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INTEGRAL REPRESENTATION OF STATES ON A C*-ALGEBRA 

David RUELLE 
Institut des Hautes Etudes Scientifiques 

91. BURES-sur-YVETTE - France 

Abstract. Let E be the compact set of states on a C -algebra OC with 
identity. We discuss the representations of a state p as barycenter of a 
probability measure \± on E Examples of such representations are the 
central decomposition and the ergodic decomposition. They are associated 
with an abelian von Neumann algebra SB in the cornmutant w(QL) ' of the 
ima^e of in the representation canonically associated with o . This 
situation is studied in general and a number of applications are discussed. 
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0 . Introduction 

Let Ot be a C^-algebra with identity, E the set of states 

on Ot' . In a number of situations of mathematical physics, a state p 

is "decomposed" into other states a , i.e. o is exhibited as the re­

sultant of a probability measure J J on E , or p has an integral re­

presentation of the form 

p ~ / ia(da) a 

The measure \A is usually defined through a von Neumann algebra 58 in the 

Hilbert space of the cyclic representation TT canonically associated with 

p ; 18 is abelian and contained in the commutant Tt(0i)* of the image 

of (/i, .In Section 1 we describe the relation between SR and \x . In 

Section 2 we show, under certain separability conditions, how S is dia-

gonalized by a direct Hilbert space integral. In the following sections we 

consider some examples: decomposition of states invariant under a group 

into ergodic states, central decomposition, etc. 

One can often (under suitable separability assumptions) show that 

\x is carried by a special class of states: ergodic states, factor states, 

etc. Otherwise, the various decompositions have their particular problems 

and properties. For instance in the case of the ergodic decomposition of a 

G-invariant state p on a G-abelian algebra, the mapping p —> \x is af-

fine, but for other decompositions (e.g. central) such a property does not 

hold in general. 

There is quite a bit of recent literature on the subject matter 
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of this article, besides the classic i.l literature on ergodic theory and 

dynamical systems (which deals essentially with the case, of abelian. Ot )< 

In order to be reasonably readable, informative and self-contained, we 

have included here a relatively large amount of material which is not 

original (in particular much of Section 3). The main, results of this work 

are the general theory of Sections 1 and 2 and the study of "multiperiodicri 

decomposition in Section 4 and decomposition "at infinity" in Section 5. 

Section 4 presents an extension of the theory of dynamical systems with 

discrete spectrum; in particular Theorem 4.1 shows that the "equiconti-

nuous part:"' of the action of a locally compact abelian group can be so to 

say Isolated and exhibited as translations on a torus. In Section 5 we con-

sider C -algebras with "quasi-local11 structure. In such an algebra it 

makes some sense to say that two elements A, A 1 are "far away" ; a 

state c may be called clustering if a(A A.*) is close to a(A),a(Ar) 

when A and A 1 are far away. Theorems 5.3 and 5.4 say essentially that 

every state p has a natural decomposition into clustering states. 

For the organization of the article, we mention that Section 5 

and 6.1, 6.2, 6,3 may be read independently after Section 2. A number of 

results used in the present work have been collected in Appendix A for 

easy reference. On the other hand the reader is assumed to be familiar with 

the basic results on von Neumann algebras and C -algebras. Appendix B con­

tains technical developments needed in Section 2« 
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• General theorems. 

Throughout this note we. use the following notation and assumptions. 

Dfy is a C -algebra with identity, 0tj is the dual of Ot with the 

w -topology, E c (%* is the. (compact) set of states on $ * If Á € Ot 5 

the function A on E is defined by 

A(a) * a(A) 

A fixed state p € E is chosen; the canonical cyclic represen-

tation associated with p is ( f) , Ti, D) 

1.1. Theorem, (a) Let the von Neumann algebra $ satisfy  

nczrriCÍ)' © c S81 (1.1) 

Then the orthogonal projection P on the closure of S8 D in is such 

that 

P 0 - Q P TT(6t)P c [P rfi^)?]1 (1.2) 

^k) be an orthogonal projection in ^ 

satisfying (1.2), then the von Neumann algebra SB 38 [rr($í) U {P}]1  

satisfies (1.1), 

^ La this triple 'j| is a complex Hilbert space, rr a representation of @t in 
^ , fl € , ana the following conditions are satisfied 

( i ) ¡I n Í L " 1
 P ft, ' 

(ii) T T ( C X , ) Q is dense in -o ( Q is a cyclic vector for trwt/)) 
(iii) (V A € # ) p(A) - ( n , rr(á)Q). 
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(c) The relations between *8 and P established  

by (a) and (b) are the inverse of each other. 

Let the von Neumann algebra *8 satisfy (1.1) and let P be the 

orthogonal projection on the closure of IB in ^ . We note the following 

facts 

(i) P 6 

[Let B, Bj € 8, we have B PB 1 Q ~ B B^O » P B B ^ r P B P B ^ and, since 

SB Q is dense in p|), BP « PBP . Therefore BP - P B ] . 

(ii) Multiplication by P yields an isomorphism 

CTT(C^) U £ P } ] ' — > P C T T ( # ) U { P } ] ' 

[Let B € Cn(Ct) U [B)V > then BP = 0 = » B D « = 0 = » BTT(# > 0 - 0 =» B • 0 ] . 

(ill) P [ T K#> U { P } ] ' - P [ P T T ( ( % ) P ] ' 

; This follows from the formula see A.l) with 

U - O<0C> U { P } ] " 3. 

(iv) P * « P(pSS)' = P [ P T T ( $ ) P ] " - P C P T T C ^ ) ? ] ' 

[The restriction of PSB to P ^ is abelian and has the cyclic vector 0 ; 

by A.2 it is thus equal to its commutant. Thus PSB - P(P85)' . The set 

PTT($6)P restricted to P ^ commutes with PSB , and has the cyclic vector 

H , therefore 

P(Pfl) ' 3 p [p r r ({%)P]" or P [ P T T ( # ) P ] ' 3 PSB 

and, by A.2, P[Prr«%)Pl" - P [ P T T ( # ) P 3 ' ] . 

(v) » - CtT(6l) U { P ) T 

[(I) yields U { P } " P , (iii) and (iv) yield P S = P[IT( & ) U { P } 3 ' , 

it suffices then to apply (ii)"). 
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Part (a) of the theorem and one half of part (c) follow from (iv) and 

(v) respectively. 

Let now P be an orthogonal projection in satisfying (1.2). 

We note the following facts, 

(iv) P[PTT($)P]" - P[FTi((I)Pp 

[By A.2 because the restriction of [Pi~((%)P]>! to pj^ is abelian and 

has the cyclic vector Q *]. 

(vii) P[PTT($)P]< « P[n((%) U {p}]1 

[The proof is the same as for (iii)] 

(vili) Multiplication by P yields an isomorphism 

[ T T ( & > U C P ] ] 1 — » P [ T T<#) U ( P } V 

[The proof is the same as for (ii)] 

(ix) The closure of [vXOi) U {P } ] ' Q is the range of P . 

[Because [TT((%) U {P}]fQ « P[rr((% ) U {P}]Ti « P [ P T T ( & ) P ] " n ^ P n ( ( % ) 0 

by (vi), (vii) ]. 

It follows from (vi), (vii), (viii) that [niât) U [ P } ] 1 is abelian, 

proving part (b) of the theorem. Tue second half of part (c) follows from 

(ix). 

1.2. Theorem. Let Sft and P be as in Theorem 1.1. 

^ Multiplication, by P yields an isomorphism SB —}> PS 

(b) P© » P ( P « ) ' - P[PTT($)P]n - P[PTT($)P]» 

(c) There is a morphism a : I of C -algebras such 

that P a(A) « PTT ( A ) P for all A € $C . This morphism is unique, its  

image is strongly densein . 
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A C ( 1 . 3 ) 

tfi } PTT((%,)P 

Part (a) and (b) of the theorem follow respectively from (ii) 

and (iv) in the proof of Theorem 1.1. 

To prove (c) let first A ^ , , . . , A be self-adjoint elements of 

(jij and (P be a complex-polynomial in n-variables. Consider a simultaneous 

spectral decomposition of Prr(A1 )P,. . . ,PTt(Â )P : 

P « f F(dxT. . .dx ) J i n 

PTt(Ak) P ~ Jxk F(dx1...dx^) 

We have then 

\\f (Pn(A1)P,...,Pn(Aa)P)|| 

- \\f f (x r...,x n) F(dx r ..dxn)j[ 

* sup \f (Y, TT(A-)Y),. 1T(A )¥))| 
! C P | , ijYij -1 1 

£ sup | #" ( a ( A - ) , . . . , a(A )){ - U ^ C A , . . . F A )jj (1.4) 
a £ E n i n 

The polynomials (A^,...,A^ ) are dense in and therefore (1.4) 

implies the existence of a unique morphism 0: t?(E) P 8 such that 

0(A) ^ P tt(A)P 

The image of j3 is strongly dense in PB , In view of (a) there is a 

unique morphism a : > such that for all tp € 

g(<p) * P a(</>) 
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If the B((p) < a r e uniformly bounder and converge strongly to PB , the 

a(ip) are uniformly bounded and for each A £ Ot the a(<p)??(A)0 ̂rrCA) 

converge, hence the a($) converge strongly to P , proving part (c) 

of the theorem. 

1„ 3., Theorem, (a.) A;_ probability measure \± on E is defined by 

\xi<p) - (0, a(co) fi) (1.5) 

The resultant of | j jls p 

(b) There is a unique mapping a - L^E, \x) —> $ such that  
x- i£ 9 £ £ , ( E ) > then a(^) * a(p) ^ 

2- & is continuous from the topology of weak dual of L*(E, \x) on 

L^E* ji) to the weak operator topology on ® . 

The mapping a is onto, is an isomorphism of C -algebras and, for every 

A if € L°(E, U ) , 

ia(A ty) - (fi, n(A) a ( 0 n) (1.6) 

Part (a) is checked immediately. We prove (b). 

Let * a( *€(£)) , X the spectrum of X * B ' ̂ (X) ~> X the inverse of 

the Gel*fand isomorphism. We may identify X to a subset of E such 

that a($) ~ B(<p| ) . Then supp \i - X and (b) follows from A. 3. 
A 

^ That is, if p is the canonical mapping £̂ (E) «y L**(E, ji) » then 
< X « a o p , 
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1.4. Corollary% Let (l ) be a finite set of positive ele­

ments of P such that 2 B^ " 1 . We define a^ £ 0 and g E by 

a , * CD, B, D) a, aAk) m (0, rr(A)B. 0) j J j J J 

and introduce a probability T̂ a&ere ^ ̂  2 Oj 6 0 on E ( 6^ is-the 

unit mass at a). If {B\ } i-* the set of partial sums corresponding to 

some partition of 1 -,vte * C^.) * Given two sets (B^) $ 

{BM^} > there exiri* , iBs^l , {Bl.^} (take {B^} « {B^B 1^}), 

The directed _syotcn \t < y viL a V €2/^ 3 J£SL H in the vague topology of  

measures on E . This followo from Theorem 1.3 (b) and A.4. If 

{B*, ] £ [B^] then, using the order ^ of Bishop-de Leeuw (see A.5) we 

have ^ { B ^ } ^ M { ^ r < . 4 -

1.5. Corollary, Let <ft be an abelian ̂yon Neumann algebra. 

c r r ( O C ) ' . If.we associate with it aimeasure, $ on E by the above 

theory, we have (M C (ji*̂  ji) 

[Corollary 1.4 show;; that c ®) C|i-( ji) . .Conversely, • if *ji M> * 

theorem 1 of -̂t-*- H-t if * € £J(E) 'there exists f € 
•-v 

such that for all k C 

|IU» * (A > 

By (1,6), this gives a(f> ** 5X0 * hence l c | ] 

i.e. in the w -topology of the apace of measures considered as dual 
of $<E) . 

^Reference {€ J was pointed out to the author by J# Bimler. 
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If E is metrizeble and }j 4 JJ there is a family (T ) ^ 

§£ probability measures on E such -.hat 

(a) the resultant of T is 0 

(b) if <p € If (E) then a H> T is a. Borel function, and 

ii(«A> « | T (9) pCda) ( 1 , 7 ) 
i E a 

[This results from Theorem 2 of [6 * ] ] 

Formula (1.7) may be written \x ~ j T g |i(da) and shows that if © C © , 

the decomposition of p associated with S$ may be accomplished in two 

stepsf via the decomposition associated with P . 

1.6, Sources.. The use of (1.5) as definition of a measure ji 

giving an integral representation of p appears in Ruelle [3*1 for the 

case of ergodic decomposition; a form of the same idea is already present 

in Sakai [ 3 / 1 for central decomposition. Further references are given for 

each specific application, A version of Theorems 1 . 2 and 1.3 for the case 

9* dvX0t)f n n(@t)n has been obtained independently of the present work 

by Dopiicher, Guichardet and Kastler [131 > 
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41*) 
2 * ̂ duction theory 

In this Section we let Sft, P be as in Section 1 and we make 

the following separability assumption. 

Condition S, For k - 1,..Mu there are count ab1e rami lies 

( ( X * . ) and ( C / ) of sub-C -algebras of (% such that 
I k I K 

(ii) ^ ^ . . . a ^ i £ J S 2 £ L i a — 1 3 d e n s e 

(111) ¥ is a closed two-sided ideal of Ot * 
y - v \ — — • — V - - V 1 

(iv) J is separable, 
x U 

the restriction of p to each 'J ^ has norm 1. 
al n 

Define 

'V ~ fa f E : the restriction of a to j" has norm i] 

% - n 
a . j . . . a " a, • • • a 

Let also (A.) be a sequence in & such that each J contains a 
< x r . . a t i 

dense subsequence,, We shall denote by (8 , n , 0 ) the cyclic represen-

a ^ . e , . L : „ l M t - o £ a 

special case of condition S, namely that of separable OC • We may then take 

% « E and for (A.) any dense sequence in . The further complications 

which arise in the general case are dealt with in Appendix B (Proposition 

B.3). 

See Dixmier ifij Ch»2,'and [9j Appendix A. 
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Let a 6 , for a ay A., A. in the sequence (A.) define 
1 j 1 

hi 4 > V a ) € ^ b ^ 

Y. . - Tf(A.)Pr?(A.) 0 (2.1) 

Y,.(a) « a(A.) TT (A.) Q_ (2.2) 

The vectors ¥ ^ (resp. Y^(a)) are dense in ^ ,.resp. ̂  ( 0 ) . 

With the help of the family (¥..(*)) a direct Hilbert space integral 

u (da) | Q (2.3) 

*) 

may be constructed . It is the Hilbert space consisting of functions 

$ : a € E — f g such that, for every i, j, the complex function 

O —^ ( ¥ , . ( 0 ) , $ (a ) ) is ja-measurable and a ~ ^ j|J(a)ll is square-Inte-

grable; the norm is [j |i(da)[|$(cr)|| ] . The Hilbert space (2.3) does 

not depend on the choice of (A^) . It follows from (2.1), (2.2) and (1.5) 

that 

There is thus a linear i some try of ft) into j (jXda) J | ̂  extending 

^ij ^i]^*^ * l s o m e t r y I s onto : suppose that we have 

0 - f | i (da) (¥ , . ( a ) , 1 ( a ) ) - fu(da) A, ( a ) # (rr (A.) 0aM°)) 

Since the A^ are dense in L (E,|j) [by (1.5) the mapping <p *^ <x(<p)0 

is isometric from L"(E,|a) to P > the continuous <p are dense in 

L"(Eĵ i) and the ?Tf(A)H are dense in P ̂  , therefore the A are dense 
2 

in L (E,u)] we obtain ja-almost every where 
*¥) ~™ I"T~ ~ " ' *~ m~~~~ "~ ~~ See Dixmier [$J Ch. 2, I 1, Proposition 4. 
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( T T (A.)fì , $(<?)) - 0 
a i a 

and therefore 

*(a) « o 

For each a , let T(cr) be a bounded operator on | ^ ; for 

every i, j, i', j' let 0 —> (Y , ,(a),T(a)Y..(a)) be measurable and let 

a—!> !iT(a)|j be essentially bounded. 

*) 
There is an operator 

T « J ut(da) T(a) 

such that, if § « J |i(da)*(a> * then T§ « J w(da) T(a)*(a) . 

If T(cr) is a multiple X(cr) of the identity for all a , then T is cal­

led diagonalizable ; if A is continuous, T is called continuously  

diagonalizable . 

2.1. Theorem. There is a unique identification 

^ - j \xUa)^ a (2.4) 

such that 

0 « / |j(da) Q a (2.5) 

and for all A € Qi 

n(A) - J (i(da) ira (A) (2.6) 

With this identification, ft becomes the von Neumann algebra of diagonali­ 

zable operators, in particular 

See Dixmier [g] Ch. 2, § 2. 



- 13 -

a(A) * j u(dcr) A(a) (2.7) 

f ® . 

If we identify ^ and j u(da) /h ̂  by the isometry extending 

Y.. -—^ Y. . ( • ) which we discussed above, we have 
/> 

a U ' M A ) 0 » TT(A) PTKA 1) O - jjCda) a(A') rr (A) n (2.8) 

for any A, A 1 in the sequence (A.,) and therefore for any A, A 1 6 Q(, 
j 

(the sequence may be enlarged to include them), (2.5), (2.6) and (2.7) 

follow from (2.8), The Identification (2.4) is uniquely determined by 

(2.5), (2,6) because rr(QÇ)Ù is dense in .frj . The von Neumann algebra $ 

is the strong closure of a(£(E)) by Theorem 1.2(c), by (2.7) it Is 

thus the weak closure, of the algebra of continuously diagonalizable opera­

tors, which is precisely the von Neumann algebra of diagonalizable opera-

tors 
0 

Let (T̂  ) be a sequence of bounded operators in Jfj- such that 

T- *J u(da) T.Ca) 

•Vs 

If v{ Is the von Neumann algebra generated by the T . (a) , the operators 
O ' r 

of the form 

T - ( u(da) Tin) 

with Tic) €.\Jf form a von Neumann algebra {Jf which is said to be 

decomposable and is denoted by 

' See Dixmier ¡.8] Ch. 2, § 2, Proposition 8. 



