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DENSITY ESTIMATION FOR ONE-DIMENSIONAL
DYNAMICAL SYSTEMS

Clémentine Prieur
1

Abstract. In this paper we prove a Central Limit Theorem for standard kernel estimates of the
invariant density of one-dimensional dynamical systems. The two main steps of the proof of this
theorem are the following: the study of rate of convergence for the variance of the estimator and a
variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent
sequences in a sense introduced by Doukhan and Louhichi.
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1. Introduction

This paper considers estimation of the marginal density f of a stationary sequence (Xn)n∈N of dependent
random variables. If (Xn)n∈N satisfies mixing conditions, Robinson [24] obtains the following result:

√
nbn

[
f̂n(x) −Ef̂n(x)

]
D−−−−−→

n→+∞
N
(

0, f(x)
∫ +∞

−∞
K2(t)dt

)
, (1.1)

where f̂n(x) is a standard kernel density estimate defined as follows (see Rosenblatt [25]):

f̂(x) = f̂n(x) =
1
nbn

n−1∑
k=0

K

(
x−Xk

bn

)
, (1.2)

with a sequence (bn)n∈N ∈ (R+)N and a compact supported kernel K : R→ R (we note D its support) satisfying:

bn −−−−−→
n→+∞

0, and
∫
D

K(t)dt = 1, 0 <
∫
D

K2(t)dt <∞. (1.3)

Quote that the last assumption,
∫
D
K2(t)dt <∞, holds for K measurable and bounded.
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The purpose of this paper is to prove such a result for a certain class of one-dimensional dynamical systems.
Let us introduce the class (T ) of dynamical systems:

∀n ≥ 1, Xn = TnX0 (1.4)

such that:

• T : I → R is a function defined on a closed interval I ⊂ R;
• T admits an invariant probability measure µ0 absolutely continuous with respect to the Lebesgue measure;
• the random variable X0 has the distribution µ0.

Therefore (Xn)n∈N is a stationary sequence. Let f denote the density of µ0 with respect to Lebesgue.
We also assume a control of the correlations. Before stating this control, let us define the set of functions BV.

We first define the variation of a function ϕ : I = [L,R] → R (L and R can be respectively set equal to −∞
and +∞) by

V(ϕ) = sup
J

sup
n∑
i=1

|ϕ(xi−1)− ϕ(xi)|

where the first supremum is taken over all compact subsets J = [LJ , RJ ] of I = [L,R], and where the second
supremum is taken over all finite partitions LJ = x0 < x1 < · · · < xn = RJ , n ≥ 1, of J (see [26]). Now BV
denotes the set of functions h : I → R with bounded variation and whose L1−norm is finite (see e.g. [27]). If
||h||BV := V(h) + ||h||1 where V(h) is the variation of h and || · ||1 is the standard norm on L1, then || · ||BV is a
norm and BV endowed with this norm is a Banach space.

We can now state the assumption on the correlations.
There exist a positive constant κ and a sequence of non-negative numbers (dn)n∈N satisfying

∑+∞
k=0 dk <∞

such that

∀n ≥ 0, ∀ h, k ∈ BV, |Cov (h(X0), k(Xn)) | ≤ κ‖k‖1‖h‖BV dn, (1.5)

where Cov denotes the covariance with respect to the invariant measure µ0. This control yields the Theorem 1.1
(see Sect. 4).

The paper is organized as follows. In Section 2, we precise the assumptions on the class T of dynamical
systems. In Section 3 we study the convergence in mean squares of our density estimates. This is the purpose of
Lemma 3.1 which constitutes the tool step of this paper and improves existing results (see Bosq and Guégan [5],
Maës [19]). Section 4 is devoted to the statement and the proof of the main result: the Central Limit Theorem
(CLT) of type (1.1). Lemma 3.1, together with a variation on the Lindeberg–Rio method [22, 23], yields the
central limit Theorem 4.3. Hence the rate of convergence obtained in Lemma 3.1 is “the good one”. Theorem 4.3
does not involve the bias term. However the analysis of the bias is standard (see [2, 25]) and is not linked with
the dependent structure of the subjacent sequence (Xn)n∈N but only on its marginal distribution; this yields
Theorems 4.1 and 4.2. Some examples follow in Section 5.

In Section 6 we extend the results of Sections 3 and 4 to the case where X0 does not follow the invariant
law µ0. Properties of the Perron–Frobenius operator allow to conclude for Lasota–Yorke transformations T
(Lem. 6.1 and Ths. 6.2, 6.3 and 6.4). Thanks to the results of this section, we can choose a density function p
and construct a (non-stationary) sequence (X

′
n)n∈N as follows:

X
′

0 has the distribution p(t)dt, X
′

n = TnX
′

0, n ≥ 1, (1.6)
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and we then estimate the invariant density f with

p̂(x) = p̂n(x) =
1
nbn

n−1∑
k=0

K

(
x−X ′k
bn

)
(1.7)

where bn and K are defined as in (1.3).
Finally, the appendix is devoted to an extension to the case of weakly dependent sequences in a sense

introduced by Doukhan and Louhichi [13] (Th. A.1).

2. Definition of the class T of transformations

In this part we detail the technical assumptions required for the Central Limit Theorems given in Section 4.
We first assume that the kernel K is in the set BV. We consider a closed interval I := [L,R] ⊂ R, and T a
function from I into itself. We denote λ the Lebesgue measure on I and int(I) the interior of I. We assume:
• for all k in N, for all x in int(I), limt→0+ T k(x+ t) =: T k(x+) and limt→0− T

k(x+ t) =: T k(x−) exist;
• for all k in N∗, denote Dk

− := {x ∈ int(I), T k(x−) = x} and Dk
+ := {x ∈ int(I), T k(x+) = x}. Let

I1 := int(I) \ B, where B :=
⋃
k∈N∗(D

k
− ∪Dk

+). We assume λ(B) = 0;
• T admits at least an invariant probability measure µ0 which is absolutely continuous with respect to

Lebesgue measure: dµ0 = fdλ;
• let S := supp(µ0) be the support of µ0. If I2 := S ∩C(f) where C(f) denotes the continuity set of f, then
λ(S \ I2) = 0.

Recall that µ0 is the distribution of X0 and that (Xn)n∈N is defined by (1.4). Finally we assume the control
of correlations described by inequality (1.5) in the introduction (note that the absolutely continuous invariant
probability measure µ0 is unique because of the control of correlations (1.5)).

The following “tent-map” (see Fig. 1 in Sect. 5) belongs to T (hence T 6= ∅):

T (x) =


3
2
x if 0 ≤ x ≤ 1

2−3
2
x+

3
2

if
1
2
< x ≤ 1.

In the next sections, λ(D) denotes the Lebesgue measure of the compact set D.

3. Convergence in mean squares in the stationary case

In this section, we provide the mean squares convergence of the invariant density estimates for dynamical
systems in the class T . Let T be in T , then the series of correlations are summable (1.5).

Remark 3.1. In many examples (see Sect. 5) we have a stronger property: the exponential decay of correlations.
A classical way to prove it is by using the theory of transfer operators (see Collet [8]).

Recall that µ0 is the absolute continuous invariant probability measure for T , that f is its density with respect
to Lebesgue measure on I, and that X0 ∼ µ0. (Xk)k∈N is then a stationary process with marginal density f. We
estimate f by standard kernel estimates of the invariant density. We get the following mean squares convergence
result:

Lemma 3.1. Let T be in the class T and f̂(x) be defined by (1.2) and (1.3). Assume that bn −−−→
n→∞

0. Then
if x ∈ I1 ∩ I2, we have

Var
(
f̂(x)

)
=

1
nbn

(
f(x)

∫
D

K2(s)ds+ o(1)
)
.



54 C. PRIEUR

Remark 3.2. A first evaluation, O
(

1
nb2n

)
, of the rate of convergence of f̂n(x) is given in [5] (or more recently

in [19]). Our result provides limn→+∞(nbn)Var
(
f̂(x)

)
= C, C ≥ 0. This accurate rate of convergence is

necessary in order to obtain the forthcoming Central Limit Theorem (Th. 4.3) from Lindeberg–Rio technique.

To prove such a result in a mixing frame, the authors (e.g. [13]) usually assume that the couples {(X0, Xk)}k∈N∗
have regular joint densities. Here these distributions are singular and therefore our study is quite different. We
first need the two following lemmas:

Lemma 3.2. Assume that T is in the class T and let x ∈ I1 ∩ I2. Assume that bn −−−→
n→∞

0. Then for each

k ∈ N∗, there exists a sequence ε(n, k) −−−→
n→∞

0 such that

Cov
(
K

(
x−X0

bn

)
,K

(
x−Xk

bn

))
= bn ε(n, k).

Lemma 3.3. Assume that T is in the class T and let x ∈ I1 ∩ I2. Assume that bn −−−→
n→∞

0. Then

1
nbn

n−1∑
k=1

(n− k)Cov
(
K

(
x−X0

bn

)
,K

(
x−Xk

bn

))
−−−→
n→∞

0.

