We prove a central limit theorem for linear triangular arrays under weak dependence conditions. Our result is then applied to dependent random variables sampled by a -valued transient random walk. This extends the results obtained by [N. Guillotin-Plantard and D. Schneider, Stoch. Dynamics 3 (2003) 477-497]. An application to parametric estimation by random sampling is also provided.
Mots-clés : random walks, weak dependence, central limit theorem, dynamical systems, random sampling, parametric estimation
@article{PS_2010__14__299_0, author = {Guillotin-Plantard, Nadine and Prieur, Cl\'ementine}, title = {Central limit theorem for sampled sums of dependent random variables}, journal = {ESAIM: Probability and Statistics}, pages = {299--314}, publisher = {EDP-Sciences}, volume = {14}, year = {2010}, doi = {10.1051/ps:2008030}, mrnumber = {2779486}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps:2008030/} }
TY - JOUR AU - Guillotin-Plantard, Nadine AU - Prieur, Clémentine TI - Central limit theorem for sampled sums of dependent random variables JO - ESAIM: Probability and Statistics PY - 2010 SP - 299 EP - 314 VL - 14 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps:2008030/ DO - 10.1051/ps:2008030 LA - en ID - PS_2010__14__299_0 ER -
%0 Journal Article %A Guillotin-Plantard, Nadine %A Prieur, Clémentine %T Central limit theorem for sampled sums of dependent random variables %J ESAIM: Probability and Statistics %D 2010 %P 299-314 %V 14 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps:2008030/ %R 10.1051/ps:2008030 %G en %F PS_2010__14__299_0
Guillotin-Plantard, Nadine; Prieur, Clémentine. Central limit theorem for sampled sums of dependent random variables. ESAIM: Probability and Statistics, Tome 14 (2010), pp. 299-314. doi : 10.1051/ps:2008030. http://archive.numdam.org/articles/10.1051/ps:2008030/
[1] Iterates of expanding maps. Probab. Theory Relat. Fields 116 (2000) 151-180. | Zbl
, and ,[2] Dependent Linderberg central limit theorem and some applications. ESAIM: PS 12 (2008) 154-172. | Zbl
, , and ,[3] Random walks with stationary increments and renewal theory. Math. Centre Tracts 112, Amsterdam (1979). | Zbl
,[4] Exponential inequalities for dynamical measures of expanding maps of the interval. Probab. Theory. Relat. Fields 123 (2002) 301-322. | Zbl
, and ,[5] A triangular CLT for weakly dependent sequences. Statist. Probab. Lett. 47 (2000) 61-68. | Zbl
and ,[6] Problèmes à temps mobile. Deuxième édition. Masson (1993).
and ,[7] New dependence coefficients, Examples and applications to statistics. Probab. Theory Relat. Fields 132 (2005) 203-236. | Zbl
and ,[8] Weak dependence: With Examples and Applications. Lect. Notes in Stat. 190. Springer, XIV (2007). | Zbl
, , , , and ,[9] Estimation de paramètre par échantillonnage aléatoire. (French. English summary) [Random sampling and parametric estimation]. C. R. Acad. Sci. Paris Sér. I Math. 306 (1988) 565-568. | Zbl
, and ,[10] A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl. 84 (1999) 313-342. | Zbl
and ,[11] Limit theorems for sampled dynamical systems. Stoch. Dynamics 3 (2003) 477-497. | Zbl
and ,[12] Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180 (1982) 119-140. | Zbl
and ,[13] Some limit theorems for stationary processes. Theory Probab. Appl. 7 (1962) 349-382. | Zbl
,[14] The ergodic theory of subadditive stochastic processes. J. R. Statist. Soc. B 30 (1968) 499-510. | Zbl
,[15] On weak convergence in dynamical systems to self-similar processes with spectral representation. Trans. Amer. Math. Soc. 328 (1991) 767-778. | Zbl
,[16] Random ergodic theorems with universally representative sequences. Ann. Inst. H. Poincaré Probab. Statist. 30 (1994) 353-395. | Numdam | Zbl
, , and ,[17] On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1974) 481-488. | Zbl
and ,[18] On the coupling of dependent random variables and applications. Empirical process techniques for dependent data. Birkhäuser, Boston (2002), pp. 171-193. | Zbl
and ,[19] Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition. J. Math. Soc. Jpn 46 (1994) 309-343. | Zbl
,[20] Central limit theorem for linear processes. Ann. Probab. 25 (1997) 443-456. | Zbl
and ,[21] About the Lindeberg method for strongly mixing sequences. ESAIM: PS 1 (1995) 35-61. | Numdam | Zbl
,[22] A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 (1956) 43-47. | Zbl
,[23] Some limit theorems for random functions I. Theory Probab. Appl. 4 (1959) 178-197. | Zbl
and ,[24] On local and ratio limit theorems. Proc. Fifth Berkeley Symp. Math. Statist. Probab. Univ. Californie (1966), pp. 217-224. | Zbl
,[25] Central limit theorem for dependent random variables. Probab. Theory Math. Statist. 2 (1990) 519-528. | Zbl
,[26] Sums of random variables with -mixing. Siberian Adv. Math. 1 (1991) 124-155. | Zbl
,[27] Central limit theorems for dependent variables. I. Z. Wahrsch. Verw. Gebiete 57 (1981) 509-534 (corrigendum in Z. Wahrsch. Verw. Gebiete 63 (1983) 555). | Zbl
,Cité par Sources :