- 14 -

//> * ) Ji is generated by the T and the diagonalizable operators . 

2.2, Theorem, (a) Let Jf be a decomposable von Neumann 

algebra : 

* . i 

Then Jf* is decomposable and 

(b) Let («/^) be a sequence of decomposable von Neumann 

algebras: 

J f i « f p(da) u T t a 

Then 

This theorem is proved in Dixmier [7] (Ch. 2, S 3, Th6orfeme 4) 

in the case of a (Radon) measure \x on a locally compact space with 

countable basis. The result hold however without countability hypothesis 

on E as follows from a paper by Effros [181 

f® u 

2.3. Sources^ The direct integral \ u(da)/l1^ was con­
sidered by Sakai [3Jfl for the central decomposition of a state on a se­

tt 

parable C -algebra. (The absence of separability condition in the note by 

Wils [4^1 on the same subject is puzzling/) The case of separable 6(/ , 

and ^ c r r ( ^ ) 1 n TT ( 0 6 ) " , is considered in [ 1 3 ] . 

*5See Dixmier [*] Ch. 2 f S 3, 
**) 

This reference was pointed out to the author by J. Dixmier. 
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Ergodic decomgos 111 on., 

Let G be a group and T a representation of G in aut 00 . 

We define an action T of G on E by 

T cr(A) - CKT" 1 A) (3.1) 
g g 

and let I C E be the set of G~invariant states, i.e., of states 

such that T a ~ a for all g f G . 
g " 

We assume that p € I ; there is then a unique unitary repre-

sentation U of G In 4^ such that 

U(g) 0 - 0 (3.2) 

U(g) TT(A) iXg"1) * TT(T A) (3.3) 
S 

We let P be the orthogonal projection on the subspace of /1^ consti­

tuted of the vectors invariant under U ; (3.2) yields 

P f5 - Ù (3.4) 

3.1. Theorem frhe_ following conditions are equivalent 

(a) P rr(â)P C [P rr<(#)PV (3.5) 

•«f-iff 4f ) /!/ 
^ J:ie5- A? » A<> € I'V aixd̂ let $ € P ̂  . Then, given 

^"r-invariant11 would be more correct but ^G-invariant" will cause no 
confusion. 

See Lanford and Ruelle [2Jj, 

One might in (b) suppose A, » A- self-adjoint and/or replace the ex-

i, <&. 
pectation value for $ by a matrix element between fp #^ € P ̂  . 
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€ > 0 , there exist A, £ 0 , g. € G such that 1 ^ , - 1 and 

| ( * , [ £ X t TT(T.T A ) , TT(A ) ] §)j < e (3.6) 
i si z 

The proof will result from the following facts 

(i) If Y 2 € and e > 0 there exist K. 2s0 > g^ € G such that 

E \, = 1 and, for a = 1, 2, 

jj XVj X.U 'Cg ' . g J Y a - P f a ! j < e 

where the 2. 0 , gf^ € G are arbitrary subject to £ X'^ 5 8 1 

[Using A. 6, we may suppose jj T, X,U(g„) ¥ - FY ||.< C hence 

: ( i x ' . u c g 1 . ) ) ( n t u(g.)Ya - pyii <e ]. 

(ii) Let k v k2 e Bt be such that JJAJ < 1, j^jj £1 . 

Let i l t $ 2 € P , be such that Ijij] £ 1 j|$2|j £ 1 . Given e > 0 one 

can find £ 0 , € G such that E X^ " 1 and 

Cn(A1)PTT(A2) -rr (A2) PTr(A1)]$2) 

- ($ l f [E X ' j TT(T g , A^Tr(A 2)j » 2 ) | < e 

where A'^ =» £ X. T A^ and the X ' . ; g 1. € G are arbitrary subject 

to S X' - 1 , 

[This follows from (i) with V = T T U * ) ^ , f 2 - rr(A])$2 1. 

(iii) (a) » (b) 

[Notice that, by polarization, (a) is equivalent to 

"($,[ nCA^ Prr(A2) -TT (A2)Pn(A,)]$) = 0 for a l l * € P <| " . Putting 

X' ~ 1, g ' ^ = 1 and § 1 = § 2
 36 § in (ii) yields the implication 

(a) «* (b) . To prove (b)=» (a) we use again (ii) ; if (b) holds we may 

choose X 1 , . g'. so that 
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[ S X! n(r f A,')> TT (A )] «)| < e 
j J 8j 1 

and (a) follows], 

3.2. Corollary. If the conditions of Theorem 3.1 are satisfied  

with respect to a closed subgroup H of G , they are satisfied with  

respect to G 

[This is immediately verified for (b)], 

3.3. Corollary^ The conditions of Theorem 3,1 are implied 

by the following 

(c) Let kv A 2 € $ and * € P^J then 

inf g € G |(«, rr([Tg Av A 2])*)| - 0 (3.7) 

[This is immediately verified for (b)]„ 

3.4. Theorem . Consider the following conditions on the 

G->invariant state o 

(a) p is ergodic9 i.ev> p is an extremal point of I . 

(b) The set r\{0t) U U(G) is irreducible in ij . 

(c) P Is one dimensional. 

We have (a) » (b) (c) , If p satisfies the conditions of  

Theorem 3.1, then (a), (b), and (c) are equivalent. 

The existence of a self-adjoint operator C€[TT($6)U UXG)]1 , 

*}See [1*1, [34-3, O f t . 
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such that 0 £ C £ 1 and C is not a multiple of 1, is equivalent by 

A.7 to non (a) and non (b); thus (a) (b). If (c) holds, (1.2) is veri­

fied and (c) (b) by Theorem 1*2 (a). If the conditions of Theorem 3.1 

are satisfied, (1.2) is verified and Theorem 1.1 gives (b) «* (c). 

3.5. Proposition, If A € QC % define 

conv (T A) * { E X . T A : X. * 0, £ X « 1 , g € G] (3.8) 

Then 

inf p(C*C) * CO, TtCA*) PTT(A) fi) (3.9) 
C € conv(T A) G 

*) 

The. proof results from A. 6 and the inequality 

p(c*c ) « j irrCOnjI 2 * jip rr(c)nl i 2 

- ||P rr(A)0i|2 - (Df n(A*)P IT(A) fi) 

3.6. Theorem. Let the conditions of Theorem 3,1 be satisfied,  

so that the theory of Section 1 applies . 

^ This simple proof was communicated to the author by H. Araki. 

It is interesting to notice that here 8$ * [rr($£> U U(f ))* t we shall 
not make explicit use of this fact. 
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^ The measure u defined by (1.5) is the unique maximal 

measure on I (with respect to the order of Bishop- de Leeuw, see 

^ * ^ Hi !-h resu 1 tan^t p 

(b) I f ^ h £ ^ ^ ^ l , ^ i o n S of Section 2 I s satisfied (e.g. if 

Ct is separable), the .easure U 7 , carried by ergodic states. 

The proof results from the following facts 

(1) supp (J C I 

[By Corollary 1.4, jj. is limit of measures (ir̂  carried by finitely 

many points o\. 6 E where 

a.(A) » (0 , B. fl)™1 (0, TT(A) B. ft) 
J J ' J 

and B. C ; using (fi, rr(A)B. fi) - (0,TT(A)P B. ft) we find a. € I ] 
J 3 J 

(ii) (a) holds 

^We have to show that: if is any probability measure on I with re­

su l tan t p and. (p a convex continuous function on I , then. 

u ( 9 ) ^ [iOfi) . In view of A, 4 we may suppose that [I has finite support: 

u(<p) - Z a- <p(p.) where a. £ 0 , p. 6 I , 2 a. » 1, S a. p. « p , 

but then (see A. 7) (i is of the form p,^ -j of Corollary 1.4 with 

B. 6 *rr(^)? 0 U(G)' and, since U(G) 1 C { F V by A.6 ? B. € © Corollary 
J J 

1.4 g ives then u($> ^fi(<p)l. 

( l i t ) I f a € I , let P be the projection on the subspace of G-invariant 

vectors in )tyn . For any A € Ot , the following quantity vanishes 

li-almost every where, in 0 
(TT (A) n , P rr (A) 0 ) - j( fi ,TT(A) 0 )i2 

a a a a a J o a 
[Since this quantity is a priori £ 0 , it suffices to remark that 
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| |i(da)[(rr (A)f>,P TT (A)n ) - A*(a)A(a) l 
ft 

-]y(da)Cinfc g c o n v ( T A ) a (c*c>] - (n,a(A*)a(A)f)) 
G 

* i n f C € convCr 0(C*C) (n,rr(A*)Prr(A)n) - 0 
G'" 

where we., have used twice Proposition 3,5]. 

(iv) (b) holds. 

[in view of Proposition B.3 (a) the sequence TT^(A^)Q^ is dense in i | ^ 

(j-almost every where* and (iii) shows that P^ is almost every where 

the projection on D^j 

3.7. G~abelian algebras,, 

If the conditions of Theorem 3.1 are satisfied, the integral 

representation of p given by y, will be called ergodic decomposition 

(this terminology is justified by Theorem 3.6 (b)). We shall say that 

Of/ jjs G-abellan if the conditions of Theorem 3,1 are satisfied for 

every G~invariant state p „ The following characterization Is readily 

deduced from Theorem. 3/1 : Oi i± G-abellan if and only if for all a € I 

and € > 0 there exist X. * 0 > g^ € G such that £ ̂  m I and 

j o ( [ : T p k v A 2 ] ) | < e 
1 ai 

Sit 
3.8. Theorem . Ii-{ft is G-abelian, then I is a simplex 

in the sense of €homn:t^jseg A>5K^ 

This follow.? immediately from Theorem 3.6(a) and the defi­

nitions. 

3.9. Theorem"^. Let § i be G-abelian and let © be contained 

See Lanford and Rue lie [2/1. 
This theorem w&s proved originally by Stumer [39] under the assump­
tion that ail) is contained in the strong operator closure of conv TT(T A) 
for each A 6 Ot and each invariant state p , Here we follow. [36], 
Exercise 6J3„ 
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in rr(£/£)" for each invariant state p . Then two ergodic states 

Px £ H l ^2 , c a n n Q t & e quasi-equl/alent if they are distinct. 

Let TT^, 0^) , T T ? > ^ 2 ^ ^ e t^ i e c a n o n * c a * cyclic 
representations associated with p̂  and p 0 . The states p ^ , a r e 
called quasi-equivalent if there is an isomorphism 6 of Tt^(0i/)u 

onto rr2 ((/£)" such that 6 rr1 (A) = TT?(A) when A £@i . Let now p , p 2 

1 I 
he ergodic, distinct, and take P 3 j 4- j p 2 ; by A. 7 and A. 6 there 

exist Bĵ  , B 2 € 55 with 0 £ Bj, Q £ B 2 > + B 2 « 1 , and 

£p.(*) 35 (ft, TT(A) B. ft) . Since the p. are ergodic we have B. B- « 0 

so that and B 2 are mutually orthogonal projections, we may identi­

fy kjj i with the range of B i in Jt^ a n d write ^ ( O f ^ V ^ T K * ^ ft . 

We have. ?>i € » C T r ( # C ) M > let thus TT(A) -—^ B^ , then 
rr(A).b — > B j p « o k 

But If p^ and p 2 were quasi-equivalent we would have the contra­

diction 

3.10. Sources. For the case of abelian $(, (decomposition 

of an invariant measure into ergodic measures) see for instance 

Phelps [J0"j Section 10. For the extension to non-abelian (K see Ruelle 

[341 * and in a different spirit Kastler and Robinson [23] where an 

"abstract" decomposition is discussed, The present treatment largely 

follows Lanford and Ruelle [2f] with some Improvements in Theorem 3.6 

and the addition of Theorem 3.9 ("Stunner's theorem" [3 3]). For further 
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results see [2J], [14*1, [40], [4 *L [33], [IT] . A review and applica­

tions to statistical mechanics are given in [3<] Ch 6 and 7. In the 

examples of ergodic decomposition which occur in statistical mechanics, 

G is typically the Euclidean group or the translation group in 3 dimen­

sions; a G-ergodic state is interpreted as upure thermodynamic phase" , 

and ergodic decomposition is the decomposition of a "mixture11 Into 

pure thermodynamic phases. In physical applications the algebra Ot 

is not always separable, but the states of physical Interest satisfy a 

form of condition S . For instance it may be that Oi f J are 
Un QL 

sub-C*-algebras of Ot such that Q t ^ is isomorphic to the bounded ope 

rators and 2 a to the compact operators of some Hilbert space <f6 f t ; 

a state o which has a restriction of norm 1 to each is then 

called locally normal (see [35], [2©], [3tf] Ch 7 ) . 
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4. Multiperiodic decomposition. 

Let G be a locally compact abelian group noted multipli-

catively. As in Section 3 we let T be a representation of G in 

aut (}(/ 5 we assume that the state p is G~invariant and we let U 

be the unitary representation of G in satisfying (3.2) and (3.3). 

We assume that U is strongly continuous and we let E(*) be the 

spectral measure on the charactergroup G such that$ 
0 

U(g) « . X(g) ECdX) (4.1) 
J G 

Let X be the subset of G consisting of the points X such that the 

corresponding projection does not vanish: E ( { x } ) f 0 . For simplicity 

we write E({X}) - E[X] . Then 

X - {X € G : E [ x ] 4 0} (4.2) 

We define the projection 

P ~ E E[Xl « E E[Xl (4.~) 
X€G X€X 

From (3.2) we obtain then 

P O = 0 (4.4) 

It is known that the range TfjQ of P consists of the almost 

periodic vectors of /î  , i.e. of the vectors Y with a relatively com­

pact orbit U(G)f . 

_ — - , , 
' If for each A € % ^ d C € E the function g —>a(T A) is conti-

g 
nuous on G , then it can be shown that U is strongly continuous. 
The existence of E(») is asserted by the S.N.A.G, theorem, see for 
instance Maurin [23] p. 218. 

, - -
See for instance Ch 1 §7. 
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4.1. Theorem. The following conditions are equivalent. 

(a) FTT($)P c[p n(0C)vV ( 4 . 5 ) 

( b > i £ t A x> k

2 $ Ot > and let X ^ X 2 , X 3 £ G , then 

E[X 1]lT(A 1 ) E [ X 1 X 3] T T ( A 2 ) E [ X 2 ] 

- E C X 1 ]TT ( A 2 ) E C X " 1 X 2 ] TT ( A 1 ) E [ X 2 ] ( 4 . 6 ) 

<c> ML kx > A2 , let $X, § 2 € P , ^ , and let X € G . 

Then, given S > 0 , there exist ^ 0 , € G such that £ X ^ 1 

and 

|(fx>[ 2 L x ( g 1 ) " 1 T r < T A 1),i T(A^)] $ 2)| < e (4,7) 
i ®i 

The proof will result from the following facts; 

(i) If S is 'a finite subset of' J/£ , X € G and € > 0 there exist 

\ * ° * 8i € G s u c h t h a t S S' ̂  1 a n d 

I! S X t X ( G L ) " 1 U(g ) ? - E [ X ] Y |i < 0 (4.8) 
i 

for all ? 6 S . 

[Notice that E[x] is the projection on the space of invariant vectors 

for the representation g —^X(g)""* U(g) of G in /1^ . It suffices then 

to use A . 6 ] . 

(ii) If (4.8) holds and if X.1 > 0 , g j € G are such that £ Xj * 1 , 

then || £ X. X! X C g . - g ! ) " 1 3U ( g , . g ] | ) Y - E [x]Y j| < € 
4 i ** J X J A J *• > J 

[Because if (4.8) holds and g € G , then 

II 2 X t x C g ^ g ) " 1 u C g ^ g ) * - E[X]Y || 
i 

= jj X(g)" 1 U(g) [ E \ ± X(g i)~ 1 U( g i) Y - E[X] Y|| < e ] 
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( i l l ) Let A x > k2 € Ot be such that jJAjj £ 1 , JJÂ jj £ I .Let 

X.,, X 2 ? 6 G and § ? € ^ be such that jj^ || £ 1, pj{ £ l and 

EfX.^ § x * , E[X 7]$ 2 - # 2 . Given e > 0 , there exist X̂ , ̂  0 , 

g^ € G such that £ X^ ~ 1 and 

j($ r[ n(A 1) E[X1 X 3] n(A 2) - TT(A2) EtX^1 X 21 n U ^ ] ^ ) 

- d r [£ Xj X3(gj) n(T g ! A.p,TT(A 2)]* 2)| < € 
J J 

where A f * E X^ X, (g.)r A- and the X! £ 0 , g! € G are arbitrary * ^ i j i i j j 
subject to 2 X! * 1 , 

j 
[In view of (i) and (ii) one can choose the X.^ g^ such that 

!i E Xj £ X. X C 8 i gj)* 1 X3(g. g!)" 1 U(g. gj) TT(A^)$1 

j i J ] J 

- E[XX X 3] TT(A*) < € / 2 

•I 'E Xj E X. x 3( g ; [ gj) x2(g g T 1 uCg gj) TT(A 1) $ 2 

j i J J 

- E[x~L x ] TT(A1)« || < e/2 

This yields immediately the result], 

(Iv) (c) * (b) *> (a) 

[(iii) yields the first implication, the second results from summation 

over X 3, X][, X 2 € G in (4.6)]. 

(v) (a) =» (b) 

[Let $ 1 € E [X l T i j , *, € E [X2 J ̂  , (a) gives 

TT(TG A X ) P TT(A 2)I 2) « (S^TT ( A 2 ) Prr ( T G A . ^ ) . 

Writing P « S ECX.X] - S E[X _ 1 X,*) yields then 
X X 
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E _ X(g)" 1 TTCAJ) E[X 1X] TT(A 2)$ 2) 
X 6 G 

« E - X(g)" 1 ($ , TT(A ) E[X~l X ] n(A ) $ ) 
£̂ 

and (b) follows], 

(vi) Let i t € E [X x ] i j , * 2 € E [X £] ̂  and e > 0 , (b) implies the 

existence of ̂  ^ 0 , g. € G such that E X^ ~ 1 and 

|(#1,[E_ X ^ j X ( G I g p " 1 r r (x g > G , A ^ , TT(A 2)] $ 2 ) | < € 
1 > j J 

where the X j ^ 0 , g j € G are arbitrary subject to E X j ~ 1 

[This follows directly from (ill)]. 

(vii) (b) * (c) 
X 

[It suffices to prove (c) for the case of finite sums , 
X 1 

§ 2 - E $ 2 where $^ , $ 2 6 E[X]^ , and this follows from (vi)]. 

4.2. Corollary. If the conditions of Theorem 4.1 are satis­ 

fied with respect to a closed subgroup H of G , they are satisfied  

with respect to G 

[This is immediately verified for (c)]. 

4.3. Corollary. The conditions of Theorem 4.1 are implied  

by the following 

(d) Let A^, A 2 be self-adjoint elements of a n d 

iv $ 2 € P ^ , then 

inf |(* rr([T A AJ)$ )| * 0 (4.9) 
g € G 8 1 Z £ 

[This is immediately verified for (c)]. 
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*) 

4.4. Theorem Let the conditions of Theorem 4.1 be satisfied, 

then -

(a) The conditions of Theorem 3.1 are satisfied 
(b) X - X " 1 

H P is ergodic, then E [x] is one dimensional for  

every X 63C and 3 C is a subgroup of G . 

From Theorem 4.1 (b) we obtain 

[E[X1 n(A1) E [ X ] , E[Xl T T(A 2) E[X]] - 0 (4.10) 

E[ll tTCAj,) E[X] T T ( A 2 ) E[ll - E[l] n(A 2) E C X " " 1 ] T T ( A 2 ) E[1] (4.11) 

EEXj] TfiAp EEXj X ] T T(A 2) E [ X 2 ] - E[XX] T T ( A 2 ) E[l] tf(A1) E [ X 2 ] (4.12) 

Inserting X * 1 into (4.10) we obtain (3.5), proving (a). 

Part (b) of the theorem results from (4.11). By Theorem 3.4, the ergodi-

city of p Implies the irreducibility of rr({/6) U U ( G ) , therefore the 

algebra 

E[Xl [E[X] TT((%) E [ X l ] M 

restricted to the range of E[Xl is irreducible and since it is abelian 

by (4.10), E[X] is one dimensional. In particular E[í] is one dimensional 

and (4.12) gives 3C . ^ > which together with (b) proves that 

is a group. 

4.5. Eguicontinuous actions, 

If the conditions of Theorem 4.1 are satisfied, equations (4.4), 

(4.5) hold and therefore the theory of Section 1 applies. In particular 

} See [231 
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there is a natural Integral representation of p given by a probability 

measure \i on E (see Theorem 1.3;. We call this integral representation 

the mu11iperiod ic decomposition of p . We shall show (Theorem 4 . 7 ) that 

if p is ergodic and P JÇJ separable, the action of G on the measure 

|j is equivalent to a certain equicontinuous action of G on the Haar 

measure m of a compact abelian group M . This will justify the phrase 

"multiperiodic decomposition". 

Let K be a compact space and T a continuous action of 

G on K , i.e., T : G X K —} K is continuous and is a representation 

of G by homeomorphisms of K .We say that the action T is equicon­

tinuous if, for each <p € 5$(K) , the set {tf> o r * g € G} Is relative-

ly compact in ^f(K) 

Let G be obtained by replacing the original topology by 

the discrete topology on G .The character group G of G is the 

compact group associated with G . Define a group isomorphism y:G —^-G 

such that (yg) (X) ~ X(g) for all X € G , then y is continuous and 

has dense image. For every continuous group homomorphism T):G — w h e r e 

H is compact, there is a continuous homomorphism fj : G H such that 

r\ - r\ y 

4 . 6 . Theorem. Let T be an equicontinuous action of G on  

the compact space K 

*> r 1 
For a proof see [3J 16,1. 



- 29 -

(a ) There exlsts a continuous action T of G on K such 
that T « r i f g € G .  

Yg g — 
(b) If m is_a probability measure on K . invariant and 

ergodic with respect to the action T of G , then the support M of 

m in K is â  homogeneous ̂  space of G (for the action T ) and m 

restricted to M is the Haar measure of this homogeneous space« 

(c) Conversely.. ilet T be a continuous action of G on a  

homogeneous space M and let m be the Haar measure on M . Then the  

action g —> T v of G on M is equicontinuous and m is ergodic  

with respect to it. 

We prove successively the three parts of the theorem 

(a) The equicontinulty of the action of G implies that the 

closure of the set of operators T : <p — ) <p « T in ^(K) » with 
**) 

respect to the strong operator topology, is a compact group H . There­

fore there exists a continuous homomorphism T . : G H such that for 

all g € G we have T * T . By continuity H consists of auto-
g YE 

morphisms of ^f(K) ; there is thus a homeomorphism ?~~ of K such 
S 

that 

The mapping T : G X K K is continuous and T « T if g € G 

(b) If M were not a homogeneous space of G , we could find 

x, y € M such that x £ ?•? y (where Tr y is compact). There would then 

See for Instance Jacobs [2jfj p 112. 
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exist a compact neighbourhood L of x such that L H T~ y ~ 0 or equiva-
G 

lently y £ -T^L Then TrL would b a compact set with x in its interior 

and y £ T- L . Because of the ergodic!ty of m with respect to the 

action T of G , m would be carried by Tg L or the complement of this 

set in M , in contradiction with the fact that M is the support of m • 

If x € M , the Haar measure m on M is defined by 
x 

n 

G 

The measure m^ is independent of the choice of x because of the 

transitivity of T~ on H and the invariance of the Haar measure on G . 

Notice now that the invariance of m with respect to the action T of 

G implies its invariance with respect to the action T of G : 

m(<p o T ) 82 m(p) gives by continuity m(^ © T-) 8 8 m(<p) 
8 8 

We have thus 

r r - c 
mitp) » J m(dx) <p(x) « dg[ m(dx) (p(T~ *)] 

K G -1 K 8 

=* j m(dx) [ f dg <p(T~ x)] « m (f)) 
K G 8 X 

and therefore m * m 
x 

(c) If (p € ^(K) , tp o Tg is compact, hence (p o T fî is 

relatively compact, and g —^ T 358 T Is equicontinuous. Since there 
8 Y8 

is a measure on M invariant under G (namely m), there exists also an 

ergodic measure on M , but such an ergodic measure is by (b) necessari­

ly the Haar measure m , therefore m is ergodic] 
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4.7. Theorera. Let the conditions of Theorem 4.1 be satisfied, 

let p be ergodic and let P Jtj be separable. 

Replacing the original topology of 3C (defined by (4.2)) by  

the discrete topology we obtain a group 2L 5 we let M be the compact  

character group of and m the normalized Haar measure on M . 

We define a continuous homomorphism 6 : G M with dense image by 

(6g)(X) « X(g) for all X € % . The action (g, x) -> x . 6g of 

G on M is equicontinuous and m is ergodic with respect to it. 

There exists a mapping f : M — ) • E with the following pro­

perties. 

(a) f transforms- m into \x in the sense that the mapping 
2 2 <p(*) —? <p( f) is Isometric from L (E, ц) onto L (M, m) . 

(b) For all A € (% > g € G 

f p (A) - f (т"1 A) (4.13) 
x.6g x g 

m-almost everywhere with respect to x 

If A € (X з X € 3£ we define 

A X - E E[XXf] rr(A) E[X>] (4.14) 

We let % be the С -algebra generated by the A* and define a re­

presentation т of G into aut % by 

T r Q - U(g) Q tKgr 1 (4.15) 

We have In particular 

T A X « X(g) , A X (4.16) 8 
The proof of the theorem will result from the following facts. 
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(I) ^ is abelian 

[Using (4.6) we have [A ^ > A 2 ~] 

- E [ E C X X ^ I T K A ^ - 0] . 
x£j£ 

(ii) Let M be the spectrum of ̂  , we denote by Q —> [Q] the 

Gel*£and Isomorphism ^ — ^ lf(M) . The action T of G on M de-

fined by [Q] (T x) * [r~ ' Ql (x) is equicontinuous. 
& § 

[it follows from (4.16) that the mapping g }r Q is continuous and 
the orbit T Q relatively compact for the norm topology of 

g "'V 
(iii) The algebra P $ (see Theorem 1.1 and Theorem 1 . 2 (b)) is equal 

to the weak closure % of % 
X 

[We have P rr(A)P ~ E A* in the sense of strong convergence, hence 
xeX 

P S c ^ . The restriction of P S to P ^ is abelian and has the 

cyclic vector 0 , hence it is maximal abelian and contains the restriction 

of %, to P/l̂  (which commutes with it); therefore P iB ^ ^ 1 . 