Proof of Lemma 3.2. Recall that D denotes the support of K. Let k fixed in N∗, then

Cov
(
K

(
x−X0

bn

)
,K

(
x−Xk

bn

))
=
∫ R

L

K

(
x− T ks
bn

)
K

(
x− s
bn

)
f(s)ds−

(∫ R

L

K

(
x− s
bn

)
f(s)ds

)2

.

• Study of Qn :=
(∫ R

L K

(
x− s
bn

)
f(s)ds

)2

0 ≤ Qn = b2n

∫
x− L
bn

x−R
bn

K(t)f(x− tbn)dt


2

≤ b2n
(∫
D |K(t)| f(x− tbn)dt

)2
.

Let ln(t) := |K(t)| f(x−tbn). As f is continuous at point x (x ∈ I2 implies x ∈ C(f)), we get for all t ∈ D :
ln(t) −−−→

n→∞
|K(t)| f(x). Let ε > 0. As D is compact, the convergence of f(x− tbn) to f(x) is uniform in

t ∈ D. Hence there exists a positive integer N such that for n ≥ N, |ln(t)| ≤ |K(t)| (f(x) + ε) ∀t ∈ D.
Then, as

∫
D |K(t)| (f(x) + ε) dt ≤ (f(x) + ε)

√
λ(D)

√∫
DK

2(t)dt < ∞, the dominated convergence
theorem yields ([26], p. 27)

∫
D

|K(t)| f(x− tbn)dt −−−→
n→∞

f(x)
∫
D

|K(t)|dt <∞.

Hence bn
(∫
D |K(t)| f(x− tbn)dt

)2 −−−→
n→∞

0 and there exists ε1(n) −−−→
n→∞

0 such that Qn = bn ε1(n).
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• Study of An,k :=
∫ R
L K

(
x− T ks
bn

)
K

(
x− s
bn

)
f(s)ds

0 ≤ |An,k| = bn

∣∣∣∣∣∣∣
∫ x− Lbn
x−R
bn

K

(
x− T k(x− tbn)

bn

)
K(t)f(x− tbn)dt

∣∣∣∣∣∣∣
≤ bn

∫
D

∣∣∣∣K (x− T k(x− tbn)
bn

)
K(t)

∣∣∣∣ f(x− tbn)dt.

As D is compact, tbn → 0 uniformly in t ∈ D as n tends to infinity. Hence the existence of onesided limits
at point x implies

x− T k(x− tbn) −→ x− T k(x−), uniformly with respect to t ∈ D∗+ := D ∩ R∗+;
x− T k(x− tbn) −→ x− T k(x+), uniformly with respect to t ∈ D∗− := D ∩ R∗−.

Moreover, by assumption, x− T k(x−) 6= 0 and x− T k(x+) 6= 0. Let D∗ := D \ {0}.
From the compactness of D we exhibit some n0 ∈ N∗ such that

n ≥ n0 =⇒
[
∀ t ∈ D∗ : K

(
x− T k(x− tbn)

bn

)
= 0
]
.

Then n ≥ n0 =⇒ An,k
bn

= 0 and we can write An,k = bnε2(n, k), with ε2(n, k) = 0 for n large enough.

Then Cov
(
K

(
x−X0

bn

)
,K

(
x−Xk

bn

))
= bn[ε2(n, k) − ε1(n)]. Hence for each k ∈ N∗, there exists

ε(n, k) −−−→
n→∞

0 such that Cov
(
K

(
x−X0

bn

)
,K

(
x−Xk

bn

))
= bn ε(n, k), which concludes the proof.

Proof of Lemma 3.3. We have

1
nbn

n−1∑
k=1

(n− k)
∣∣∣∣Cov

(
K

(
x−X0

bn

)
,K

(
x−Xk

bn

))∣∣∣∣ ≤ 1
bn

n−1∑
k=1

∣∣∣∣Cov
(
K

(
x−X0

bn

)
,K

(
x−Xk

bn

))∣∣∣∣ · (3.1)

By the control (1.5) of correlations and from Lemma 3.2 and inequality (3.1), there exists a constant M > 0
such that

1
nbn

n−1∑
k=1

(n− k)
∣∣∣∣Cov

(
K

(
x−X0

bn

)
,K

(
x−Xk

bn

))∣∣∣∣ ≤M n−1∑
k=1

min (ε(n, k), dk).

Let ε > 0. Since
∑∞
k=0 dk <∞, there exists k(ε) ∈ N∗ such that

∑∞
k=k(ε) dk <

ε
2 . So for n ≥ k(ε),

n−1∑
k=1

min (ε(n, k), dk) <
k(ε)−1∑
k=1

ε(n, k) +
ε

2
·

Hence there exists some n0 ≥ k(ε) such that n ≥ n0 implies

k(ε)−1∑
k=1

ε(n, k) +
ε

2
<
ε

2
+
ε

2
= ε.

This entails
∑n−1
k=1 min (ε(n, k), dk) −−−→

n→∞
0 and concludes the proof.
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Remark 3.3. Using similar arguments, we can prove that for all 0 ≤ i < j ≤ n − 1, and for any bounded
function ϕ,

Cov
(
ϕ(X0)

[
K

(
x− T jX0

bn

)
−EK(

x− T jX0

bn
)
]
,K

(
x− T iX0

bn

)
−EK

(
x− T iX0

bn

))
≤ bn × ε(n, j − i),

with ε(n, j− i) −−−→
n→∞

0. We make use of this remark in the next section to prove the central limit Theorem 4.3.

We are now in position to prove Lemma 3.1.

Proof Lemma 3.1. Let Var indf̂(x) denote the variance of 1
nbn

∑n−1
k=0 K

(
x−fXk
bn

)
where the X̃k’s are independent

copies of the Xk’s. We have:

Var (f̂(x)) = Var indf̂(x) +
2

n2b2n

∑
0≤i<j≤n−1

Cov
(
K

(
x−Xi

bn

)
,K

(
x−Xj

bn

))
· (3.2)

As x ∈ I1 ⊂ int(I), we have for n large enough

Var indf̂(x) =
1
nbn

∫
D

K2(s) f(x− sbn)ds− 1
n

(∫
D

K(s) f(x− sbn)ds
)2

.

As f is continuous at point x, and as K is compactly supported and satisfies (1.3), apply twice the dominated
convergence theorem (see e.g. [26], p. 27) to obtain

Var indf̂(x) =
1
nbn

∫
D
K2(s) f(x− sbn)ds− 1

n

(∫
D
K(s) f(x− sbn)ds

)2
=

f(x)
nbn

∫
DK

2(s)ds+ o

(
1
nbn

)
+

1
nbn

{
bn
((∫

DK(s)f(x)ds
)2 + o(1)

)}

=
f(x)
nbn

∫
DK

2(s)ds+ o

(
1
nbn

)
.

Remark 3.4. Quote that Bosq and Lecoutre ([6], p. 76) ask an additional differentiability assumption on f in
order to obtain an equivalent of the bias together with this result.

Hence

Var
(
f̂(x)

)
=
f(x)
nbn

∫
D

K2(s)ds+ o

(
1
nbn

)
+

2
n2b2n

n−1∑
k=1

(n− k)Cov
(
K

(
x−X0

bn

)
,K

(
x−Xk

bn

))
·

Then

Var
(
f̂(x)

)
=
f(x)
nbn

∫
D

K2(s)ds+ o

(
1
nbn

)
+

2
nbn

(
1
nbn

n−1∑
k=1

(n− k)Cov
(
K

(
x−X0

bn

)
,K

(
x−Xk

bn

)))
·

Hence by Lemma 3.3,

Var
(
f̂(x)

)
=

1
nbn

(
f(x)

∫
D

K2(s)ds+ o(1)
)
,

which concludes the proof.
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Remark 3.5. We may also study the MISE defined as follows

MISE (f̂ , f) :=
∫

E(f̂ − f)2dx.

As usual (see [2]) the rate of convergence of the MISE to 0 depends on the regularity of f. If T is Lasota–Yorke
and Markov, we can deduce the regularity of the density f from the one of T (see [1]).

4. A Central Limit Theorem in the stationary case

Many versions of a Central Limit Theorem for the partial sums of dynamical systems 1√
n

∑[ns]
j=1 φ(T j(x))

have been proved in the literature. For example Liverani [18], Viana [27] prove a CLT in the case where s = 1
for some piecewise expanding dynamical systems. Barbour et al. [4] prove a functional CLT with respect to s in
the case where T is some expanding map of the unit interval into itself. They use first a coupling method: they
prove that the iterates of T can be closely tied to an m−dependent process. Then they use techniques which
are derived using Stein’s method, so they obtain bounds on the rate of convergence. Here we prove a CLT for
the density estimates.

We study the following process

Un(x) :=
√
nbn(f̂(x) − f(x)). (4.1)

We do not use a decomposition in Bernstein blocks. Here the idea is to adapt the Lindeberg method after
Rio [23]. To be in position to use such a method, we need the mean squares convergence result stated in
Section 3 (Lem. 3.1). We then study the bias term by a Taylor’s decomposition. Let us now state the central
limit results for the invariant density estimates in the case of dynamical systems in the class T .

