(x− u)

· (6.21)
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We get a contradiction. Finally, Kt never vanishes on R and we get on [−π;π[

µt(dx) =
1

2λπ
Im

(
K ′t(x)
Kt(x)

)
dx, (6.22)

H(µt) = − 1
2λ
Re

(
K ′t(x)
Kt(x)

)
· (6.23)

Since K′t(z)
Kt(z)

is analytic in a neighborhood of the closed upper half-plane, both µt and its Hilbert transform H(µt)
possess a real analytic density. This ends the proof of theorem.

7. The hyperbolic case

Using the above remarks, we can state the following result for the situation when the interaction cot is
replaced by coth. Since the proof is quite similar (see also the case 1/x in [1, 4]), we only give the typical
features corresponding to this interaction.

Theorem 7.1. For every N ∈ N with N>2, γ > 0, −∞ < x
(1)
0 6x(2)

0 6 · · ·6x(N)
0 < ∞, there is a unique

X = (X(1), X(2), . . . , X(N)) which is the strong solution of the following stochastic differential system:

dX(1)
t = dB(1)

t + γ
∑

16k 6=16N
coth

(
X

(1)
t −X

(k)
t

)
dt

· · · = · · ·
dX(j)

t = dB(j)
t + γ

∑
16k 6=j6N

coth
(
X

(j)
t −X

(k)
t

)
dt

· · · = · · ·
dX(N)

t = dB(N)
t + γ

∑
16k 6=N6N

coth
(
X

(N)
t −X(k)

t

)
dt,

(7.1)

under the conditions:

X0 =
(
x

(1)
0 , x

(2)
0 , . . . , x

(N)
0

)
(7.2)

X
(1)
t 6X(2)

t 6 · · · 6X(N)
t , 06t <∞, P− a.s. (7.3)

There are collisions with positive probability between particules if and only if γ < 1/2.

Assume now (4.1–4.3). The sequence of measure-valued process (µ(N))N is (weakly) convergent and the limit
µ is the unique continuous probability measure-valued function satisfying:∫

f(x)µt(dx) =
∫
f(x)µ0(dx) +

1
2

∫ t

0

ds
(∫

f ′′(x)µs(dx)
)

+λ

∫ t

0

ds
(∫ ∫

(f ′(x) − f ′(y))coth(x− y)µs(dx)µs(dy)
) (7.4)

for all f ∈ C2
b (R).
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For a probability-measure ν on R, we define the hyperbolic Hilbert transform H(ν) = pv (coth(x)) ∗ ν. Let µ0

a probability-measure on R. Then, there is exactly one (classical) solution u for ∂ut
∂t

=
1
2
∂2u

∂x2
− 2λ

∂(uH(u))
∂x

u(t, x)dx→ µ0 as t→ 0.
(7.5)

Moreover, u and its Hilbert transform H(u) are real analytic functions in (t, x) ∈ R∗+ × R. More precisely, if
µ0 = δ0, then

H(u(t, .))(x) =
1

2λt
lim
y→0

Re

∫
(x− v)e

−
(x− v)2

2t dv
[sinh (v + iy)]2λ∫

e
−

(x− v)2

2t dv
[sinh (v + iy)]2λ

, (7.6)

with the principal branch for the power function.

Sketch of the proof. The proof goes the same way as the previous ones as we already quoted. Notice however the
non vanishing behaviour of coth(x) as x goes to infinity, leading to a long range interaction between particles.
As a consequence, when γ < 1/2, there are collisions with positive probability instead of probability one. To
prove the smoothness of the solution we set

Mt(z) =
∫

coth(z − u)µt(du), (7.7)

for z = x+ iy ∈ C, 0 < y < π. We then have

Mt(z) =
∫

e4(x−u) − 1− 2i sin(2y) e2(x−u)

e4(x−u) + 1− 2 cos(2y) e2(x−u)
µt(du). (7.8)

We set Nt(z) =
∫ z
iπ/2

Mt(v)dv, which defines a holomorphic function in the strip R×]0;π[ such that N ′t(z) =
Mt(z). Simple calculations prove that ReNt(z) > − |x| + ln(sin(y)). Introducing as usually the holomorphic
function Ht(z) = exp(−2λNt(z)), we see that the associated function Kt(z) is still given by the heat kernel
and therefore extends to a holomorphic function on the whole plane. As y goes to zero, the imaginary part of
Mt(z) is negative, so that the usual argument proves that Kt does not vanish on the real line.

We thank Aline Bonami for stimulating discussions on the contents of this paper.
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