(iv) A measure m on M is defined by 

m([Q]) - (ft, ,Q0) (4.17) 

m is ergodic and its support is M . 

[if m were not ergodic there would exist a G-invariant vector Y in 

the closure of ^ CI such that f is not a multiple of 0 , in contra­

diction with the ergodicity of p (see Theorem 4.4(a) and Theorem 3.4). 

Let . 0 * Q € 2 , t:hen m([Qj) * 0 * Q 1 / 2 p rr(A)P 0 * 0 (because ot (i) 

and (iii)) =» Q 1 / 2 TT(A) D « 0 * Q 1 / 2 * 0 ; therefore supp m * M ]. 

(v) H can be identified to the character group of j£ so that m is 
, *v ̂  

the Haar measure and T . x m x« 6g (here JL and 6 are defined as 
S 
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in the statement of the theorem). 

[By (ii), (iv) and Theorem 4.6 (a), (b), T extends to a continuous 

action T of 5 on M and one may identify M with G/H where 

H * {g € G : T- * 1 } ; in this identification m is the Haar measure 8 
of G/H and T <g> * <g. yg> where <•> : G — ^ G/H is the quotient 

8 

mapping. From (4.16) it follows that H » Cg € 2 : X € X g(X) « 1} 

and we may therefore identify G/H to the character group of j£* . 

The image of <yg> in X * I s 6g so that T x » x. 6g ]. 
8 i 

(vi) The space u(M) Is separable 

[Because the separability of P implies that the character group 3 ^ 

of M is countable]. 

(vii) The Gel*fand Isomorphism extends uniquely to a 

morphism of C -algebras L^M, m) , again denoted by [•] , such 

that 

m([Rl) - CO, R O) (4.18) 

This morphism is an isomorphism onto. 
[This results from A. 3 applied' to the restriction of £)' to P ^ ] . 
(viii) There is a mapping f : M E such that for all A € {% , f (A) 

• x 
I 

Is measurable and for all t|r € I/(M, m) 

f 

m(dx)^(x)[PTT(A)Pj(x) - j m(dx)t|f(x) f (A) (4.19) 

We have tn-a linos t everywhere 

[Pa(A)jO) » [PTT(A)P](*) - f.(A) - A(f #) (4.20) 
[The function f, defined by A.8 satisfies (4.19); since sup j|f |j « 1 

x 
and ffc(l) * 1 m-almost everywhere we may assume that ft maps M into 
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E ; (4.20) follows from (4.19) and Theorem 1*2]. 

(ix) Property (a) of the theorem holds. 

[Since polynomials in the A are dense in £(M) and since 

<p ~~) [Pa(<p)l is a morphism £'(E) — > L*(M, m) (by Theorem 1.2, (iii) 

and (vii)), (4.20) gives [? a(0)1 (•) 8 5 p(f ̂) m-almoat everywhere if 

<p € £ (E) . Therefore. 

U ( 0 ) » . (0 ,a(o)O) - j m(dx)[Pa(o)](x) » J m ( d x ) 0 ( f x ) 

• 2 2 

Therefore the mapping <p—~>p(ft) is isometric l/~(E, jjt) L (M, m) . 

The image of ^(M) in 2 by p —J> P a(<p) is strongly dense (Theorem 

1.2 and (iii)). Since the morphism [*]:>£ —> L^CM, m) is onto by 

(vii) and since the norm of [R| In L2(M, m) is ||[R"]||2 « ||R f)j| by 

(4.18), we find that the Image of lf(M) by tp % [P a ( p ) ] is dense in 
2 ^ 2 2 L (M, m) . Therefore the isometry L~(E, fi) — > L (M, m) is onto]. 
(x) Property (b) of the theorem holds 

[in view of (4.20) we have m-almost everywhere in x 

fx 6g ( A ) " LPTT(A)P] (x.6g) - [PTT<A)P1 (T X ) 

« [U(g^1)Prr(A)P 11(g)](x) - [P n C T 1 A)P](x) - i ( r l l A) ] 
g x g 

4.8., Remarks on Theorem 4.7^ 

(a) Define unitary representations V and W of G in 
2 2 
L (E, |i) and L (E, m) respectively by 

V(g) <p(.o) (p(7~l a) 
8 

w(g) t(x) - Kx.Cdg)"1) 

2 2 
Define further the mapping T : L (E, \i) L (M, mX by 
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T o(x) * <p(f ) 
^ X 

Part (a) of Theorem 4.6 expresses that T Is an isometry of L (E, (i) 
2 

onto L (M, m) and part (b) that 
TV(g) - W(g) T 

(b) Let the conditions of Theorem 4.1 be satisfied and p 

be ergodic. Let JC be any subgroup of % and define 

P - 2 ~ E({X}) 
X€f£ 

Then (4.6) gives 

P rr(Ot) P c [P tr(i%) P] f 

Furthermore Theorem 4,7 remains true if J3£ and P are replaced every-

where by jL and P 

(c) Suppose that j£ is a discrete subgroup of G and define 

H - {g 6 G : X £3£ =>• X(g) « 1} 

then H is a closed subgroup of G , G/H Is compact, and P ^ con­

sists exactly of the vectors Invariant under H , The multiperiodic 

decomposition is in that case an ergodic decomposition with respect to 

H and it will follow from 6.4 that; \x is carried by H-ergodic states. 

4.9. Sources. Much interest has been paid to dynamical systems 

with discrete spectrum and to the discrete part of the spectrum of dyna­

mical systems (see for instance Arnold and Avez [31 9.13, Appendix 7, 

and references quoted there). A version of Theorem 4.4 with non commuta­

tive (X was proved by Kastler and Robinson [2 3], ŝee also [IS] . A 

first attempt at understanding the decomposition studied here was made by 

2 
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Doplicher, GallavottI and Ruelle [il] . 

If the ideas expressed by Landau and Lifshit& about the nature 

of turbulence in hydrodynamics ([2<j § 27) are correct, the multiperiodic 

decomposition may be useful in the description of a turbulent state. 

Other applications exist in statistical mechanics (see [3*0)* The inte­

resting situations are those for which ĵ ? is not a discrete subgroup 

of G , this corresponds for physical systems to the existence of periods 

with irrational ratios. 
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5. Quasi-local structure and decomposition at infinity. 

"When a family (tvA) u ^ sub-C#~algebras of % is given, 

we may say that a quasi-local structure is defined on 06 . The following 

theorem Is then often useful, 

5.1. Jheorem.. JLet ct be a directed ordered set and let 

^A^A b e - a - - d e c r e a 8 l n & £ a ; m i l y o f.. V Q n Neumann algebras In JQ . Define 

^ - n A g S A and assume $ c rr( $6) 1. The following conditions are  

equivalent, 

® consists of the multiples of I . 

^k) Qi v e r* A € 0 t there exists A € $ such that 

B € ^ ,j(n,rr(A}B O) ~ p(A)(fl, B n } | < || B || 

(c) Given | > 0 and A € Ot there, exists A such 

that 

B € ® A * |<ft, TT(A)B D) - p(A)(Q, B ft) | * € j| B jj 

Using the replacement A — f k / e one verifies (b) « (c). 

The proof of (a) (b) is obtained by observing the equivalence of the 

following conditions [To obtain (iv) °» (iii) use the compactty of the 

set of operators of norm i 1 in the weak operator topologyl. 

(i): non (a) 

(ii): there exist A^, A 2 € (36 and B € * such that 

(ft, TT(A^)B Tt(A2)fi) * (ft, TT(A1 A2)ft) (ft, B ft) 

(iii): there exist A € Ot ^ d B 6 8 such that 

jj B j| £ 1 and j(Q,n(A)B ft) ~ (ft,rr(A)n) (ft, B ft)} * 1 

*^ at is directed if, given A., A 2 € ^ there exists A € such that 
A^, A 2 £ A . 
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(Iv): there exists A € Ob and for every A there exists B A £ $ A 

A A 

such that 

|!BAiJ * 1 and. j(n,rr (A)BA 0) - (0 , ir(A)f))(n, B A 0) | ;> 1 

(v) : non (b) . 

5.2. Quasi-local structure. 

We shall now study an example where algebras $ A are construc­

ted from a quasi-local structure. 

Let Z be an ordered set where a relation Al M may hold 

between pairs of elements, and let (0C ) A g £ be a family of sub-

C^-algebras of (X . We assume that the following conditions are satis­

fied. 