We first precise the following notations. If l ∈ N∗ and if a, y1, . . . , yl ∈ R, a ∗ (yi)1≤i≤l denotes the vector
of Rl whose coordinates are a∗y1, . . . , a∗yl, and a∗diag (y1, . . . , yl) denotes the diagonal matrix whose diagonal
terms are equal to a ∗ y1, . . . , a ∗ yl. We also define

Σl :=
(∫

D

K2(s)ds
)
∗ diag (f(x1), . . . , f(xl)) . (4.2)

Theorem 4.1. Let T be in the class T and f̂(x) be defined by (1.2) and (1.3). Assume that bn −−−−−→
n→+∞

0,

nbn −−−−−→
n→+∞

+∞. Let l be a positive integer. For all 1 ≤ i ≤ l, let xi ∈ I1 ∩ I2. Let m be a positive integer.

Assume that for each i, 1 ≤ i ≤ l, there exists a neighbourhood Vi of xi such that the invariant density f
is m-times continuously differentiable on Vi. Also assume that

∫
D s

jK(s)ds = 0 for all integer j such that
1 ≤ j ≤ m− 1 and that nb2m+1

n converges to some non-negative constant ρm as n tends to infinity. Then

(Un(x1), . . . , Un(xl))
D−−−→

n→∞
N
(

(−1)m
√
ρm

m!

∫
D

sm K(s)ds ∗
(
f (m)(xi)

)
1≤i≤l

, Σl

)
,

where Σl is defined by (4.2).

Remark 4.1. For example, when m = 1 Theorem 4.1 yields

(Un(x1), . . . , Un(xl))
D−−−→

n→∞
N
(
−√ρ1

∫
D

s K(s)ds ∗ (f ′(xi))1≤i≤l , Σl

)
.

We can also write such a theorem if the regularity of the invariant density f in terms of Hölder spaces is not
necessarily an integer. Let ν denote the regularity of the function f , this means that setting ν = α + β with
α ∈ N and 0 ≤ β < 1 there exists a constant A > 0 such that f is α-times continuously differentiable with
|f (α)(x)− f (α)(y)| ≤ A|x− y|β for x, y belonging to an arbitrary compact interval. We get the following result:
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Theorem 4.2. Let T be in the class T and f̂(x) be defined by (1.2) and (1.3). Assume that bn −−−−−→
n→+∞

0,

nbn −−−−−→
n→+∞

+∞. Let l be a positive integer. For all 1 ≤ i ≤ l, let xi ∈ I1 ∩ I2. Let ν = α + β with α ∈ N and

0 ≤ β < 1. Assume that for each i, 1 ≤ i ≤ l, there exists a neighbourhood Vi of xi such that the invariant
density f has the regularity ν on Vi. Also assume that

∫
D s

jK(s)ds = 0 for all integer j such that 1 ≤ j ≤ α

and that nb2ν+1
n −−−−−→

n→+∞
0. Then

(Un(x1), . . . , Un(xl))
D−−−→

n→∞
N (0, Σl) ,

where Σl is defined by (4.2).

Example 4.1. In many cases, the regularity of the invariant density f can be deduced from the one of the
dynamic T . Let us give some examples and references.

We consider a transformation T of the interval I = [0, 1]. We assume that T is Lasota-Yorke in a sense
defined in Section 5. Then there exists a countable partition (finite or not) of I, {aj}j∈J , such that for all j ∈ J,
on ]aj, aj+1[, T is expansive (see Assumpt. 5.2). For all j ∈ J, we assume that T admits a continuous extension
to Ij := [aj , aj+1]. Let us denote T (Ij) the image of Ij by the extension of T on Ij . We assume moreover that
T is of Markov type, i.e.

1. if the partition {aj}j∈J is finite, we assume that for all j ∈ J, there exists Kj ⊂ J such that T (Ij) =⋃
k∈Kj Ik. Now if A is a subset of I, let clos(A) denotes the closure of A. We assume in that case that

there exists a positive integer p such that for all j ∈ J, clos (T p (]aj , aj+1[)) = I;
2. if the partition {aj}j∈J is infinitely countable, we assume that for all j ∈ J, T (Ij) = I.

We now give easy examples of such transformations T .
1. the r-adic maps

T (x) = rx [1], where r ∈ N, r ≥ 2.
We have 0 = a0 <

1
r < · · · <

r−1
r < ar = 1;

2. generalization of the r-adic maps

T (x) = rx+ c [1], where r > 1, 0 ≤ c < 1, and r + c ∈ N, c(r + 1) ∈ N∗.

For these maps we can take 0 = a0 <
1−c
r < · · · < (r+c−1)−c

r < ar+c = 1;
3. some piecewise linear transformations.

There exists a countable partition (finite or not), {aj}j∈J , of I such that for all j ∈ J, T (Ij) = I,
T is linear and continuously differentiable on ]aj , aj+1[ and |T ′(x)| ≥ 1 + ε where ε > 0;

4. the Gauss map

T (x) =
1
x
−
[

1
x

]
for x 6= 0 and T (0) = 0.

Then for all j ∈ J = N∗, Ij = [aj , aj+1] =
[

1
j+1 ,

1
j

]
.

For this map we know the exact form of the invariant density, f(x) = 1
log(2) (1+x)−1, which is infinitely

continuously differentiable.
For these transformations T , we know (e.g. [1, 7, 15]) that the regularity of the invariant density f depends
on the one of T . If the partition is finite and if T is piecewise two-times continuously differentiable, then
f is piecewise continuously differentiable. If moreover T is onto on each interval of the partition, then f is
continuously differentiable. In the case where the partition is infinitely countable, a further assumption on the
Schwarzian derivative of T is needed (see e.g. [1,10]) to conclude that f is Hölder continuous.

If the regularity of f is not an integer, no equivalent of the bias seems to be known. The optimal rate is
reached but we do not get an explicit equivalent of the bias. Hence we sometimes prefer not to consider the
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bias term but rather to restrict our attention to the centered estimation process

Yn(x) :=
√
nbn(f̂(x)−Ef̂(x)). (4.3)

We get the following result (see also Applications 6.1 and 6.2 in Sect. 6 for some use of this result):

Theorem 4.3. Let T be in the class T , and f̂(x) be defined by (1.2) and (1.3). Assume that bn −−−−−→
n→+∞

0,

nbn −−−−−→
n→+∞

+∞. Then if for all 1 ≤ i ≤ l, xi ∈ I1 ∩ I2,

(Yn(x1), . . . , Yn(xl))
D−−−→

n→∞
N (0, Σl) ,

where Σl is defined by (4.2).

Remark 4.2. For l = 1 Theorem 4.3 is a CLT. Let J ⊂ I1 ∩ I2 be a compact subinterval of I1 ∩ I2. Working

with arbitrary l and with some f > 0 implies that the sequence of estimation processes
(
Yn(x)√
f(x)

, x ∈ J
)
n∈N∗

is not tight in C(J); its limit is indeed
√∫

DK
2(s)ds Ẇ , where Ẇ is the Gaussian white noise. Now for sake

of simplicity we develop the proof for l = 1. The general case is similar. If one wants to know the asymptotic
behaviour in distribution of the vector (Yn(x1), . . . , Yn(xl)), it is sufficient to use the following proof of
Theorem 4.3 (in the case l = 1) with 1√

nbn

∑l
j=1 sjK(xj−Xkbn

), for arbitrary numbers s1, . . . , sl ∈ R, instead of
1√
nbn

K(x−Xkbn
).

We first prove Theorem 4.3 and then deduce Theorems 4.1 and 4.2 by studying the bias term defined by
BIASn(x) = Ef̂n(x)− f(x).

Proof of Theorem 4.3 with l = 1. Let us first notice that if f(x) = 0, then Yn(x) tends to zero in mean squares
(Lem. 3.1), so it also converges to zero in law.

From now on, we suppose that f(x) > 0. Let gn(t) = 1√
nbn

K(x−tbn
), Mn = ‖gn‖∞, ln = ‖gn‖BV and

δn = ‖gn‖1.
In the following c will denote some constant independent of k and n, which may vary from line to line. We

have Mn ≤ c√
nbn

, ln ≤ c√
nbn

and δn ≤ c bn√
nbn

, where c is positive. We recall that for all h, k in BV

||h · k||BV ≤ ‖h‖∞||k||BV + ‖k‖∞||h||BV . (4.4)

We set, for k = 0, . . . , n− 1 and n = 1, 2, . . . ,

Zn,k = gn(Xn−k−1)−E (gn(Xn−k−1)) , and Sn = Zn,0 + · · ·+ Zn,n−1.

Now let Sk,n = Zn,0 + · · ·+ Zn,k for 0 ≤ k ≤ n− 1. Empty sums are, as usual, set equal to 0.
Hence

lim
n→∞

VarSn = f(x)
∫
D

K2(s)ds > 0. (4.5)

Consider now a bounded thrice differentiable function h : R → R with continuous and bounded derivatives.
Set Cj = ‖h(j)‖∞, for j = 0, 1, 2, 3. Set σ2

n = VarSn. For some standard Gaussian random variable η, write
∆n(h) = E(h(Sn) − h(σnη)). The theorem will follow from (4.5), if we prove that limn→∞∆n(h) = 0. Let
vk,n := VarSk,n −VarSk−1,n, for 1 ≤ k ≤ n− 1.

vk,n = 2
k−1∑
l=0

Cov (Zn,k, Zn,l) + EZ2
n,k =: a1

n,k + a2
n,
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with

a2
n ∼

f(x)
n

∫
D

K2(t)dt,

a2
n independent of k, and

0 ≤ a1
n,k ≤

2
n

k∑
l=1

min (ε(n, l), dl).

