In this paper we define and study self-similar ranked fragmentations. We first show that any ranked fragmentation is the image of some partition-valued fragmentation, and that there is in fact a one-to-one correspondence between the laws of these two types of fragmentations. We then give an explicit construction of homogeneous ranked fragmentations in terms of Poisson point processes. Finally we use this construction and classical results on records of Poisson point processes to study the small-time behavior of a ranked fragmentation.
Keywords: fragmentation, self-similar, subordinator, exchangeable partitions, record process
@article{PS_2002__6__157_0, author = {Berestycki, Julien}, title = {Ranked fragmentations}, journal = {ESAIM: Probability and Statistics}, pages = {157--175}, publisher = {EDP-Sciences}, volume = {6}, year = {2002}, doi = {10.1051/ps:2002009}, mrnumber = {1943145}, zbl = {1001.60078}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps:2002009/} }
Berestycki, Julien. Ranked fragmentations. ESAIM: Probability and Statistics, Volume 6 (2002), pp. 157-175. doi : 10.1051/ps:2002009. http://archive.numdam.org/articles/10.1051/ps:2002009/
[1] Exchangeability and related topics, edited by P.L. Hennequin, Lectures on probability theory and statistics, École d'été de Probabilité de Saint-Flour XIII. Springer, Berlin, Lectures Notes in Math. 1117 (1985). | Zbl
,[2] Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 (1999) 3-48. | MR | Zbl
,[3] The standard additive coalescent. Ann. Probab. 26 (1998) 1703-1726. | MR | Zbl
and ,[4] Lévy processes. Cambridge University Press, Cambridge (1996). | MR | Zbl
,[5] Homogeneous fragmentation processes. Probab. Theory Related Fields 121 (2001) 301-318. | MR | Zbl
,[6] Self-similar fragmentations. Ann. Inst. H. Poincaré (to appear). | Numdam | MR | Zbl
,[7] The asymptotic behaviour of fragmentation processes, Prépublication du Laboratoire de Probabilités et Modèles Aléatoires, Paris 6 et 7. PMA-651 (2001). | Zbl
,[8] Regular variation. Cambridge University Press, Encyclopedia Math. Appl. 27 (1987). | MR | Zbl
, and ,[9] On Ruelle's probability cascades and an abstract cavity method. Commun. Math. Phys. 197 (1998) 247-276. | Zbl
and ,[10] Splitting intervals. Ann. Probab. 14 (1986) 1024-1036. | MR | Zbl
and ,[11] Splitting intervals II. Limit laws for lengths. Probab. Theory Related Fields 75 (1987) 109-127. | MR | Zbl
and ,[12] Probabilités et potentiel, Chapitres V à VIII. Hermann, Paris (1980). | MR | Zbl
and ,[13] Construction of Markovian coalescents. Ann. Inst. H. Poincaré Probab. Statist. 34 (1998) 339-383. | Numdam | MR | Zbl
and ,[14] Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library (1981). | MR | Zbl
and ,[15] The coalescent. Stochastic Process. Appl. 13 (1960) 235-248. | MR | Zbl
,[16] Order statistics for jumps of normalised subordinators. Stochastic Process. Appl. 46 (1993) 267-281. | MR | Zbl
,[17] Coalescents with multiple collisions. Ann. Probab. 27 (1999) 1870-1902. | MR | Zbl
,[18] Lévy Processes and Infinitly Divisible Distributions. Cambridge University Press, Cambridge, Cambridge Stud. Adv. Math. 68 (1999). | MR | Zbl
,[19] Coalescents with simultaneous multiple collisions. Electr. J. Probab. 5-12 (2000) 1-50. http://www.math.washington.edu/ ejpecp.ejp5contents.html | MR | Zbl
,Cited by Sources: