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INTRODUCTION 

In this lecture we wish to review and describe recent work on analyticity 
properties of spin - \ systems both classical and quantum. The method used to 
derive these analyticity properties is essentially due to Ruelle and consists of 
interpreting and analysing integral equations of the Kirkwood-Salzburg type as 
equations on a suitably chosen Banach space. Whilst Ruelle1s original work 
was for continuous classical statistical mechanical systems with two-body forces 
the work we review on spin systems allows a large class of many body interactions. 
The discreteness of the configuration space of a spin system allows us to 
greatly improve the analyticity region obtainable for continuous systems and 
symmetry between "spin up" and "spin down" can be further used to extend this 
analyticity region. 
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1. DEFINITION OF SPIN SYSTEMS« 

Let us associate with each point x of a v-dimensional cubic lattice 
v v Z a two-dimensional vector space and with each AcZ the direct product 

space % = II ® % . The space has the dimension 2 N ^ whose N(A) 
l\ r K X A 

x€ A 
is the number of points of the set A • 

The operators (2x2 matrices) acting on each 3 & x are linearly genera

ted by the unit operator 1 and three Pauli matrices a o Alternatively these 
x x 

operators can be generated by annihilation and creation operators (spin-raising 

and -lowering operators) a , a + defined by 
X X 

a « K < r ( l ) - i a ° ° ) a + = l(a ( l )
 + i c ( 2 ) ) 

X ^ X X X ' X ^ X X ' 
satisfying the anti-commutation relations 

a a + a a = 1 a a = 0 = a a (1) x x x x x x x x N / 

Similarly the bounded operators S^C^^) acting on are generated by anni^ 

hilation and creation operators £ a
x* a^ » x€A ] which satisfy (1) and 

[aY,a^ ] = 0 = [a .a] for x / y , x,y 6 A (2) 

Let us next introduce a basis in in the following manner* 

We define | J2f>^ to be a normalised vector such that 

a x | )Zf> A = 0 for all x6A (3) 

and thei introduce the normalised vectors Ĵ **̂  

l X > A = l v < ^ A X < = A ( 4 ) 

x€ X 

We are interested in two different algebras of operators acting on '% . • 

The quantum algebra ^ ( A ) is defined as the algebra foC5&^) f i.e. the algebra 
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of annihilation and creation operators, and the classical algebra d^(A) c: cfl̂ (A) 

is defined as the abelian subalgebra of u£>( c$>^ ) generated by the set 

{a+a ,1 ; x € A } o 
X X* X 

2. REDUCED DENSITY MATRICES AND INTEGRAL EQUATIONS0 

v 

Physically we consider the points XGZ as particle sites and assume 

that these particles interact via a Hamiltonian H^ccfo^(A) or H^ctb(A) 0 

At this point we will not further specify of other than assuming that it is 

hermitien0 In the following our attention will be concentrated upon the reduced 

density matrices P̂ (̂ - * ̂ ) which are defined as follows : 
-~H / —H 

p (X ; Y) = Tr (e A II a+ II a ) / Tr (e A ) (5) 
A \ x € X y € Y / \ 

For economy introduce the notation s 

-H 
Z. = Tr (e ) a + ( x ) = H a + a(Y) = II a (6) 

36 x€X X v€Y Y 

A 
1 — 

and then PA(X,Y) = \ Tr (e a+(X)a(Y)) 
ZA \ 

= \ Y <YU S |e I/l |XUS> (7) 
\ 

3cA 
S n (X U Y) =^ 

It is easily checked that (7) may be inverted to give the relation 

—H 
\ < T J e Xi/v | S > = Y (-1) N ( R )

P (RUS ; RUT) (8) 
RCA 

R n (SUT)=jZf 
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Now (7) and (8) can be combined to derive integral relations for the p. 

as follows. If X=Y=J2f then PA(X,Y) = 1 ; assume Y$ and define Y 1 = Y/{y^} 

where y. is any point in Y „ Now 

p (X ; Y) = f V <Y 1US | a e A|XUS> 
A S n(XUY)=^ ' 

= 1 Y < Y 1 U S J e H A | T X T | e H A a e"HA|xUS> 
A ^ y 1 

S . T c A ' 
S fl(XUY)=!2f 

(9) 
H —H 

y P(RUT;Y 1URUS)(-1) N ( R )<T |e A a e A|xUS> 
R,S»TcA 
SD(XUY) = jZf 
Rn(RUTUY1 = jZf 

where the first step is obtained from inserting a complete set of intermediate 

states and the second step uses ( 8 ) „ Next changing variables to V = R U T and 

W = R U S (9) takes the form 

(10) P A ( X ; Y ) = y y P A(V,Y 1UV)K 1 (X,Y;V,W) 

wriY1= jZf V c A 
WCA V^WfXXUiy.,}) 

where 
H —H 

K 1 ( X , Y ; V , ¥ ) = y (-1) N ( R)< V / R | e
 A a e A | X U ( W / R ) > 

u y* 
wnv3o^ ( x u { y 1 } ) 

These are the integral relations which we will use to obtain analy

ticity properties. Note that the above derivation, which is due to the present 

author, does not depend upon any detailed structure of the Hamiltonian ? this 

structure is important only for the analysis of the integral equations and not 
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for their derivation* This method of derivation also generalises to the case of 

continuous systems quantum or classicala We will analyse these equations in the 

two different cases, classical and quantum, separately. 

3* CLASSICAL SPIN SYSTEMS, 

We begin by parametrizing the Hamiltonian in terms of one-body, two-

body and many-body interactions* We define an interaction $ as a 

function from the finite subsets A c z V to the algebra cJL>= U dẐ (A) with the 

properties 

1 - $(X)cdL(x) is hermitien 
u 

2 - #(X) = T *(X-a) for a€ Z V 

a 
T 

where the translation automorphisms OL — <JU is defined by a = T a , etc * 
x*4~a a x 

3 - ||e|| = I ||*(x)||< + « 
o a 

In terms of such interactions we define the Hamiltonian H^(=U^(A)) of the 

finite system A by 

XCA 

Example s to illustrate these abstract definitions consider the following 

example 

$([x])= - ^ a ^ , § ({x1,x2} ) =cp(Xl-x2) a* a i * ( • • ̂ 3 ) = ° 

k >2 
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Conditions 1,2 and 3 are satisfied if p, and cp(x) are real and the latter 

satisfies 

x£Z V 

The Hamiltonian corresponding to this interaction is given by 

x 1,x 2€ A 

Where N. is the number operator i 0e 0 N. = ) a +a r © With such an interac-A A Z_i x x 
xc A 

tion the spin system can be viewed as a lattice gas, ioe„ the sites x€A can 

be occupied by particles interacting through a two-body potential cp(x) at 

chemical potential |i , 
(1) - (1) It is convenient at a later stage to write $ = (§v *$f) where §v ' is 

the one-body interaction derived from $ and §f contains the two-and many-

body interactions,. We will also always take U 1(A) = — IJLN. and introduce the 

fugacity z = e^ • 

As Jo is generated by the operators {a+a ,1 ;x6Z V} the states 
L/ X X X 

|x> A are eigenfunctions of §(x) 3 1 1 ( 1 w e introduce the eigenvalues cp(x) by 

I(Y)|X>A = cp(Y)jX>A for YCX 

§ ( Y ) | X > A = 0 for Y^X 

and then U$(A) | X > A = ^ cp(s) |x> A 

SCX 

= U (X) ! X> . 

where U (X) = £ cp(s) 
ScX 
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It follows from this structure that the classical reduced density matrices 

are such that 

PA(X ; Y) = 0 if X / Y 

Whilst from (10) we find for P^(Y) = ; X) the simplified integral 

equations 

PA(Y) = y pA(Y
1UW)K1(Y;W) (11) 

WcA 

¥ D Y 1 =jZf 

K

1 ( Y ; W ) = y (-l) N( W/ R)<Y 1UR|e U § ( A )a e ~ V A ) | Y U R > 
U Y1 

R c W 
RDY=^ 

, y (.l)N^V/R)eXpC-CUç(ïUR)-U9(Y
1UE)]} 

R C W 
RflY=̂  

= Z Y (-l^^expC-EU^.CYURj-U^^^UR)]} (12) 

R e w 
RflY-jZf 

1 

where we have explicitly exhibited the dépendance of K on the fugacity z 

(cp? indicates the eigenfunctions associated with § T) 0 

The method of utilising these equations that Ruelle invented is to intro

duce a Banach space & of complex functions on the non-empty finite 

v 
subsets of Z with the norm 

U | = sup U ( X ) j 
XCZ V 

We see immediately that p A6 . The major point of this definition is the 

fact that is a uniformly bounded operator on "¡1 „ 
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LEMMA 

For Y C Z V fixed, we have 

I ! K W ) | S |Z| [exp { e l l ^ H - D - ^ e ^ ' l i 

w c z v 

WnY=j2f 

PROOF. 

¥e have the following Proof of Gallavotti and Miracle-Sole 

Ucpt(Yb'R)-Ucp,(Y
1UR) = I cp'(S) - £ cp'(s) 

SCYUR SCi'1 u R 

= u J , ( Y ) + I Q ) F ( Y F R ) 

w h e r e U^,(Y) = Y 9'(S) » ( Y, R) = £ cp'(TUS) 

y^SCY y €TCY 

^SCR 

Further introducing J ,(Y,S) = ) cp*(TUS) 

Y^TCY 

we have ^.^'R) = \ ^ . O ^ S ) 

jZf/SCR 

S o o o S 
1 n 

u s . =w 
1 

thus |K1(Y,¥)| ^ I z l e l ^ H l £ H l e ^ ' ^ ^ - l ) 

US. =¥ 
î 
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1 n 
US. = W 
l 

because JU^, (Y) | < ||9> || and | J (Y,S) | £ ||cp« || 

Thus finally 

I | l V , V ) | « M > ' » I 1 < l | V ( Y , S ) | ) n 

s I z l e ^ ' H expCe^'li-T ) 

As a result of this bound we may interpret (11) as an integral equation on ̂  

of the form 

where a(X)=1 if N(X)=1 and Q ' ( X ) = 0 if N(x)=0 5 the inhomageneous term in 

the equation comes from the term with Y={y^} and ¥=j2f in (11) and the 

operator is defined in the natural manner from K 0 Combining (11) and 

the result of the lemma one immediatly finds that 

| i K , | i < 2 | z | e ! l $ , i U ( e l ! § ' l L l ) . 

If z and § ! are such that 

[ |K $||<2 | z | e i l $ ' i!exp (e ! i § , I i - 1 )< 1 

than Ruellefs methods allow us to conclude that the limit 

lim p (X) = p (X) 
A-»» 

z 
exists and that p = ——TT~"a 
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is analytic in a small complex neighbourhood of (z,§f) [we have used the 

notation p for the element of ^ with components p (X) ] o 

It also follows immediately that the thermodynamic pressure 

P ^ = L I M NTAT l o g z A ( f ) 

7\ -* co v ' 

exists and is analytic in the same domain. 

Note that as |!$ f||-*0 (13*) is only satisfied if 2 J z | < 1 thus in this 

limit the analyticity in z is only in a finite region« This is due to the 

fact that |j jj remains finite as |J^ * ]j —»0 e However , is defined in terms 

1 1 

of K (Y,W) and these latter functions tend to zero as |j§'{j-*0 for all values 

of ¥ except ¥=j2f or ŷ  0 This remark motivates us to rewrite the integral 

relations in the following form due to Gallavotti and Miracle-Sole, 

- U^- ( Y ) 1. . r 1 1 
PA(Y)= z e * C P A ( Y ' ) - P A ( Y ) ] + ^ C P A ( Y ' Ü ¥ ) - pA(YUW)]iC (YJW) 

jZf/wcA 
WfTY=̂  

i.e. we explicitly separate out the terms ¥=$' and W=y . This last relation 

can then be rewritten as 

- ^ , ( Y ) 

p̂ (Y) = 2 6 _nl £pA(Y
1) + ) pA(Y

1UW)-pA(YUW)]H
1(Y,W)] (14) 

where H1(Y,W) = \ K1(Y,¥) 
-U^(Y) 

ze r 

Finally interpreting (14) as an integral equation on % of the form 

PA = TTz V + *A te|PA 
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- u ( Y ) . . S f N 
we have || % || £ sup | — - r — | (2 exp(e^ (15) 

Y „ -U (Y) 1+ze v y 

As previously we may conclude the existence and analyticity of the infinite 

volume correlation functions p(X) = lim Pŷ (X) > together with the existence 
A - » 

and analyticity of the thermodynamic pressure if (z,§) are such that 

| j f c j | < 1 eego if 
-uJ(Y) 

sup | Z e . ̂ 1 ^ | (2 exp (e l l $ , IL 1)-i)< l . 
Y 1+ze " 

In particular as § f -»0 we have analyticity for <1 i*e0 for 

z >0 o 

Before proceeding to the quantum case we note that the important feature in 
1 

the foregoing analysis is the fact that the kernel K leads to a uniformly 

bounded operator on «, Although our method of estimation rather obscures 

the physical reason behind this property it essentially derives from 

locality and short range forces ; this will become clearer in the quantum case. 
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4 , QUANTUM SPIN SYSTEMS 

Let us again begin byparametrising our Hamiltonian H^ o We consider, as 

in the classical case, an interaction § to be a function from the finite sets 

XcZ to the algebra Cfc= U cL (A) but now we assume 
A g 

1 - S(X) c &OQ(X) is hermitian 

2 - $(X) = T_§(X-a) for all a € Z V 

3 - ||«||x = I l ! K x ) ! ! e x № ) - 1 ) < , c 
OGC 

where X > 0 • 

The Banach space norm IMI^ ^ s a generalization of that used in the 

classical case where we had X = 0 0 The necessity cf talcing X / 0 will 

appear due to our inability to make such precise estimates, as previously. 

We will again write § = ( $ ^ § f ) and take $ § ^ ( x ) = - |j,a+a „ Hence 

u ( 1 ) = - ^ A 

'2 

We further assume [U ^ ( A ) , § * ( X ) J = 0 for XCA , i,ec we assume the interac

tion conserves particle number* Note that whilst 

if X^ nx^ = jzf this is no longer true in general. Now we still have the integral 

relations 

P A ( X ; Y ) = I I PA(V;Y1UV)K1(X,Y?V;W) 
wnY1=j2f ¥CA 
WcA V=»n(XU{y1} ) 
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1, r , • NCR) , , U § ' ( ä ) ~ U$t ( A'\ . . 
where K (XfY;V,W) = z ) ( - 1 ) v ; < v / R e a e XU(W)R)> 

w n v r s t z w n Ç x u C y ^ ) 

and we will try and interpret these relations on a Banach space of complex 

v 
functions f on pairs of non-empty subsets of Z with the norm 

I f I = sup U(X,Y) J 
X,YCZ V 

The major difficulty is in proving the uniform boudedness of the operator 

1 

determined by K . As a preliminary to this calculation we prove the following 

lemma 

LEMMA 2 : if_ § is such that 2||$|| < 1 then 

V A ) ~ V A ) ? 1 r 

l i m e 9 a y e = 1 ^ 1 - " 2 , CC*(Y n) [.. . [ « ( Y ^ ]]] 
1 n=0 Y CZ V Y,CZV 1 

n 1 

Proof« 

The equality is formally true and all we have to do is prove convergence. 

But 

C n - II I — I W*n)--W^)*y ]] || 

V V ^ 
Y CZ Y„ CZ 
n 1 

* £ ... £ ||[*(Yn)...[ft(Y1)ay ]] I! 

Y n n s / 0 y € Y l 

n-1 
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n-1 
where S „ = U Y. and we have used local commutativity. Therefore 

k 1 , o o k n 06Y.N(Y.')=k.+1 
l v l l 

5 2 n )' (1+k ...+k ) S Y | | $ ( Y ) | | 

k1°** kn 06Y. N(Y.)=k.+1 
1 X 1 

£ 2 n n! e Y S y |!§(Y.)iiek i 

U i=1 *-* ' 1 

k1**° kn 0€Y. N(Y.)=k.+1 
i v i 7 l 

* 2 N n! 

Thus the series converges if 2J|§||̂ <1 o 
U§(A) -U (A) 

The fact that this pertubation series for e a y , e " converge at 

least for weak interactions leads us to replace this operator by its perturbation 
1 

expansion in K • Thus we write 

K J ( X , Y ; V , W ) 

K ' ( X , Y ; V , W ) = . Z I •JL~Tl 
nsO 

where K ^ ( X , Y ; V , ¥ ) = £ (-1) N ( R ) J ... 

wn\CK3tfn (XU { y }) ScA 

... £ < v/R|[§(Yn)...[3(Y1)ay ]]XU(X/R) > 
Y„..,Y 1 

1 n 
UY.= S 
l 

Note that in the last definition all sums are finite. 
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As a preliminary to the study of this operator consider 

H V X . Y J V . W . S ^ = ] [ ( - I ) N ( R ) < V / R | A ( S ) | X U ( W / R ) > 

w n v a t w n C x u l y ^ ) -

where y 1€ S and A(s)c JO (S) . Introduce disjoint sets F, G, H, by 

F=W/V , G=V/V , H=¥HV . Then 

H 1 ( X , Y ; F , G , H ; S ) = £ (-1)N(-R^ < G U ( H / R ) | A ( S ) | XUFU (B/R) > 

= (_1 ) N W V (_i)N(R) < G U R | A ( S ) | X U F U R > 

R c H 
Rn(XU{ y i})^ 

, •, N ( R ) 

= ( - 1 ) 1 ' ^(-1) < G U R ^ A C S ' J I X U F U R ^ 

R 1CMTIS 

R 2 C H / S 

R2n(XU{yi})=j2f 

But the latter sum vanishes unless the range of summation is empty i.e. unless 

HCSUXUlyJ . If HCSUXU[yJ we have 

H 1 ( X , Y ; F , G , H ; S ) = (-1) N ( H } ^ ( - l ) N ( R ^ < ( G n s ) U R i A ( s ) | (xns)U(FflS)URXG/S |... 
RCHDS 

R n C x u C y - } ) ^ 
. . . ( X / S ) U F / S > 
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and this last expression is zero unless 

G/S = X/S and F/S = . 

Thus we must have F e s and G / S = XU{y^}/S where we have used S, Thus 

finally we find 

£ £ |H1(X,y;V,W;S)i 

wny 1=jzf v r w f X x u f y . , } ) 

^ I 1 I Y |<GUR|A(s) | (xns)UFUR> i 
FCSGCS/FUH HCS/F RCH/fXUCy^) 

* f ||A(S)|| 5 N ( S> 

where the final estimate arises from replacing the matrix element by ||A(S)|j 

and camping out the remaining summations. Using this estimate procedure which 

is due to Greenberg we find 

LEMMA 

I I | ^ ( X , Y ; V , V ) | s 3n! (2 V ||«> (X) ||(5e ) N W - 1 ) n 

w n v V vrwncxuty,}) o e x 

n 
< 3n! (2||$,||̂ ) for X;>1+log 5 

PROOF 

The proof consists of combining (16) and the method used to prove 

the proceeding lemmao 
1 

Thus we now see that the kernel K will lead to a uniformly bounded 

operator on if 2||§j|̂ <1 for X^1+log e^ and in this case we can derive 
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analyticity results in the same manner as we did for the classical system© 
1 