So, as in Lemma 3.3, we show that sup0≤k≤n−1(na1
n,k) −→ 0 as n −→ ∞. Then there exists no ∈ N∗ such

that for all n ≥ no and for all k ∈ N∗ such that 0 ≤ k ≤ n − 1 we have vk,n > 0. Therefore we can consider
Yn,k ∼ N (0, vk,n) for sufficiently large n and for 0 ≤ k ≤ n− 1.

Let us assume that the array {Yn,k; 0 ≤ k ≤ n − 1, n ≥ n0} is independent and is independent of the
sequence (Xk)k∈N. If 0 ≤ k ≤ n− 1, set Tn,k =

∑n−1
j=k+1 Yn,j , still with empty sums set equal to 0. We can now

write Rio’s decomposition

∆n(h) =
n−1∑
k=0

∆k,n(h),

with ∆k,n(h) = E [h(Sk−1,n + Zn,k + Tn,k)− h(Sk−1,n + Yn,k + Tn,k)] .
The function x 7→ hk,n(x) = Eh(x + Tn,k) has the same derivability properties as h, e.g. for 0 ≤ j

≤ 3, ‖h(j)
k,n‖ ≤ Cj ; now we write ∆k,n(h) = ∆(1)

k,n(h)−∆(2)
k,n(h), with

∆(1)
k,n(h) = Ehk,n(Sk−1,n + Zn,k)−Ehk,n(Sk−1,n)− vk,n

2
Eh
′′

k,n(Sk−1,n),

∆(2)
k,n(h) = Ehk,n(Sk−1,n + Yn,k)−Ehk,n(Sk−1,n)− vk,n

2
Eh
′′

k,n(Sk−1,n).

• Bound of ∆(2)
k,n(h).

Using Taylor expansion yields for some (random) ρn,k ∈ (0, 1):

∆(2)
k,n(h) = Eh

′

k,n(Sk−1,n)Yn,k +
1
2
Eh
′′

k,n(Sk−1,n)(Y 2
n,k − vk,n) +

1
6
Eh(3)

k,n(Sk−1,n + ρn,kYn,k)Y 3
n,k.

From the independence of the Gaussian sequence (Yn,k)n∈N, 0≤k≤n−1 and the process (Xn)n∈N,

|∆(2)
k,n(h)| ≤ C3

6
E|Yn,k|3 ,

hence

|∆(2)
k,n(h)| ≤

2C3v
3
2
k,n

3
√

2π
·

Now

vk,n = VarZn,k + 2
k−1∑
j=0

Cov(Zn,j , Zn,k),

hence

vk,n ≤ 4Mnδn + 2
k∑
j=1

2δnlndj . (4.6)
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We thus need

n
2
3

 1
n

+
k∑
j=1

dj
n

 −−−→
n→∞

0.

As
∑∞
k=0 dk <∞, the last assertion is always true.

• Bound of ∆(1)
k,n(h).

Set ∆(1)
k,n(h) = Eδ(1)

k,n(h). We write, again with some random τn,k ∈ (0, 1),

δ
(1)
k,n(h) = h

′

k,n(Sk−1,n)Zn,k +
1
2
h
′′

k,n(Sk−1,n)(Z2
n,k − vk,n) +

1
6

(
h

(3)
k,n(Sk−1,n + τn,kZn,k)Z3

n,k

)
.

We analyze separately the terms in the previous expression. We have

1
6

∣∣∣Eh(3)
k,n(Sk−1,n + τn,kZn,k)Z3

n,k

∣∣∣ ≤ C3

6
(4M2

n)(2δn). (4.7)

To estimate the middle term, write (with Rio)

Cov
(
h
′′

k,n(Sk−1,n), Z2
n,k

)
=
k−1∑
j=0

Cov
(
h
′′

k,n(Sj,n)− h′′k,n(Sj−1,n), Z2
n,k

)
.

By Taylor,
Cov

(
h
′′

k,n(Sj,n)− h′′k,n(Sj−1,n), Z2
n,k

)
= Cov

(
Zn,j h

(3)
k,n(Sj−1,n + uZn,j), Z2

n,k

)
,

for some 0 < u < 1.
We can also write

Z2
n,k = g2

n(Xn−k−1)− 2E (gn(Xn−k−1)) gn(Xn−k−1) + [E (gn(Xn−k−1))]2 ,

and
Zn,j = gn(Xn−j−1)−E (gn(Xn−j−1)) .

From those decompositions, the dominant term of

Cov
(
Zn,j h

(3)
k,n(Sj−1,n + uZn,j), Z2

n,k

)
is

Cov
(
gn(Xn−j−1) h(3)

k,n(Sj−1,n + uZn,j), g2
n(Xn−k−1)

)
,

by replacing twice Zn,l by g(Xn−l−1). Hence using (4.4) and Remark 3.3 we obtain:

Cov
(
gn(Xn−j−1) h(3)

k,n(Sj−1,n + uZn,j), g2
n(Xn−k−1)

)
≤ C3 δn 2Mnlndk−j . (4.8)

So, as it is the dominant term, we get the same bound for the other terms. Summing up yields:

∣∣∣Cov
(
h
′′

k,n(Sk−1,n), Z2
n,k

)∣∣∣ ≤ 4
k−1∑
j=0

C3 δn 2Mnlndj . (4.9)

Proceeding as for (4.9) implies:∣∣∣Cov
(
h
′

k,n(Si,n)− h′k,n(Si−1,n), Zn,k
)∣∣∣ ≤ 2C2δnlndk−i. (4.10)



62 C. PRIEUR

Hence from (4.10) and from Remark 3.3:∣∣∣Cov
(
h
′

k,n(Si,n)− h′k,n(Si−1,n), Zn,k
)∣∣∣ ≤ cmin

(
δnlndk−i,

ε(n, k − i)
n

)
· (4.11)

We also have ∣∣∣Eh′′k,n(Sk−1,n)EZn,iZn,k
∣∣∣ ≤ cmin

(
δnlndk−i,

ε(n, k − i)
n

)
· (4.12)

Adding (4.11) and (4.12) and summing up the expression for all i yields:∣∣∣∣∣Eh′k,n(Sk−1,n)Zn,k −Eh
′′

k,n(Sk−1,n)
k−1∑
i=0

EZn,iZn,k

∣∣∣∣∣ ≤ c
k∑
p=1

min
(
δnlndp,

ε(n, p)
n

)
· (4.13)

We add equations (4.7), 1
2 (4.9) and (4.13) to obtain:

∣∣∣∆(1)
k,n(h)

∣∣∣ ≤ c(M2
nδn + δnMnln

k−1∑
p=0

dp +
k∑
p=1

min
(
δnlndp,

ε(n, p)
n

))
· (4.14)

We sum (4.14) for all k to conclude:∣∣∣∣∣
n−1∑
k=0

∆(1)
k,n(h)

∣∣∣∣∣ ≤ c× n
(
M2
nδn + δnMnln

∞∑
p=0

dp +
∞∑
p=1

min
(
δnlndp,

ε(n, p)
n

))
· (4.15)

With the techniques used to prove Lemma 3.3 we can prove

lim
n→∞

n

( ∞∑
p=1

min
(
δnlndp,

ε(n, p)
n

))
= 0.

Replacing Mn, δn, ln by their upper bounds, we easily see on (4.15) that

n−1∑
k=0

∆(1)
k,n(h) −−−→

n→∞
0.

This concludes the proof of Theorem 4.3.

Remark 4.3. The proof of Theorem 4.3 extends immediately to the case gn(t) = 1√
nbn

K(x−ψ(t)
bn

) , where
ψ : I → R is some monotone function.

Instead of BV we can also take a Banach space (B, ‖ · ‖B) whose norm satisfies:

• there exists M > 0 such that for all n in N, ‖ K
(
x−·
bn

)
‖B ≤M ;

•
√
nbn ‖ K2

(
x−·
bn

)
‖B −−−→

n→∞
0.

Equation (4.9) and Lemma 3.2 still hold, thus we can prove Theorem 4.3.
Lipschitz norm does not yield the second point above. Hence we cannot replace the norm ||.||BV by the

Lipschitz norm. Therefore the class of examples is not really large. It is a real problem which is due to the
kernel density estimates whose Lipschitz norm has order O

(
1
bn

)
−−−−−→
n→+∞

+∞.
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Proof of Theorems 4.1 and 4.2. For sake of simplicity, we write the proof for l = 1. We first write

f̂n(x) − f(x) =
[
f̂n(x) −Ef̂n(x)

]
+
[
Ef̂n(x)− f(x)

]
.

The behaviour of f̂n(x) − Ef̂n(x) is given by Theorem 4.3. Hence we restrict our attention to BIASn(x)
= Ef̂n(x) − f(x).