QL 1. If A t £ and M » then Â JL M 

QL 2. The set Z is directed and if A. .1 M^, A, JL M 2 > there exists 

M € Z such that M,, M> * M and A I M . 
A. <0 

QL 3. If M M , then \'%. , (X,A - 0 
QL 4. U, ^ ft *AA is dense in A c £ A 

We define 

A J M : A J. M M 

By QL 2, Ct^" is a self-adjoint, algebra and QL 1 gives 

( A 1 * V = => 

Define also 

SB » n c C C S " a - n A c « f t A (5.3) 

A A A t A- A 

Clearly m c n ( $ / ) " . On the other hand QL 3 and (5.1) give C^J*. ( f y > 0 , 
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hence [>. H($^)1 « o and, by QL 4, 3* c n(j%)f . We shall call S 

the algebra at infinity ; we have just shown that the algebra at infinit  

i s contained in the center of t r (06) r l • In particular the theory of 

.Section 1 applies. The corresponding decomposition of p given by jj 

(see Theorem 1.3) will be called decomposition at Infinity ; under 

suitable separability assumptions p is carried by states with a trivial 

algebra at Infinity (see Theorem 5.4 below). From (5.2) we get 

(A £ A ) » (8 3 » ) 
1 2 

Therefore Theorem 5.1 holds, it characterizes the cases where the alge­

bra at infinity is trivial, we reformulate this theorem as follows. 

5.3. Theorem^ We let ^ A ^ A ^ ̂  satisfy QL 1 - QL 4, and  

use the notation (5.1), (5.3). The following conditions are equivalent. 

(a) The algebra at infinity 1W consists of the multiples 

of 1. 

^k) Given € > 0 and A € Oi there exists A 6 £ such that 

it A' € Ot^ , then 

jp(A A 1) - p(A) p(Af)l £ e }| A 1 || 

Let $h be the weak closure of TT((JC7) and P A be the A A A 
largest projector in . Every B € is of the form B~B,-hX(l~P*) r A A 1 A 
with B x 6 5) , !l B x |1 * J| B (|, I X ! ̂  || B || ; therefore B « X 1+B1 

where B* ~ B^ - X ? A € $>A , |JB'|| £ |J Bj || + | X I £ 2 j| B j| . From 

Theorem 5.1, we see thus that (a) is equivalent to 

This theorem is of the Sinai-Powers type (see Siriai [38], Powers [fl], 
Lanford and Ruelle [2$1). 
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(k'^ Give" A £ there exists A 6 £ such that: 

B 1 6 3) =* j (f i ,TT(A)E' A) - p(A)(0, B ! 0)\ £ € j| B' |j 

*) 

Using Kaplansky's density theorem we may write equivalently 

A' € Q t h =» (p(AA') - p(A) p(A«)j * S |!rr(A)!| 
This in turn is equivalent to (b) because if A' € O t ^ there exists 
A" € 0C^ such that n(A') - n(A") and || A" || is arbitrarily close to 

I I " <A")!i " > • 

5.4. Theorem, Let (yiOy ^ ^ be a countable family of 

sub-C -algebras of (}( satisfy 1 ng the cond itioris QL 1 - QL 4 . If either 

of the conditions (a), (b) below Is satisfied, the measure |i is carried  

by states o with trivial algebra at infinity. 

(a) Ot is separable, 

^k) l ? o r each A € Z there is a separable closed two-sided 

ideal of_ (Jt^ such that the restriction of p jto has 

norm 1 . 

In both cases j, the condition S is satisfied and we may use 

the results of Section 2, For each A let (A ) be a dense sequence 

in Ot (case (a)) or in \\ A (case (b)). The von Neumann algebra & 
A UA A 

is generated by the. TKA^ ) with A X M and contains the diagonalizable 
operators (Theorem 2 .1 ) ; furthermore the von. Neumann algebra generated 

by the TT (A,.) is 58, « rr (0£ X) M , We may therefore write J 0 Mj Ac a A 

*^ See Dixmier [(j"] Ch 1, § 3» Thfiorfeme 3. 

* ^ See Dixmier [ 3 ] Proposition 1.8.2. 
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Using Theorem 2,2 (b) this gwes 

« « H n(0f/t)" - / *u(da) H TT.((XS M 

' ' <J O A 

Since *A is the algebra of diagonalizable operators we find that 

fl TT^COC^)** consists of the multiples of the identity operator in ^ 

U~almost everywhere in o 

5.5. Sources. The concept of quasi-local structure originates 

in local quantum field theory (see for instance Arakl [I]) where £ con­

sists of the bounded open regions in Minkowski space ordered by inclusion 

and A X M if A and M are space-like regions. Similar situations 

arise in statistical mechanics (see for instance [ 3$ ] ) , the definition of 

K-systems (see Sinai [3#]) f or the study of canonical (antt) commutation 

relations (see Powers [3*]). In statistical mechanics, Theorem 5.4 may 

be used to describe the decomposition of equilibrium states invariant 

under space translations into clustering equilibrium states (see 

Dobrushin [K>]» [lH ? Lan ford and Ruelle [24]). When such a decomposition 

is non trivial, symmetry breakdown is said to occur> concrete and non 

trivial examples of symmetry breakdown have been worked out by Dobrushin 

[ill. The case (b) in Theorem 5*4 is useful in dealing with states of 

physical interest, for instance locally normal states (see 3.9). 
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6. Fu r t h e r d e c omp o s 111 o n s « 

In Sect ions 3-5 we have d iscussed some typical in tegra l re-

presenta t ions of s t a t e s on a C - a lgebra . We consider here briefly some 

further examples. Many more app l i ca t ions of the general theory of 

Sections 1 and 2 are of course possible, the choice of depending 

on tne ex t ra s t ruc ture present on W 

6.1, Canonical representat ion of states on an abelian C - a l ­

gebra . 

I f OC is abel ian, we can apply the theory of Section 1 with 

35 « '~((%)M .. In that case u i s car r ied by the set of extremal 

points of E , i . e . the spectrum of QL , and p —^ ja is the adjoint 

of the Gel1fand isomorphism. 

6.2. Central, de compos i t ion. 

If » - TT(0£)' nrT((%}f{ (I.e. » Is the center of TT($) , F) 

the theory of Section 1 a p p l i e s . The integral representation of p given' 

by u is called central decomposition „ If $ consists of the multiples 

of 1 (i.e. If TT({}{,)" I s a factor). p i s called a factor state . Sup­

pose that condition S of Section 2 i s s a t i s f i e d , then is carried by 

the factor s t a t e s . It follows indeed from Theorem 2/1 that 

ft - TT( f t ) 1 n TT (&)" « | ,j(da> r n C O C ) 1 0 TT « % ) » ! (6,1) 

^ _ _ _ — _ _ _ _ — . _ 
"If a quasi-local s t ruc ture i s given, various decompositions, analogous 
to that of Section 5, a r i s e na tu ra l ly . "If a group of automorphisms is 
given, a decomposition of quasi-invariant states, similar to the ergodic 
decomposition of invariant s t a t e s , has been discussed [ij] . 
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and since $ c o n s i s t s of the diagonalizable operators (Theorem 2.1), 

TT (6*6) 1 0 n (iX-)M consists of the multiples of 1 (ji-almost everywhere 
0 0" 
in a . 

6 .3. Relation with the disintegration of measures. 

Let K be a me triable compact space, (jC^ ~ t5(K) the 

separable C -algebra of complex continuous functions on K and 

a morphism of (JL into the center of 1 i 
such that 51 ~ 1 . A probability measure on K is 

defined by 

HjCiif) - (0, 6(*)n) (6.2) 

If 8 ~ 6(06^)" , the theory of Section 1 applies and we shall show 

that there is a mapping' f# : K —^ E such that f#(A) ijs ^-measu­ 

rable for A € 06 > and 

/> 

(n,a(o) 60!f)ft) - n.(dx) ty(x) <p(£ ) ( 6 . 3 ) 

for <p € ^(E) , € u(tO . I& particular 

* ^(dx) f 

Let B € Sft and I]J € ^(K) , then 

1(0, B 6($)f>)| * i| B Jl<n,|6(fr)IO) £ jj B jj ^(tyl) (6.4) 

,<• CO 
Therefore there i s a unique [SJ € L (K, | j 1 ) such that 

it 
(n,B6(t)0) - | u. (dx) t(x) [BJ <x) (6.5) 

w ' 1 

and one can see that [*] is a morphism (using A . 3 ) , 

If ? € £(K) let F, £ {%> be defined by 
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F , , ( A ) » ' ( a , TT(A) 6 (^)n) « ( n , a ( A ) 6 ($)m (6.ro 

Then (6.4) gives ¡1 it ̂  jâ ({y | > and F t has a unique extension to 

a continuous mapping from L^(K, |ĵ ) to the strong dual of Ot ; A.8 

gives the existence of f / : K —^ Ot such that f,(A) is ^-measurabl?:•. 

j f.jt £ 1 and 

V A ) * f U l ( d x ) * ( x ) f x ( A ) ( 6 / / ) 

Since ;| fjj £ 1. and ^^(dx) f x(D ~ 1 we have ^-almost everywhere 

f, 6E ; by a change of definition on a set of measure zero we assume 

now f £ E for all x f K . Using (6.5) and (6.6) we may rewrite (6.7) 

as 

U x(dx) $(x) [a(A)Kx) - J ^ C d x ) ljf(x) A(f x) 

so that we have jî -almost everywhere in x 

[a(A)](x) - A(f ) 

Since a and [*] are morphisms and the polynomials are dense in 

t(E) we have, for ail tp £ £(E) * 

[a Op)] (x) » cp(J ) 

p^-almost everywhere in x , yielding (6.3), 

The problem of disintegrating a measure with respect to a 

mapping (see for instance. Bourbaki [5] §3, n° 1) corresponds to the 

special case (ji ~ *£(L) where L is compact and raetri&ahle. 

