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INTEGRAL ~ REPRESENTATION  OF STATES ON A € ~ALGEBRA

David RUELLE

Institut des Hautes Etudes Scientifiques

91. BURES~sur-YVETIE -~ France

Abstract. Let E be the compact set of states on a C*—algebra & with
identity. We discuss the representations of a state p as barycenter of a
probability measure | oun E . Examples of such representations are the
central decomposition and the ergodic decomposition., They are assoclated
with an abelian von Neumann algebra B in the commutant ™{(JL)' of the
imcye of Oﬁ in the representation canonically associated with p . This

situation is studied in general and a number of applications are discussed.



0. Introduction

iet ﬁi be a C%—algebra with identity, E the set of states
on 6% . In a number of situations of mathematical physics, a state p
is '"decomposed" into other states ¢ , i.e. p 1s exhibited as the re-
sultant of a probability measure | on E , or ¢ has an integral re-

presentation of the form

p = f wlda) o
E

The measure | is usually defined through a von Neumann algebra B in the
Hilbert space of the cyclic representation T canonically stociated with
¢ ; B 1is abelian and contained in the commutant ﬂ(at)' of the im&ge
of C% . In Section 1 we describe the relation between ® and | . In
Section 2 we show, under certain separabllity conditions, how % is dia-
gonalized by a direct Hilbert space integral. In the following sections we
consider some examples: decomposition of states invariant under a group

into ergodic states, central decomposition, etc.

One can often (under suitable separability assumptions) show that
u is carried by a special class of states: ergodic states, factor states,
erc, Qtherwise, the various decompositionms have their particular problems
and properties. For instance in the case of the ergodic decomposition of a
G-invariant state o on a G-abelian algebra, the mapping p -> Hp is af-
fine, but for other decompositions {e.g. central) such a property does not

hold in general,.

There is quite a bit of recent literature on the subject matter



of this article, besides the classic1l literature on ergodic theory and
dynamical systems (which deals essentially with the case of abelian 6% ).
In order to be reasonably readable, Informative and self-contained, we
have included here a relatively lavge amount of material which is net
original {(in particular tuch of Section 3}, The main results cof this work
are the general theory of Sections 1 and 2 and the study of "multiperiodic"
decomposition in Section 4 and decomposition "at infinity" in Section §.
Section 4 presents an extensien of the theory of dynamical systems with
discrete spectrum; in particular Theorvem 4.1 shows that the "equiconti-
nuous part" of the action of a locally compact abelian group can be so to
say isolated and exhibited as translations on a torus. Ian Section 5 we con-~
3 :
sider C -algebras with ‘'quasi-local" structure. In such an algebra it
mokes some sense to say that two elements A, A' are "far away" ; a

state ¢ wmay be called clustering if o4 A'} is close to o(A).o(A") -

St

when A and A' are far away. Theorems 5.3 and 5.4 say essentially that

every state p has a natuval decomposition into clustering states.

For the organization of the article, we mention that Section 5
and 6.1, 6.2, 6.3 may be vesd independently afrer Section 2. A number of

results used in the present work have been collected in Appendix A forv
I .

easy reference. On the other hand the veader is assumed to be familiar with

ki3

the basic results on von Neumann algebras and C -algebras. Appendix B con-~

tains techanical developments needed in Section 2.



1. General theorems.

Throughout this nofe we use the following notation and assumptions,

o & . . e .
C% is a € ~algebra with identity, ﬂi' is the dual of 0é with the
%i- A rd - .
w -topology, E CiC%’ is the (compact) set of states on QC If A& C% s

the functionn A on E is defined by

alo) = olA)

A fixed state 0 € E is chosen; the canonical cyclic represen-

)

tation associated with p is (f? R

1.1. Theorem. (a) Let the von Neumann algebra B satisfy

- v ol ot s o

oy BB (1.1)

-

- E 03 I3 " R 3 / ks
Then the orthogonal projection P on the closure of B O in é} is such

that

PO=0 p (e e nl)p] (1.2)

saeisfying (1.2), then the von Neumann algebra @ = in(ék) y ri

satisfies (1.1},

a#’
)Jn rhla tg pi 9’? is a complex Hilbert space, 7T a representation of O%vin
' ‘@ , and the following conditions are satisfied

(i); f u -

(ii) ﬁ(@ﬁ)ﬂ is dense in 9 (0 is a cyclic vector for AY

(iii) (v A € () o{a) = (7, n(AI0D.



A

(¢) The relations between B and P established

by (a) and (b) are the inverse of each other.

Let the von Neumann algebra B satisfy (1.1) and let P be the

orthogonal projection on the closure of 8O in '{2 . We note the following

faccs

(i) 7 e @

[Let B, B, € B, we have B PB, 0=238 Blﬂ = PBB,Q F PBPBIO and, since
@ Q is demse in PQ, BP = PBP . Therefore BP = PB].

(ii) Multiplication by P yields an isomorphism

() u {21]" = 2{n((D) U (P}

(et B € [m(({) u{P))' , then BP=0=BQ=0=8B({)0=0=5=o0].

(i14) Pin((0) u {p}]}* = [P m(OD)P)"
"This follows from the formula (ué')P = (“4?)' (see A.1) with

A=l v e 1

(iv) %= p(e@)' = plem(()P]" = Plem(d)P]"

‘[The restriction of P® to Pé? is abelian and has the cyclic vector 0O ;
by A.2 it is thus equal to its’commutant. Thus PH = P(PB). The set
Pﬂ(&C)P restricted to P{? commutes with P® , and has the cyclic vector

{1 , therefore

p(p®)' o P[Pm((0)PT"  or P{pm(({)P)' OB
and, by A.2, Plem(({)P1" = PEn(CL)P]' 7.
vy 8= [m(0)u 1)
[(i) yields 8 c [n(f0) u (1) , (iii) and (4v) yield P8 = p[m(COuiP}]

it suffices then to apply (ii)].



Part (a) of the theorem and one half of part (c¢) follow from (iv) and
(v) respectively.
Let now P be an orthogonal projection in {9 satisfying (1.2).
We note the following facts,
(vy  plem((flOel" = plen(({)P)
[By A.2 because the restriction of [Pr({{)P]" to ?%? is abelian and
has the cyclic vector 7.
(i) elem()E) = oIn(() U {233
{The proof is the same as for (iii)]
(viii) Multiplication by P vyields an iSOmorﬁhism
rn) U {211 —> BLRD U (1
{The procf is the same as for (ii}]
(ix) The closure of {n(OZ) U {»11'Q is the range of P .
Because [m() u {2)]'a = p[m@) u {P}1'0 = PlEm(dPI" AT
by (vi), (vii) 7.
It follows from {vi), (vii), (viii) that [m(() U {P}]' is abelian,
proving part (b) of the theorem. Tne second half of part (c¢) foliows from

{ix).

[y s

(a) Multiplication by P vyields an isomorphism B - PH

(b) P8 = P(p®)' = P[EMCJ)P]" = plen(({)P]

#
{¢) There is a morphism @ : Eir) ~-3 B of C -algebras such

that P a(A) = Pr(A)P for all A€ 66 . This morphism is unique, its

image is strongly dense in B




1

B

. 5P
A\ TC (1.3)

* y pr((p

Part (a) and (b) of the theorem follow respectively from (ii)

and (iv) in the proof of Theorem 1.1.

To prove (c¢) let first Aj,...,A  be self-adjoint elements of
C% and ’P be a complex~polynomial in n-variables. Consider a simultaneous
spectral decomposition of Pn(Al)P,...,Pﬁ(An)P :

P =fF(dxl...dxn)

I’W(Ak) P = ka F(dxl...dxn)

We have then
I P (entapR,. .. Bria )P
= “[@(xl,. - ,xn) F(dxl. ) .dxn)u
< sup [P, mapy), ..., n(a DY)
Y ery, (¥l =1

< swp | Potap,.. a0 = PG, a0 (1.4)

gEE n

The polynomials P .,,An) are dense in [G(E) and therefore (1.4)

1’
implies the existence of a unique morphism B8: g(E) -» P B such that

3(A) = P m(A)P

The image of £ is strongly dense in PB . In view of (a) there is a

unique morphism a : s‘,?(E) -y B such that for all ¢ € g(E) s

Blp) = P aly)



If the P(¢) are uniformly bounde: and converge strongly to PB , the
alep) are uniformly bounded and for each A £ 6% the al@T(AIN =m(A)B(QI0
converge, hence the alg) converge strongly to P, proving part (¢)

of the theorem.

1.3. Theorvem.(a) A probabllity measure u on E is defined by

o e bk e Gon i e

uler = (O, ale) O (1.5)

The resultant of W is »p

(b) There is a unique mapping & : L (E, w) =»>® such that
)

2 - +#*
1. if @€ f(E) , then ol = alel

2. a is continuous from the topology of weak dual of Ll(E, M) on

L®(E, u) to the weak operator topology on @

- #*
The mapping @ 1is onte, is an isomorpuism of C -algebras and, for every

aell, v et®, W,

WA §) = (6, =(a) Aly) (1.6)

Part {a) is checked immediately. We prove (b).
Let X = a(€(E)) , X the spectrum of ¥ , B : 8(}() -3 % the inverse of
the Gel'fand isomorphism. We way identify X to a subset of E such

that alp) = Blel,) . Then supp w = X and (b) follows from A.3,
© X ) !