The sequence (Xn)n∈N is stationary because X0 follows the invariant law µ0.
Hence as

∫
DK(s)ds = 1,

BIASn(x) =
∫
D

K(s)[f(x− sbn)− f(x)]ds. (4.16)

Let ν denote the regularity of f on V .
Case ν ∈ N∗ (Th. 4.1):
As D is compact and as bn −−−→

n→∞
0, there exists some n0 ∈ N∗ such that for n ≥ n0 the interval Js,n :=

[min(x− sbn, x), sup(x− sbn, x)] is included in V for all s ∈ D. Hence using (4.16) and Taylor’s decomposition
on each Js,n we get for n ≥ n0

BIASn(x) =
∫
D

K(s)


m−1∑
j=1

(−sbn)j

j !
f (j)(x) +

(−sbn)m

m!
f (m)(x− sts,nbn)

 ds,

where for all n ≥ n0 and for all s ∈ D, ts,n is some real satisfying 0 < ts,n < 1.
Hence, as

∫
D
sjK(s)ds = 0 for all 1 ≤ j ≤ m− 1,

BIASn(x) =
∫
D

K(s)
(−sbn)m

m!
f (m)(x− sts,nbn)ds.

Then as f (m) is continuous in x and as 0 < ts,n < 1 for all s ∈ D and for all n ≥ n0, we have for each
fixed s ∈ D : ts,nsbn −−−→

n→∞
0. Hence, proceeding as in the proof of Lemma 3.2 (study of Qn), we get, by the

dominated convergence theorem,∫
D

(−s)m
m!

K(s)f (m)(x− sts,nbn)ds −−−→
n→∞

f (m)(x)
∫
D

(−s)m
m!

K(s)ds.

Hence, as soon as there exists ρm ∈ R+ such that nb2m+1
n −−−→

n→∞
ρm,

√
nbn BIASn(x) −−−→

n→∞

(−1)m
√
ρm

m!
f (m)(x)

∫
D

smK(s)ds.

This concludes the study of Theorem 4.1.
General case (Th. 4.2):
Here we use the integral form of Taylor’s decomposition. Let n0 ∈ N∗ be such that for n ≥ n0 the interval

Js := [min(x− sbn, x), sup(x− sbn, x)] is included in V for all s ∈ D. Recall that ν = α+ β where α ∈ N and
0 ≤ β < 1.

Empty sums are set equal to 0.
For n ≥ n0,

BIASn(x) =
∫
D


α−1∑
j=1

(−sbn)j

j !
f (j)(x) +

∫ 1

0

(−sbn)α

(α − 1)!
(1− t)α−1f (α)(x− stbn)dt

K(s)ds.
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As
∫
D
sjK(s)ds = 0 for all 1 ≤ j ≤ α we deduce:

BIASn(x) =
∫
D

∫ 1

0

(1− t)α−1

(α − 1)!
(−bn)αsα[f (α)(x− stbn)− f (α)(x)]dtK(s)ds.

As f has the regularity ν = α+ β (in terms of Hölder spaces) on V , there exists some constant A independent
of n such that:

|BIASn(x)| ≤
∫
D

1
(α− 1)!

bαns
α A bβns

β |K(s)|ds =
A bνn

(α− 1)!

∫
D

sν |K(s)|ds.

As D is compact and as
∫
DK

2(s)ds <∞, we have
∫
D s

ν |K(s)|ds <∞. Hence there exists some non-negative
constant C independent of n such that:

|BIASn(x)| ≤ C bνn.

So
√
nbn BIASn(x) −−−→

n→∞
0 as soon as nb2ν+1

n −−−→
n→∞

0. This concludes the proof of Theorem 4.2.

5. Examples of dynamical systems in the class T
Without being exhaustive we will now give some examples of dynamics T which satisfy all the previous

assumptions.

• Lasota–Yorke functions

Let T be some piecewise smooth expanding map of the interval [0, 1]. Following Viana ([27], Chap. 3),
we introduce the following set of assumptions for T .

Assumption 5.1. (regularity). There exists 0 = a0 < a1 < · · · < al = 1 such that the restriction of T to
each ηi = (ai−1, ai) is of class C1, with |T ′(x)| > 0 for all x ∈ ηi and i = 1, . . . , l.

Moreover, the function gηi = 1
|T ′ηi |

has bounded variation for i = 1, . . . , l.

If h is some function on I and if J ⊂ I, hJ denotes the restriction of h to J.
Using this notation: (Tηi) and gηi admit continuous extensions to η̄i = [ai−1, ai] for each i = 1, . . . , l.

Since modifying the values of a map over a finite set of points does not change its statistical properties,
we may assume that T is either left-continuous or right-continuous (or both) at ai, for each i = 1, . . . , l.

Then let P (1) be some partition of I into intervals η such that ηi ⊂ η ⊂ η̄i for some i and such that
(Tη) is continuous.

For n ≥ 1, P (n) is the Markov partition of I: P (n)(x) = P (n)(y) if and only if P (1)(T j(x)) = P (1)(T j(y))
for all 0 ≤ j < n. (P (n) is the largest partition on which T n is monotone.)

Given η ∈ P (n), denote g(n)
η = 1

|(Tnη )′| .

Assumption 5.2. (expansivity). There exist C1 > 0 and λ1 < 1 such that supt∈η g
(n)
η (t) ≤ C1λ

n
1 for all

η ∈ P (n) and all n ≥ 1.

Assumption 5.3. (topological mixing). There is an interval I∗ ⊂ I = [0, 1] such that T (I∗) = I∗, every
orbit Tn(x), x ∈ (0, 1), eventually enters I∗, and TI∗ is topologically mixing: for each interval J ⊂ I∗
there is n ≥ 1 such that T n(J) = I∗.

Lasota and Yorke [16], Liverani [17], Viana [27] and others study such functions. It may be shown
(Viana [27]) that T admits a unique absolutely continuous invariant probability measure µ0 (dµ0 = f dt
where dt is the Lebesgue measure on [0, 1]). In addition, µ0 is ergodic and its support coincides with I∗.
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We also have that f has bounded variation on [0, 1]. This implies that f is continuous on [0, 1] except at
most for countably many points. So our assumptions in Section 1 are satisfied.

The “tent-maps” having a large enough slope and the r-adic transformations, for r > 1, of the interval
are two examples of Lasota–Yorke functions.

– “tent-map”
It has T

′
constant and strictly larger than 1 in absolute value, in each of the monotonicity intervals

[0, c) and (c, 1].
Moreover if c = 1

2 and |T ′(x)| = σ >
√

2 for all x 6= c, we have I∗ = [T 2(c), T (c)].

Figure 1. The “tent map” for c = 0.5 and T (c) = 0.75.

– r-adic transformations (r > 1) of the interval [0, 1]. We have I∗ = I.

Figure 2. The r-adic map with r = 8/3.

• Functions with infinitely many monotonicity intervals. The precedent case extends, under appropriate
conditions, to piecewise expanding maps with countably many domains of smoothness and monotonicity
(see e.g. Broise [7], Viana [27]). For example if we consider the Gauss-map, that is the map T defined
by T (x) = 1

x − [ 1
x ] for x 6= 0 and T (0) = 0, we have summable decay of correlations and an invariant

probability measure µ0 absolutely continuous with respect to Lebesgue on [0, 1] and whose density has
bounded variation. We have, keeping the former notation, I∗ = I. Furthermore the Gauss-map satisfies
the assumptions in Section 1. Therefore we have the result for the invariant density estimates in that
case.

Remark 5.1. Let T : [0, 1] → [0, 1] defined by T (x) = 4x(1 − x), then Theorem 4.3 still holds because this
map is obtained from a “tent map” by conjugation.

6. A non-stationary case

Lasota–Yorke functions T , introduced in Section 5, have additional properties which allow us to extend the
previous results to the non-stationary case. We use the same definitions as before (e.g. (Xn) is the stationary
dynamical system). Now let p be any density function on I = [0, 1] with bounded variation. We set p(t) = 0
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Figure 3. The Gauss-map.

Figure 4. T (x) = 4x(1− x).

for t /∈ I. We define a random variable X
′

0 with distribution p(t)dt and the (non-stationary) dynamical system
X
′

n = TnX
′

0, n ≥ 1 (as in (1.6)).

6.1. Classical results

In the case of Lasota–Yorke function T , the invariant density f of T has bounded variation. We define the
Perron–Frobenius operator L (for sake of simplicity we write L for LT ) as follows:

L :

 BV → BV
ω 7→ Lω(x) =

∑
Ty=x

ω(y)
|T ′(y)| ·

The following theorem collects properties of both the Perron–Frobenius operator L and the associated invariant
density f of the Lasota–Yorke function T .

Theorem 6.1. (Liverani [17], Collet [8], Viana [27])

• h ∈ BV =⇒ Lnh ∈ BV ∀n ∈ N. Moreover supn∈N ||Lnh||BV <∞. (6.1)
• If f denotes the invariant density, then there exists some γ > 0 such that:

1
γ
≤ f(t) ≤ γ for all t ∈ I. (6.2)

Then 1
f has also bounded variation.