We note however that the kernel K can be explicitly evaluated and then 

the integral relations take the form 
1 _ 

p A ( X ' Y ) = 1«6(y ;X) ̂ ^ V ^ ) P A ( V > V Y 1 ) + I ^ f^(X fY;V fV)p A(V;Y 1UW)] 
1 V,W ns>1 

where 8(y;X) =1 if y€ X and zero otherwise and the restrictions on the 

summations over V and W have been summarised by the prime0 With this 

partial inversion we now have relations analogous to (14) which may be 

interpreted as integral equations on Ob of the form 

PA = T+z XA a + X A l - ç P A 

where a?(XfY) = 1 if X=Y and N(x)=1 and zero otherwise. Further Ufe 

has the bound 

|z|6||§'|L 

H ^ $ 1 1 5 W + 1-2||5'|L (17) 

provided 2jj§,||^<1 where X = 1+log^5 o If z and § f are such that 

for A. = 1+log 5 we may conclude that the thermodynamic correlation functions 

and pressure exist, are analytic in a small complex neighbourhood of (z,§!) 
Si z 1 

and as a vector p€ given by p - - — - — a • [Actually a little more 

work is required to establish the analyticity properties but the necessary 

continuity and differentiability of the kernel can be established by 

estimates similar to the above<>] Note that in the limit ||§Mî  -* 0 the above 

result coincides with that obtained in the classical case. 



- 18 -

5o A SYMMETRY PRINCIPLE 

To conclude this review we now indicate how the above results may be 

extended by the use of a symmetry principle,, Consider the algebra M^ cf 

2x2 matriceso There exists a mapping AQl^ -* AQ-Î  defined by 

A - A = - A + Tr(A) 

which has the properties 
/ V A * , . ~ / \ ^ 
A = A , Tr(A) = Tr(A) , AB = BA . 

[Each A6M^ can be written as a linear combination of the identity and three 

Pauli matrices a ; the above symmetry corresponds to the mapping c"~*-a •] 

Similarly there is a mapping of S:(% ) defined by 

A<E£ (96>A) - k l ( t ) A ) ; A = Y ( - i f ( S \ T % (A) 
S c A ^ S 

which has the properties 

A = A ; Tiv, (A) = Tr (A) , AB - BA . 

Next let us introduce a mapping ~ f on the subspace of interactions 9 

which are such that §(X) = 0 for N(X) >N^ where is a real number, 

by the definition 

(x*)(s) = ( - 1 ) N ( S ) I Tr% (S(X)) 
x ^ s x / s 

We find U £ $(A) = £ £ ( - 1 ) N ( S ) Tr^ (5(T)) 
SCA T3S T / S 

U,(A) - Y J ( - 1 ) N ( S ) Tr (§(T)) 
T / S 

TCA SCT 7 
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and therefore U$(A) - U X S(A) = N.(A)E$ + ) (A) 

where 

E = Y T r 11(41 = . E 
L § L i x % q N(S) "£§ 

06 s b 

and ) ( A ) is a surface terme i«e. N ( A ) | | Z J ( A ) |[ ~* 0 
A - CD 

We thus have 

LEMMA 

If 5€B is such that §(X) = 0 for N(X) >N g then the thermodyna-

mic pressure satisfies the symmetry relation 

P($) + \ E § = P(X § ) + 1 Ej. § . 

The proof of the lemma is a consequence of the above definitions and the 

standard arguments establishing the existence of the thermodynamic 

pressure and its independence of surface terms. 

The importance of this symmetry principle is that it allows us to extend 

the analyticity properties obtained previously from the integral equations» 

Originally from the integral equations one derives analyticity of the corre

lation functions p in some domain but then from this one may deduce 

analyticity of the thermodynamic pressure P as a functional of the interactions 

in the same domain* Now however we may use the symmetry principle derived 

above to extend the analyticity domain of P and then finally one deduces 

straightforwardly that in this extended domain the thermodynamic correlation 

functions p exist and are analytic* 
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