Asymptotic behavior of the empirical process for gaussian data presenting seasonal long-memory
ESAIM: Probability and Statistics, Tome 6 (2002), pp. 293-309.

We study the asymptotic behavior of the empirical process when the underlying data are gaussian and exhibit seasonal long-memory. We prove that the limiting process can be quite different from the limit obtained in the case of regular long-memory. However, in both cases, the limiting process is degenerated. We apply our results to von-Mises functionals and U-Statistics.

DOI : 10.1051/ps:2002016
Classification : 60G15, 60G18, 62G30, 62M10
Mots clés : empirical process, Hermite polynomials, Rosenblatt processes, seasonal long-memory, $U$-statistics, von-Mises functionals
@article{PS_2002__6__293_0,
     author = {Haye, Mohamedou Ould},
     title = {Asymptotic behavior of the empirical process for gaussian data presenting seasonal long-memory},
     journal = {ESAIM: Probability and Statistics},
     pages = {293--309},
     publisher = {EDP-Sciences},
     volume = {6},
     year = {2002},
     doi = {10.1051/ps:2002016},
     mrnumber = {1943152},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps:2002016/}
}
TY  - JOUR
AU  - Haye, Mohamedou Ould
TI  - Asymptotic behavior of the empirical process for gaussian data presenting seasonal long-memory
JO  - ESAIM: Probability and Statistics
PY  - 2002
SP  - 293
EP  - 309
VL  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps:2002016/
DO  - 10.1051/ps:2002016
LA  - en
ID  - PS_2002__6__293_0
ER  - 
%0 Journal Article
%A Haye, Mohamedou Ould
%T Asymptotic behavior of the empirical process for gaussian data presenting seasonal long-memory
%J ESAIM: Probability and Statistics
%D 2002
%P 293-309
%V 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps:2002016/
%R 10.1051/ps:2002016
%G en
%F PS_2002__6__293_0
Haye, Mohamedou Ould. Asymptotic behavior of the empirical process for gaussian data presenting seasonal long-memory. ESAIM: Probability and Statistics, Tome 6 (2002), pp. 293-309. doi : 10.1051/ps:2002016. http://archive.numdam.org/articles/10.1051/ps:2002016/

[1] M.A. Arcones, Distributional limit theorems over a stationary Gaussian sequence of random vectors. Stochastic Process. Appl. 88 (2000) 135-159. | MR | Zbl

[2] J.-M. Bardet, G. Lang, G. Oppenheim, A. Philippe and M.S. Taqqu, Generators of long-range processes: A survey, in Long range dependence: Theory and applications, edited by P. Doukhan, G. Oppenheim and M.S. Taqqu (to appear). | Zbl

[3] P. Billingsley, Convergence of Probability measures. Wiley (1968). | MR | Zbl

[4] S. Csörgo and J. Mielniczuk, The empirical process of a short-range dependent stationary sequence under Gaussian subordination. Probab. Theory Related Fields 104 (1996) 15-25. | MR | Zbl

[5] H. Dehling and M.S. Taqqu, The empirical process of some long-range dependent sequences with an application to U-statistics. Ann. Statist. 4 (1989) 1767-1783. | MR | Zbl

[6] H. Dehling and M.S. Taqqu, Bivariate symmetric statistics of long-range dependent observations. J. Statist. Plann. Inference 28 (1991) 153-165. | MR | Zbl

[7] R.L. Dobrushin and P. Major, Non central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrsch. Verw. Geb. 50 (1979) 27-52. | MR | Zbl

[8] P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities. Stochastic Process Appl. 84 (1999) 313-342. | MR | Zbl

[9] P. Doukhan and D. Surgailis, Functional central limit theorem for the empirical process of short memory linear processes. C. R. Acad. Sci. Paris Sér. I Math. 326 (1997) 87-92. | MR | Zbl

[10] J. Ghosh, A new graphical tool to detect non normality. J. Roy. Statist. Soc. Ser. B 58 (1996) 691-702. | MR | Zbl

[11] L. Giraitis, Convergence of certain nonlinear transformations of a Gaussian sequence to self-similar process. Lithuanian Math. J. 23 (1983) 58-68. | MR | Zbl

[12] L. Giraitis and R. Leipus, A generalized fractionally differencing approach in long-memory modeling. Lithuanian Math. J. 35 (1995) 65-81. | MR | Zbl

[13] L. Giraitis and D. Surgailis Central limit theorem for the empirical process of a linear sequence with long memory. J. Statist. Plann. Inference 80 (1999) 81-93. | MR | Zbl

[14] I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series and products. Jeffrey A. 5th Edition. Academic Press (1994). | MR | Zbl

[15] H.C. Ho and T. Hsing, On the asymptotic expansion of the empirical process of long memory moving averages. Ann. Statist. 24 (1996) 992-1024. | MR | Zbl

[16] I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus. Springer-Verlag, New York (1988). | MR | Zbl

[17] R. Leipus and M.-C. Viano, Modeling long-memory time series with finite or infinite variance: A general approach. J. Time Ser. Anal. 21 (1997) 61-74. | MR | Zbl

[18] C. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables. IMS Lecture Notes-Monographs Ser. 5 (1984) 127-140. | MR

[19] G. Oppenheim, M. Ould Haye and M.-C. Viano, Long memory with seasonal effects. Statist. Inf. Stoch. Proc. 3 (2000) 53-68. | MR | Zbl

[20] M. Ould Haye, Longue mémoire saisonnière et convergence vers le processus de Rosenblatt. Pub. IRMA, Lille, 50-VIII (1999).

[21] M. Ould Haye, Asymptotic behavior of the empirical process for seasonal long-memory data. Pub. IRMA, Lille, 53-V (2000).

[22] M. Ould Haye and M.-C. Viano, Limit theorems under seasonal long-memory, in Long range dependence: Theory and applications, edited by P. Doukhan, G. Oppenheim and M.S. Taqqu (to appear). | MR | Zbl

[23] D.W. Pollard, Convergence of Stochastic Processes. Springer, New York (1984). | MR | Zbl

[24] M. Rosenblatt, Limit theorems for transformations of functionals of Gaussian sequences. Z. Wahrsch. Verw. Geb. 55 (1981) 123-132. | MR | Zbl

[25] Q. Shao and H. Yu, Weak convergence for weighted empirical process of dependent sequences. Ann. Probab. 24 (1996) 2094-2127. | MR | Zbl

[26] G.R. Shorack and J.A. Wellner, Empirical Processes with Applications to Statistics. Wiley, New York (1986). | MR

[27] M.S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Geb. 31 (1975) 287-302. | MR | Zbl

[28] A. Zygmund, Trigonometric Series. Cambridge University Press (1959). | MR | Zbl

Cité par Sources :