• ∃ R > 0, ∃ 0 ≤ λ < 1, ∀j ∈ N : ||Ljp− f ||∞ ≤ R λj . (6.3)
• The correlations decrease exponentially fast. Hence there exists κ > 0 such that for any h, k ∈ BV,

|Cov (h(X0), k(Xn)) | ≤ κ ‖k‖1 ‖h‖BV λn ∀n ≥ 0, (6.4)
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where Cov denotes the covariance with respect to the invariant probability measure µ0, and λ is the same
as in (6.3).

Remark 6.1. The second assertion of Theorem 6.1 yields that if T is Lasota–Yorke, we can not have f(x) = 0.

6.2. Convergence in mean squares

Let us first recall the definition (1.7) of p̂(x):

p̂(x) = p̂n(x) =
1
nbn

n−1∑
k=0

K

(
x−X ′k
bn

)
,

where bn and K are defined in the introduction by (1.3). The following result extends Lemma 3.1 to non-
stationary dynamical systems, I1 and I2 being defined as in Section 2.
λ(D) <∞ still denotes the Lebesgue measure of the compact D.

Lemma 6.1. Let T be a Lasota–Yorke function and p̂n(x) be defined by (1.3, 1.6) and (1.7). Assume that
bn −−−→

n→∞
0. Then for x ∈ I1 ∩ I2 we have

Var (p̂(x)) =
1
nbn

(
f(x)

∫
D

K2(s)ds+ o(1)
)
.

Proof of Lemma 6.1. Write

(nbn)Var (p̂(x)) = Vn +
2
nbn

∑
1≤i<j≤n

Ci,j (6.5)

with

Vn :=
1
nbn

n−1∑
k=0

EK2

(
x−X ′k
bn

)
−
n−1∑
k=0

(
EK

(
x−X ′k
bn

))2
 (6.6)

and

Ci,j := Cov
(
K

(
x−X ′i
bn

)
,K

(
x−X ′j
bn

))
· (6.7)

Note that Ci,j depends on n.

• Study of 2
nbn

∑
0≤i<j≤n−1 Ci,j:

|Ci,j | =
∣∣∣∣∫ 1

0 K

(
x− t
bn

)
K

(
x− T j−it

bn

)
Lip(t)dt−

∫ 1

0 K

(
x− t
bn

)
Lip(t)dt

∫ 1

0 K

(
x− t
bn

)
Ljp(t)dt

∣∣∣∣
≤

∣∣∣∣∫ 1

0
K

(
x− t
bn

)
K

(
x− T j−it

bn

)
Lip(t)dt−

∫ 1

0
K

(
x− t
bn

)
Lip(t)dt

∫ 1

0
K

(
x− t
bn

)
f(t)dt

∣∣∣∣
+
∣∣∣∣∫ 1

0
K

(
x− t
bn

)
Lip(t)dt

∫ 1

0
K

(
x− t
bn

)(
Ljp(t)− f(t)

)
dt
∣∣∣∣ =: An,i,j +Bn,i,j.



68 C. PRIEUR

By inequality (6.2) of Theorem 6.1, f is bounded below by 1
γ > 0, so we can write:

An,i,j =
∣∣∣∣∫ 1

0

K

(
x− t
bn

)
K

(
x− T j−it

bn

)
Lip(t)
f(t)

f(t)dt−
∫ 1

0

K

(
x− t
bn

)
Lip(t)
f(t)

f(t)dt
∫ 1

0

K

(
x− t
bn

)
f(t)dt

∣∣∣∣ .
We note that An,i,j = |Cov (h(X0), k(Xj−i)) |, where h : t 7→ K(x−tbn

)L
ip(t)
f(t) and k : t 7→ K(x−tbn

).
In the following c will denote some constant independent of n, i, and j which may vary from line to line.
Quote that there exists a constant c independent of n such that ||Lnp||∞ ≤ c. Indeed, ||Lnp||∞ ≤ ||Lnp||BV

and by assertion (6.1) in Theorem 6.1, supn∈N ||Lnp||BV <∞.
We obtain An,i,j ≤ c bnλj−i by using Theorem 6.1.
Analogously, for Bn,i,j , we have

Bn,i,j ≤
∣∣∣∣∫ 1

0

K

(
x− t
bn

)
Lip(t)dt

∣∣∣∣ ∫ 1

0

∣∣∣∣K (x− tbn

) (
Ljp(t)− f(t)

)∣∣∣∣ dt ≤ b2n c λj .
Using the bound λ < 1 now yields An,i,j +Bn,i,j ≤ c bnλj−i.

Remark 6.2. Using similar arguments, we can prove that given any h ∈ BV and k ∈ L1(dt) we have for all
0 ≤ i < j ≤ n− 1

|Cov
(
h(X ′i), k(X ′j)

)
| ≤ c ||h||BV ||k||1λj−i. (6.8)

Using Theorem 6.1 and the proof of Lemma 3.2, we get

|Ci,j | =
∣∣∣∣∫ 1

0

K

(
x− t
bn

)
K

(
x− T j−it

bn

)
Lip(t)dt−

∫ 1

0

K

(
x− t
bn

)
Lip(t)dt

∫ 1

0

K

(
x− t
bn

)
Ljp(t)dt

∣∣∣∣
≤ bn ε(n, j − i),

where for j − i fixed in N∗, ε(n, j − i) −−−−→
n−→∞

0.
Therefore∣∣∣∣∣∣ 2

nbn

∑
0≤i<j≤n−1

Ci,j

∣∣∣∣∣∣ ≤ 2 c
n

∑
0≤i<j≤n−1

min
(
λj−i, ε(n, j − i)

)
≤ c

n−1∑
k=1

min
(
λk, ε(n, k)

)
· (6.9)

The right hand side of this inequality tends to 0 as n tends to infinity.

Remark 6.3. Using similar arguments, we can prove that for all 0 ≤ i < j ≤ n − 1, and for any bounded
function ϕ,

Cov

(
ϕ(X0)

(
K

(
x− T jX ′0

bn

)
−EK

(
x− T jX ′0

bn

))
,K

(
x− T iX ′0

bn

)
−EK

(
x− T iX ′0

bn

))
≤ bn ε(n, j − i),

with ε(n, j − i) −−−→
n→∞

0.
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• Study of Vn:

Using Var indf̂(x) introduced in formula (3.2), it is worth decomposing Vn as follows:

Vn = (nbn)Var indf̂(x) + (sn + s
′

n) := (nbn)Var indf̂(x) +
(
Vn − (nbn)Var indf̂(x)

)
, (6.10)

where

sn :=
1
nbn

(
n−1∑
k=0

EK2

(
x−X ′k
bn

)
−EK2

(
x−Xk

bn

))
and

s
′

n :=
1
nbn

n−1∑
k=0

(
EK

(
x−X ′k
bn

))2

−
(

EK
(
x−Xk

bn

))2
 .

We have

|sn| =

∣∣∣∣∣ 1
nbn

(
n−1∑
k=0

∫ 1

0

K2

(
x− t
bn

)(
Lkp(t)− f(t)

)
dt

)∣∣∣∣∣ .
Hence, using (6.3) in Theorem 6.1 we get

|sn| ≤
1
n

∫
D

K2(s)
n−1∑
k=0

∣∣(Lkp(x− sbn)− f(x− sbn)
)∣∣ ds ≤ R

∫
D
K2(s)ds
n

n−1∑
k=0

λk. (6.11)

The right hand side of this inequality tends to 0 as n tends to infinity.

Let K ′n = K

(
x−X′n
bn

)
, Kn = K

(
x−Xn
bn

)
. Then using the following identity

(EK ′n)2 − (EKn)2 = (E (K ′n −Kn)) (E (K ′n +Kn)) ,

we have by (6.1, 6.2) and (6.3) in Theorem 6.1:

|s′n| =
∣∣∣∣ 1
nbn

∑n−1

k=0

(∫ 1

0
K

(
x− t
bn

)(
Lkp(t)− f(t)

)
dt
)(∫ 1

0
K

(
x− t
bn

)(
Lkp(t) + f(t)

)
dt
)∣∣∣∣

≤ R

n

(∑n−1

k=0
λk
)
bn (supn ||Lnp||∞ + γ) λ(D)

∫
D
K2(s)ds.

As 0 ≤ λ < 1 and as
∫
DK

2(s)ds < ∞, the right hand side of this inequality tends also to 0 as n tends to
infinity.