6,4. Decomposition with respect to a normal subgroup* 

Let G be a topological group and T # a representation of 

G in aut (% such that the functions g—^o(T A) are continuous 
8 
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(with a € E , A C [% ) . Let a l s o H be a c l o s e d normal subgroup of 

G such tha t G/H i s compact . We assume tha t the state p is G~ergodic 

( s e e Theorem 3.4) and tha t % i s H - a b e l i a n (see 3.7). If u Is the 

measure g i v i n g the e r g o d i c decompos i t ion o f p (wi th respect to H ), 

then the suppor t o f u i s a homogeneous s p a c e of G/H and is the  

Haar measure of this homogeneous s p a c e . [The support of \x consists of 

K-invariaut states on which G/H a c t s c o n t i n u o u s l y , y is ergodic for 

this action and the proof p r o c e e d s as for part (b) of Theorem 4,6]. 

Let a € supp jjt % then 

P 
0(A) - dg T, o(A) (6.8) 

jG/H 8 

where g Is the class of g in G/H . The support of u consists of 

H-ergodic states. [By A. 9>. we may assume that o is an extremal point 
1 1 

oi; the closed convex hull o f supp JJL . Let °" a 2 ̂ 1 2 °2 w ^ i e r e °i * 

Or> are H-invariant s t a t e s . Def ine probability measures by 
P 

M (<p) - dg T o(<p) 

The ergodicity of p i m p l i e s that i t is the resultant of and ; 

Theorem 3.6 (a) y i e l d s then 1^ , '^2^ ^ a n ^ 5 s ^ n c e II 2 3 \ lî  + j ^2 5 

ti., ~ u n
 2 5 |i . This shows that O- 5 a 0 € supp ja . But since a is an ' i ' 2 1 Z 

extremal point; of the c l o s e d convex h u l l of supp tj, we have ~ 0 ^ ] . 

6.5. S o u r c e s . C e n t r a l decomposition has been studied by 

Sakai [3^., in the c a s e of s e p a r a b l e V I > sea a l s o [4-ij ; for physical 

applications see Araki and Miyata [2], Haag, Kastler and Michel [Ijfj. 

The decomposition in 6.4 of a G-ergodic s t a t e i n t o H-ergodic states 
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improves a theorem of Ginihre (for which see [33]) by weakening the 

continuity conditions. 
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Appendix A. 

A. 1, Let K/t be a von Neumann algebra in » P € \/k a pro­

jection. Let \ A , p be the restriction of 2ji P to P ̂  and 

the restriction of P j i to P * Then t/£p and (\jt )p are von 

Neumann algebras In P/^ and (</6 )p 88 (\/£p)1 . [See Dixmier [g] Ch 1, 

§2, n° 1]. 

A.2. 4 v 0 n Neumann algebra 15 is called "maximal abelian if 

^ * , If an abelian von Neumann algebra has a cyclic vector, then it 

Is maximal abelian. [See Dixmier [g] Chi, § 6, n°3-s Corollaire 2]. 

A.3. Extension of the Gel * fand isomorphism. 

Let % be an abelian C*-algebra of operators on the Hilbert 

space /| 3 0 ( /| a cyclic vector for the commutant 9£ of ^ , We 

denote by X the spectrum of j£ , by *£(X) the space of complex con­

tinuous functions vanishing at infinity, by B : ^(X) 3C t^6 inverse 

of the Gel.'fand isomorphism, and by m the measure on X such that 

m(.f) - (ft, B(f)O) 

The mapping B extends by continuity to a unique mapping B: L°°(X3m)~~^ 29 

where L*(X5m) has the topology of weak dual of L'(X»m) and SB is 

the weak closure of 3C with the weak operator topology ; B thus ex-

tended is onto and Is an isomorphism of C -algebras. [See Dixmier [$f] 

Ch 1, § 7]. 

A.4. Let E be a convex compact set in a locally convex space 

and let (ijr̂) be a continuous partition of unity on . E (i.e. a finite 
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family of continuous functions $, £: 0 such that £ . * 1 ). If y 
j J 

is a. probability measure on £ , let a. - u(w.) and o*. be the 
J J 3 

re s u 11 an t of a. *" 'if . U * Be fine 

y = E a, 6R„ 
j J 

where 6̂ . is the unit mass at a . The measure y can be approxi-

mated in the vague topology by measures of the form ji « [Take (ijf.) 

subordinate to a sufficiently fine open covering of E , see Bourbaki 

[4] p. 217 Prop, 3]. 

A.5. Integral representations on convex compact sets. 

Let E be a convex compact set in a locally convex space. 

An order relation is defined (Bishop and de Leeuw) on the probabi­

lity measures on E by ŷ  ^ ŷ  if ŷ (<p) ̂  ^ o r a ^ c o n v e x 

continuous function, (p on E . If y^ ̂ " ŷ  then y^ and y^ have 

the same resultant. 

E is said to be a simplex (Choquet) if for every p € E 

there is a unique probability measure y on E which has resultant 
P 

p and is maximal for the order ^ . [See Choquet et .Meyer [*r]]« 

A.6. Theorem of Alaoglu-Birkhoff. 

Let 'H, be a semi-group of contractions of "a Hilbert space, 

and let P be the orthogonal projection on the space of vectors in­

variant under every IJ 6' XX ; then P is contained in the strong 

operator closure of the convex hull of IX [See Ries& and Nagy [3,2] 
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n° 146]. 

A. 7. Let p be a state on l/u and f a positive linear 

form on 0 i such that £ £ p ; then there exists T € Tt(Qi)* such 

that 

f(*) - ( o 5 m o T m 

T Is unique and 0 £ T £ 1 • [See Dixmier [g] 2,5.1]. 

Let a group G act by automorphisms on and pt , f be G-in~ 

variant (See Section 3) then the uniqueness of T yields T € U(G) 1. 

A.8. A variant of the theorem of Dunford-Pettis. 

Let m be a measure on the compact set M such that 

is separable. Let (/t b„e any Banach space and {%* its strong dual. 

For any continuous linear mapping F* : L^(m) —> (X/ there is a func­

tion f # : M —> OC with S U P X a JI !! ^ K If ^ II ̂  II ^ch that for every 

A € (K/ , f f (A) is m-measurable and, for every i|r 6 L^(m) , 

f m(dx) tjKx) f U ) » F. (A) 

[See Bourbaki [5] § 2, Exercise 19**] 

A.9. Theorem of Mllman. 

Let M be a set In a locally convex space. If the closed 

convex hull of M is compact, Its extremal points lie in the closure 

of M . [See Kothe [24] § 25, 1, (7)]. 

*) I am indebted to A, Grothendieck for explaining a solution of this 
exercise to me. 
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*) 
Appendix B. 

B/l. Proposition. Let ^1 be a closed two-sided ideal of 

the C -algebra • Every state p* on </ has a | unique extension 

to a state p on Qt ; ij: (/Q , TT5 0) isi the canonical cyclic re­

presentationassociated with, p s *rr( <J) i£ strongly dense in TT($£). 

This follows from Dixmier [J] Proposition 2.10.4, 

B. 2. Proposition. Let the C -algebra 0C have, an identity 

and (X be a separable sub-C -algebra of . 

T.foe set of states on $(, which have a. restriction 

of norm 1 £o is a Balre subset of the set E .of all states on 

a . 
(b) If a measure >i on E has resultant p 6 Q * then 

^ iŝ carrie<i by 

Let (A ) be a. dense sequence in the self-adjoint part of 

the unit ball of ; (a) results from 
o 

^ * (a ? E : sup a(A ) - ll « 0 ^ V o w £ • n tn > o m n 

V - U fa 6 E : cr(A ) > 1 ~ - 1 m n v n m ' 

To prove (b) suppose that y « u f + |i" where p.1 and |i" are 

carried respectively by V and its complement. 

We have 

0(An) - M J ( I n ) + u"(An) * || y< II + |i n" j] (1 ~l ) 

-f In II II 
m ' " 

'The main ideas of this appendix come from [3$"], see also [5453 Ch. 6. 
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Since sup |p(An)| ~ 1. , we find |{ (j « 0 
n 

B*3* Proposition. Wê ^use the ̂ notation of Section 2 and 

assume that condition Sis s a t i s f i e d . 

(a) 1£ a € If , 1̂ Cr la i ^epa^able^ and the sequence 

rr (A.) fl is dense in a i a ——•—™— €f0 

(b) y is a Balre subset of E 

(£) is ....carried by J * 

Part ( a ) results from Proposition B . l , parts (h) and 0 0 

result from Proposition B.2. 

1 am indebted to XL Kastler for advanced communication of his results on 
integral representations of states.- I want also to thank H* Araki for 
critical reading of the manuscript, and J. Dixmier for useful references. 
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