We show in this article how the theory of “rough paths” allows us to construct solutions of differential equations (SDEs) driven by processes generated by divergence-form operators. For that, we use approximations of the trajectories of the stochastic process by piecewise smooth paths. A result of type Wong-Zakai follows immediately.
Classification : 60H10, 60J60
Mots clés : rough paths, stochastic differential equations, stochastic process generated by divergence-form operators, Dirichlet process, approximation of trajectories
@article{PS_2006__10__356_0, author = {Lejay, Antoine}, title = {Stochastic differential equations driven by processes generated by divergence form operators {I} : a {Wong-Zakai} theorem}, journal = {ESAIM: Probability and Statistics}, pages = {356--379}, publisher = {EDP-Sciences}, volume = {10}, year = {2006}, doi = {10.1051/ps:2006015}, mrnumber = {2247926}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps:2006015/} }
TY - JOUR AU - Lejay, Antoine TI - Stochastic differential equations driven by processes generated by divergence form operators I : a Wong-Zakai theorem JO - ESAIM: Probability and Statistics PY - 2006 DA - 2006/// SP - 356 EP - 379 VL - 10 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps:2006015/ UR - https://www.ams.org/mathscinet-getitem?mr=2247926 UR - https://doi.org/10.1051/ps:2006015 DO - 10.1051/ps:2006015 LA - en ID - PS_2006__10__356_0 ER -
Lejay, Antoine. Stochastic differential equations driven by processes generated by divergence form operators I : a Wong-Zakai theorem. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 356-379. doi : 10.1051/ps:2006015. http://archive.numdam.org/articles/10.1051/ps:2006015/
[1] Non-negative solutions of linear parabolic equation. Ann. Scuola Norm. Sup. Pisa 22 (1968) 607-693. | Numdam | Zbl 0182.13802
,[2] Extending the Wong-Zakai theorem to reversible Markov processes. J. Eur. Math. Soc. 4 (2002) 237-269. | Zbl 1010.60070
, and ,[3] Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. of Math. 65 (1957) 163-178. | Zbl 0077.25301
,[4] Semi-martingales and rough paths theory. Electron. J. Probab. 10 (2005) 761-785. | Zbl 1109.60035
and ,[5] Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108-140. | Zbl 1047.60029
and ,[6] On the convergence of Dirichlet processes. Bernoulli 5 (1999) 615-639. | Zbl 0953.60001
and ,[7] Zbl 1086.31007
, and martin, Formule d'Itô pour des diffusions uniformément elliptiques et processus de Dirichlet. Potential Anal. 21 (2004) 7-3. |[8] Calcul d'Itô sans probabilités, in Séminaire de Probabilités, XV. Lect. Notes Math. 850 (1981) 143-150. Springer, Berlin. | Numdam | Zbl 0461.60074
,[9] Dirichlet processes, in Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980). Lect. Notes Math. 851 (1981) 476-478. Springer, Berlin. | Zbl 0462.60046
,[10] Dirichlet Forms and Symmetric Markov Process. De Gruyter (1994). | MR 1303354 | Zbl 0838.31001
, and ,[11] Generalized integration and stochastic ODEs. Ann. Probab. 30 (2002) 270-292. | Zbl 1022.60054
and ,[12] A note on the notion of geometric rough paths. To appear in Probab. Theory Related Fields (2006). | MR 2257130 | Zbl 1108.34052
and ,[13] Stochastic area for Brownian motion on the Sierpinski gasket. Ann. Probab. 26 (1998) 132-148. | Zbl 0936.60073
and ,[14] Stochastic Differential Equations and Diffusion Processes1989). | MR 1011252 | Zbl 0684.60040
and ,[15] Stochastic flows and stochastic differential equations. Cambridge University Press (1990). | MR 1070361 | Zbl 0743.60052
,[16] Méthodes probabilistes pour l'homogénéisation des opérateurs sous forme-divergence : cas linéaires et semi-linéaires. Ph.D. thesis, Université de Provence, Marseille, France (2000). www.iecn.u-nancy.fr/lejay/.
,[17] An introduction to rough paths, in Séminaire de probabilités, XXXVII. Lect. Notes Math. 1832 (2003) 1-59, Springer, Berlin. | Zbl 1041.60051
,[18] A Probabilistic Representation of the Solution of some Quasi-Linear PDE with a Divergence-Form Operator. Application to Existence of Weak Solutions of FBSDE. Stochastic Process. Appl. 110 (2004) 145-176. | Zbl 1075.60070
,[19] Stochastic Differential Equations driven by processes generated by divergence form operators II: Convergence results. Institut Élie Cartan de Nancy (preprint), 2003.
,[20] On the Importance of the Lévy Area for Systems Controlled by Converging Stochastic Processes. Application to Homogenization, in New Trend in Potential Theory, D. Bakry, L. Beznea, Gh. Bucur and M. Röckner Eds., The Theta Foundation (2006).
and ,[21] Lévy area of Wiener processes in Banach spaces. Ann. Probab. 30 (2002) 546-578. | Zbl 1016.60071
, and ,[22] System Control and Rough Paths. Oxford Mathematical Monographs. Oxford University Press (2002). | MR 2036784 | Zbl 1029.93001
and ,[23] The limits of stochastic integrals of differential forms. Ann. Probab. 27 (1999) 1-49. | Zbl 0969.60078
and ,[24] Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215-310. | Zbl 0923.34056
,[25] On -rough paths. J. Differential Equations 225 (2006) 103-133. | Zbl 1097.60048
and ,[26] Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Universitext. Springer-Verlag (1991). | Zbl 0826.31001
and ,[27] Stochastic differential equations and models of random processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory, pp. 263-294. Univ. California Press (1972). | Zbl 0283.60061
.[28] Stochastic Representation of Diffusions Corresponding to Divergence Form Operators. Stochastic Process. Appl. 63 (1996) 11-33. | Zbl 0870.60073
,[29] On Dirichlet processes associated with second order divergence form operators. Potential Anal. 14 (2001) 123-148. | Zbl 0974.60064
,[30] Extended Convergence of Dirichlet Processes. Stochastics Stochastics Rep. 65 (1998) 79-109. | Zbl 0917.60076
and ,[31] Continuous Martingales and Brownian Motion. Springer-Verlag (1990). | Zbl 0731.60002
and ,[32] A pathwise view of solutions of stochastic differential equations. Ph.D. thesis, University of Edinburgh (1993).
,[33] Diffusion Semigroups Corresponding to Uniformly Elliptic Divergence Form Operator, in Séminaire de Probabilités XXII. Lect. Notes Math. 1321 (1988) 316-347. Springer-Verlag. | Numdam | Zbl 0651.47031
,[34] Path-wise solutions of SDE's driven by Lévy processes. Rev. Mat. Iberoamericana 17 (2002) 295-330. arXiv:math.PR/0001018. | Zbl 1002.60060
,[35] On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist. 36 (1965) 1560-1564. | Zbl 0138.11201
and ,Cité par Sources :