Hence by (6.10, 6.11) and (6.2),

Vn ∼ (nbn) Var indf̂(x) ∼ f(x)
∫
D

K2(t)dt > 0 as n tends to infinity. (6.12)

Collecting (6.5) and bounds (6.9) and (6.12) yields the result:

(nbn)Var (p̂(x)) −−−−−→
n→+∞

f(x)
∫
D

K2(t)dt.
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6.3. Central Limit Theorem

Theorems 6.2, 6.3 and 6.4 below deal with the non-stationary case and are analogous to Theorems 4.1, 4.2
and 4.3 of Section 4. The setting is not really different from the stationary one. We first study the following
process

U
′

n(x) :=
√
nbn(p̂(x) − f(x)). (6.13)

Theorem 6.2. Let T be a Lasota–Yorke function and p̂n(x) be defined by (1.3, 1.6) and (1.7). Assume that
bn −−−−−→

n→+∞
0, nbn −−−−−→

n→+∞
+∞. Let l be a positive integer. For all 1 ≤ i ≤ l, let xi ∈ I1 ∩ I2. Let m be a positive

integer. Assume that for each i, 1 ≤ i ≤ l, there exists a neighbourhood Vi of xi such that the invariant density
f is m−times continuously differentiable on Vi. Also assume that

∫
D
sjK(s)ds = 0 for all 1 ≤ j ≤ m− 1 and

that nb2m+1
n converges to some non-negative constant ρm as n tends to infinity. Then

(U ′n(x1), . . . , U ′n(xl))
D−−−→

n→∞
N
(

(−1)m
√
ρm

m!

∫
D

sm K(s)ds ∗
(
f (m)(xi)

)
1≤i≤l

, Σl

)
,

where Σl is defined by (4.2).

Let us now consider the case where the invariant density f has a regularity ν = α + β with 0 ≤ β < 1 and
α ∈ N.

Theorem 6.3. Let T be a Lasota–Yorke function and p̂(x) be defined by (1.3, 1.6) and (1.7). Assume that
bn −−−−−→

n→+∞
0, nbn −−−−−→

n→+∞
+∞. Let l be a positive integer. For all 1 ≤ i ≤ l, let xi ∈ I1 ∩ I2. Let ν = α + β

with 0 ≤ β < 1 and α ∈ N. Assume that for each i, 1 ≤ i ≤ l, there exists a neighbourhood Vi of xi such that
the invariant density f has the regularity ν on Vi. Also assume that

∫
D s

jK(s)ds = 0 for all integer j such that
1 ≤ j ≤ α and that nb2ν+1

n −−−−−→
n→+∞

0. Then

(U ′n(x1), . . . , U ′n(xl))
D−−−→

n→∞
N (0, Σl) ,

where Σl is defined by (4.2).

As in the stationary case, we sometimes prefer to study the centered estimation process

Y
′

n(x) :=
√
nbn(p̂(x)−Ep̂(x)). (6.14)

We then get:

Theorem 6.4. Let T be a Lasota–Yorke function and p̂(x) be defined by (1.3, 1.6) and (1.7). For all 1 ≤
i ≤ l, let xi ∈ I1 ∩ I2. Assume that bn −−−→

n→∞
0, nbn −−−→

n→∞
∞. Then the finite dimensional marginals

(Y ′n(x1), . . . , Y ′n(xl)) of the process

Y ′n(x) ≡ Y
′

n(x)√
f(x)

∫∞
−∞K2(t)dt

converge in distribution to a standard N (0, Il) random variable.

Remark 6.4. Here we have normalized the process Y
′

n(x). It is possible as f(x) > 0 for Lasota–Yorke functions
T (see Th. 6.1).

As in the stationary case, we first prove Theorem 6.4 and then deduce Theorems 6.2 and 6.3 by studying
the bias term. For the proof of Theorem 6.4 we develop the proof for l = 1 for sake of simplicity. If one wants
to know the asymptotic behaviour in distribution of the vector (Y

′

n(x1), . . . , Y
′

n(xl)), it is sufficient to use the
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following proof (in the case l = 1) with 1√
nbn

∑l
j=1 sjK(xj−X

′
k

bn
), for arbitrary numbers s1, . . . , sl ∈ R, instead

of 1√
nbn

K(x−X
′
k

bn
).

Let us first give two applications of Theorem 6.4.

Application 6.1 Let r be a positive integer. For all 1 ≤ i ≤ r we define

p̂(i)
n (x) =

1
nbn

n−1∑
k=0

K

(
x−X ′k

(i)

bn

)

where for all n,
(
X
′

0

(i)
, . . . , X

′

n−1

(i)
)
∼
(
X
′

0, . . . , X
′

n−1

)
. We assume that the sequences X(i) :=

(
X
′

k

(i)
)
k∈N

,

for i ∈ N, are independent of each other. Hence p̂(0)
n (x), p̂(1)

n (x), . . . , p̂(r)
n (x) are r + 1 independent copies of

p̂n(x), and we can consider

Ŷ
′

n(x) :=
√
nbn

{
p̂(0)
n (x)− p̂

(1)
n (x) + · · ·+ p̂

(r)
n (x)

r

}
·

Let assume that bn −−−→
n→∞

0, nbn −−−→
n→∞

∞. We also assume that r depends on n, r = r(n), with r(n)
n ≤ C

where C is some positive constant and r(n)bn −−−→
n→∞

∞. For example take r(n) = n. For all i and for large n,

∣∣∣p̂(i)
n (x)−Ep̂n(x)

∣∣∣ ≤ 2 ||K||∞
bn

and ∑r
i=1 Var

(
p̂

(i)
n (x)

)
= r Var (p̂n(x)) =

r(n)
nbn

(
f(x)

∫
D

K(s)ds+ on(1)
)

≤ C
bn

(
f(x)

∫
D

K(s)ds+ 1
)
.

Hence using Bernstein’s inequality in Pollard ([20], pp. 192, 193) we get for all η > 0

P
(∣∣∣ p̂(1)

n (x)+···+p̂(r)
n (x)

r −Ep̂n(x)
∣∣∣ > η

)
≤ 2 exp

(
−η2 r2 bn

2 C (f(x)
R
D
K2(s)ds+1)+ 4

3 η r ||K||∞

)
.

The exponential term above tends to 0 as n tends to infinity. Hence, we can approach Y
′
n(x) by the empirical

quantity Ŷ ′n(x). The advantage of Ŷ ′n(x) is that it can be simulated. Indeed it does not involve the knowledge
of f(x).

Application 6.2 Now let p̂(1)
n (x) and p̂(2)

n (x) be two independent copies of p̂n(x). The difference

Φn(x) =
√
nbn

(
{p̂(1)
n (x) −Ep̂(1)

n (x)} − {p̂(2)
n (x)−Ep̂(2)

n (x)}
)

does not depend on Ep̂n(x). Indeed Φn(x) =
√
nbn

(
p̂

(1)
n (x)− p̂(2)

n (x)
)
.

Moreover, Φn(x) converges in distribution to a N (0, 2 f(x)
∫
DK

2(s)ds) random variable as n tends to infinity
as soon as bn −−−→

n→∞
0, nbn −−−→

n→∞
∞. To estimate f(x) it can be useful to work with Φn(x) instead of U

′
n(x)
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as f(x) only appears in the variance term of the limit of Φn(x) and not in the quantity Φn(x) itself. Hence to
simulate Φn(x) we have neither to approach Ep̂n(x) using exponential inequalities as in Application 6.1 nor to
know f(x) (as X

′

0 has the distribution p(t) dt where p is known).

Proof of Theorem 6.4 with l = 1. We use notations gn, Mn, ln, and δn of Theorem 4.3. As in the proof of
Theorem 4.3 we obtain Mn ≤ c√

nbn
, ln ≤ c√

nbn
and δn ≤ c bn√

nbn
, for some positive constant c.

We set for k = 0, . . . , n− 1 and n = 1, 2, . . . ,

Z
′

n,k = gn(X
′

n−k−1)−E
(
gn(X

′

n−k−1)
)
, and S

′

n = Z
′

n,0 + · · ·+ Z
′

n,n−1.

Now let S
′

k,n = Z
′

n,0 + · · ·+ Z
′

n,k for 0 ≤ k ≤ n− 1. Empty sums are, as usual, set equal to 0.
Recall that

lim
n→∞

VarSn = f(x)
∫
D

K2(s)ds > 0. (6.15)

We still consider a bounded thrice differentiable function h : R→ R with continuous and bounded derivatives,
with Cj = ‖h(j)‖∞, for j = 0, 1, 2, 3. As in the proof of Theorem 4.3, also consider σ2

n = VarSn, and set in
that case for some standard Gaussian r.v. η, ∆n(h) = E(h(S

′
n)− h(σnη)). As in the proof of Theorem 4.3, the

theorem will follow if we prove that limn→∞∆n(h) = 0.
Let us assume {Yn,k; 0 ≤ k ≤ n − 1, n ≥ n0} to be defined as in Section 3. Tn,k is also defined as before.

We are now in position to use Rio’s decomposition

∆n(h) =
n−1∑
k=0

∆k,n(h),

with ∆k,n(h) = E(h(S
′

k−1,n + Z
′

n,k + Tn,k)− h(S
′

k−1,n + Yn,k + Tn,k)).
We still use the function x → hk,n(x) = Eh(x + Tn,k), which has the same derivability properties as the

function h.
We proceed as in Section 4.
Inequality (6.8) replaces inequality (1.5).
For example inequality (4.12) in the proof of Theorem 4.3 is replaced by

|Eh′′k,n(S
′

k−1,n)EZ
′

n,iZ
′

n,k| ≤ cmin
(
δnlnλ

k−i,
ε(n, k − i)

n

)
·

Hence doing this with each inequality of the proof of Theorem 4.3 we conclude the proof of Theorem 6.4.

Let us now prove Theorems 6.2 and 6.3.

Proof of Theorems 6.2 and 6.3. We have the following decomposition:

p̂n(x)− f(x) = p̂n(x) −Ep̂n(x) + Ep̂n(x)−Ef̂n(x) + Ef̂n(x)− f(x).

The term p̂n(x) − Ep̂n(x) is studied in Theorem 6.4. The term Ef̂n(x) − f(x) = BIASn(x) is studied in
the proof of Theorems 4.1 and 4.2. It does not depend on the density p. So we just have to study the term
Ep̂n(x)−Ef̂n(x). We have

Ep̂n(x)−Ef̂n(x) =
1
n

∫ x−L
bn

x−R
bn

K(s)
n−1∑
k=0

[
Lkp(x− sbn)− f(x− sbn)

]
ds. (6.16)
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Using inequality (6.3) in Theorem 6.1, equality (6.16) and
∫
D
K2(s)ds <∞ we get

∣∣∣Ep̂n(x) −Ef̂n(x)
∣∣∣ ≤ R

n

n−1∑
k=0

λk

√∫
D

K2(s)ds
√
λ(D) ≤ R

n

1
1− λ

√∫
D

K2(s)ds
√
λ(D) (6.17)

where 0 ≤ λ < 1. As bn −−−→
n→∞

0 and as
∫
DK

2(s)ds < ∞, inequality (6.17) yields
√
nbn

∣∣∣Ep̂n(x)−Ef̂n(x)
∣∣∣

−−−→
n→∞

0. It concludes the proof of Theorems 6.2 and 6.3.

Remark 6.5. Notice that supt∈I |Ln1(t) − f(t)| tends to 0 exponentially fast, hence Ln1 also appears to be
a good evaluation of f. Unfortunately explicit computations of Ln1 involve a complete knowledge of iterated
preimages with respect to T. Example given for r ∈ N∗ the r−adic transformation involves rn such preimages.

Appendix A. Appendix

Extension to weak dependent sequences
We extend here the results of this paper to weak dependent sequences. Let us first introduce our dependence

frame which is a variation on the definition in Doukhan and Louhichi [13]. Assume that, for convenient functions
h and k,

Cov (h(“past”), k(“future”))

converges to 0 as the distance between the “past” and the “future” converges to infinity. Here “past” and
“future” refer to the values of some time series of interest. Asymptotically, this means that independence holds
if we use a determining function class.

More precisely, E being some Euclidean space Rd endowed with its Euclidean norm ‖.‖, we shall consider a
sequence of E-valued random variables (ξn)n∈N. We define L∞ as the set of measurable and bounded numerical
functions on some space Rk, k ∈ N∗ and its norm is classically written ‖ • ‖∞.

Moreover, let u ∈ N∗ be a positive integer. We endow the set F = Eu with the norm

‖(x1, . . . , xu)‖F = ‖x1‖+ · · ·+ ‖xu‖.

Let now h : F = Eu → R be a numerical function on F , we set

Lip(h) = sup
x 6=y

|h(x)− h(y)|
‖x− y‖F

the Lipschitz modulus of h. Define

L =
∞⋃
u=1

{h ∈ L∞(Eu,R); ‖h‖∞ ≤ 1,Lip(h) <∞} · (A.1)

Definition A.1. The sequence (ξn)n∈N is s-weakly (resp. a-weakly) dependent, if for some sequence θ =
(θr)r∈N decreasing to zero at infinity and any (u+1)-tuple (i1, . . . , iu, j1) with i1 ≤ . . . ≤ iu < iu + r ≤ j1, for
h ∈ L∞ satisfying ‖h‖∞ ≤ 1 and for k ∈ L,

|Cov (h(ξi1 , . . . , ξiu ), k(ξj1)) | ≤ Lip(k)θr , (A.2)

and respectively for h, k ∈ L

|Cov (h(ξi1 , . . . , ξiu), k(ξj1)) | ≤ Lip(h)Lip(k)θr. (A.3)
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The results presented in this appendix improve CLTs stated by Doukhan and Louhichi in a more general
non-causal frame (see [13]). We work here indeed under a fundamental causality assumption. Contrarly to
Doukhan and Louhichi [13], we do not use Bernstein blocks but a variation on the Lindeberg–Rio method. We
also relax assumptions in Coulon–Prieur and Doukhan [9]. Indeed, in [9], the authors need two points in the
future. Here we just consider one point in the future ξj1 .

Note that the notions of weak dependence and dynamical systems are not that much different. For example
let us define the autoregressive model by:

ξn = T (ξn−1) + ηn, (A.4)

with T : R → R such that |T (u) − T (u′)| ≤ c|u − u′| for some 0 ≤ c < 1 and for all u, u′ ∈ R, and with
(ηn)n∈Z some real valued i.i.d inovation process satisfying E|η0| < ∞. This model is s-weakly dependent. A
generalization of this model is given by:

Xn+1 = F (Xn, εn+1),
with (εi)i∈N a sequence of independent random variables (r.v.s) and with F a measurable function. Such Markov
chains are actually noisy dynamical systems (see Baladi et al. [3]).

We refer to [9] for further examples of weak dependent sequences.

Density estimation in the case of weak dependence
We are now going to extend Theorem 4.3.
Yn(x) is defined as in Section 4, that is
Yn(x) :=

√
nbn

(
f̂(x)−Ef̂(x)

)
, where f̂n(x) = 1

nbn

∑n
k=1K

(
x−ξk
bn

)
, and K is supposed to be Lipschitz.

Theorem A.1. Assume that the previous s−weak dependence (resp. a−) condition holds for the stationary real
valued sequence (ξn)n∈N with for some positive a < 1

3 (resp. a < 1
4)
∑∞
p=1 θ

a
p <∞, then the finite dimensional

marginals (Yn(x1), . . . , Yn(xl)), of the process Yn(x) ≡ Yn(x)/
√
f(x)

∫∞
−∞ u

2(t)dt converge in distribution to
an N (0, Il) random variable if we assume moreover that f(x1) 6= 0, . . . , f(xl) 6= 0, that ξ0’s marginal admits
a continuous marginal density f and the marginal densities fk(x, y) of the bivariate random variables (ξ0, ξk)
exist for any k > 0 and satisfy sup

k>0
sup

(x,y)∈R2
fk(x, y) <∞.

Remarks.
• Here we need the existence of marginal densities fk(x, y) of the bivariate random variables (ξ0, ξk). It is

a classical assumption in that frame. We recall that in the case of dynamical systems, such densities are
singular. The strong estimate

Cov
(
K

(
x− ξj
bn

)
, K

(
x− ξi
bn

))
≤ C b2n

is standard under this condition while in the dynamical case, we just use that

Cov
(
K

(
x− T jX0

bn

)
, K

(
x− T iX0

bn

))
≤ C bn ε(n, j − i)

for a sequence ε(n, k) −−−→
n→∞

0 for any k. We also replace the summable decay of correlations (see (1.5))
of dynamical systems in the class T by a weak dependence condition.

Furthermore, in the case of stationary dynamical systems, we do not have any reason to suppose that

sup
1≤k≤n

1
bn

Cov
(
K

(
x−X0

bn

)
, K

(
x−Xk

bn

))
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tends to 0 as n tends to infinity, so using our estimates it appears to be hopeless to consider the Lipschitz
or an Hölder norms as in the case of weak dependence instead of the norm || • ||BV without adding
assumptions on the sequence (bn)n∈N.
• The conditions hold respectively if θr = O(r−a) for some a > 3 (resp. a > 4).
• This result improves on a previous result in Doukhan and Louhichi [14], e.g. under association we need

Cov(ξ0, ξr) = O(r−a) for a > 5 while the previous result was obtained assuming a > 12 and for causal
shifts it was needed that θr = O(r−a) for some a > max{9, 3

2 (1 + δ−1)} if bn ∼ n−δ.
• For strongly mixing sequences, the condition αn = O(n−a) for a > 1 ensures this CLT as proved by

Robinson [24] (and also Ango–Nze and Doukhan [2]); this asumption is of a different nature, e.g. linear
processes satisfy mixing conditions (under additional regularity conditions, see Doukhan ([11], Chap. 2.3).
The decay rate of the coefficients are there more restrictive.

The proof of Theorem A.1 is a variation on the proof of Theorem 4.3. We refer to Coulon–Prieur and Doukhan
[9], where the proof is written under stronger assumptions (in terms of dimension of the “future”). The same
techniques provide some general limit theorem for triangular arrays under weak dependence (see [9]).

The author is grateful to the anonymous referees for constructive comments.
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255-282.

[24] P.M. Robinson, Non parametric estimators for time series. J. Time Ser. Anal. 4-3 (1983) 185-207.
[25] M. Rosenblatt, Stochastic curve estimation, in NSF-CBMS Regional Conference Series in Probability and Statistics, Vol. 3

(1991).
[26] W. Rudin, Real and complex analysis. McGraw-Hill Series in Higher Mathematics, Second Edition (1974).
[27] M. Viana, Stochastic dynamics of deterministic systems, Instituto de Matematica Pura e Aplicada. IMPA, Vol. 21 (1997).