%
That is, if p 1is the canonical mapping KRE) vy L”(E, W) , then

0= & ©p



1.4, Coroilary. Let {B ] be a finite ser of positive ele-
"""""""""" o4 .
ments of P such that 7 Bj = i . We define Gj 20 and cj €EE by
G = (€, J O oy zﬁjéﬂ@'} = (01, TY{MBj n)
and introduce a probabliity moasure ‘“‘i?ﬁ } ‘5_2(‘,“ &G* on E ¢ 60 is. the
4

unit mass at o). If {8’} 1s the set of ms:ial sume corresponding to
R B P

some parctition of wr“isi”é wa welte (B} 2 {B“k} . Given two sets {B'k} ’
{B"ﬁ} , there exisis e {Bﬁyﬂ ; {B“{o? (take {B } = {B' B"

The directed system

{i""‘{“‘ﬁ }} converzes toe 4 in the vague topology of

LS T

“. A .
measures on E ) . This follows from Thecorem 1.3 {b) and A.4. If.

{81 s {B,} then, using tha order < of Bishop-de Leeuw (see A,5) we

have “{B' Ry j*’; 2
3

4
1.5. Corollary, let % be an abelian von Neumann algebra

e w2 o g e Rt i

o
c ™)' . Lf we asscciate with it a measure, . on E by the above
o . |
theory, we have (B ¢2#) & (U w{)

[Corollary 1.4 shows that ) e ) (i £ u) . Conversely, if T " STEN

b3
A j’ . . P Eﬂ;‘l & .’-, «
theorem 1 of [6] srewe rhot iF ¢ € G(E) there exists § € L (W)

such that for all 4 & U4
wla ¢ o= uln o)

aod
yom gy}, hence BB

By (1.6), this gives

*)

#
i.e. in the w -toepology of the space of weasures considered ss dual

of G(r) .

ey
) Re;er&mco [ w

wag pointed our to the auther by J. Dizmfer.
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If E is metrizable and ’Q’.{ b there is a family (T.)

00 €E
Qf probability measures on E such hat
(a) the resultant of T, is o©
(b) if @€ £(B) then o~ T,{@) 1is a Borel function, and
[ Ny
i) = i 'I’g(c@) plda) (1.7}
¢ B

[This vesults from Theorem 2 of [ & 1]

™ . o . “r o~
Formula {1.7) may be written i = T, uldo) and shows that {f BC®,
the decomposition of £ associated with B may be accomplished in two

~n
steps, via the decomposition associated with #

1.6. Sources. The use of (1.5) as definition of a measure
giving an integral representation of p appears in Ruelle [34] for the
case of ergodic decomposition; a form of the same idea is already 'present
in Sakai [377 for central decomposition. Further references are given for
each specific applicarion. A version ¢f Theorems 1.2 and 1.3’for the case

»ca()' 0Ly bas been obtained independently of the preseant work

by Doplicher, Guichardet and Kastler [137 .



-lo-

)

'.li‘
2. Reduction theory

In this Section we let B, P be as in Section 1 and we make

the following separability assumption.

Condition 8. For k = 1,...,n there are countable families

(X, }oand (Y

~ *% P
Y} of sub-C -alpebras of aﬂ such that

o3 S S S A
1P o
(1) o
’ Gy ooty O o,
T SRR
(ii) Ua Gﬁa - is dense in ‘fa and UG‘ Gta is dense
K+l T T kR4 [ 1 1
. (4
I Ve oy
S 4 : , . . -/
(111)“1w is a closed two-sided ideal of Uﬁa, o y
. _.lilu%{ 1--a‘..k' °
(iv) ﬂfa,...a is separable,
i I
{v} the restriciion of p to each ;}q a has norm 1.
By By
Define
l‘\" e { nd - o 2 (r ‘7 1 v i
£ . = {0 € B ¢ the vestriction of ¢ to ¢ has norm 1}
Tyt oo &
1 0 1 T
(S o
F=n ¥
By e w00
&'}. P ) g
. Ly
Let alsc (Ai) be a sequence in (ﬁf such that each fﬁ o contains a
ey 3 8 e
1 i}

dense subsequence. We shall dencote by (ggj, ﬁg, ﬁa) the cyclic represen-
tation of G% associated with o € B . It is convenient to think of a
special cése of condition §, namely that of separable 5% . We may thén take
$‘z E aund for (Ai) any dense sequence in 5% . The further complications

which arise in the general case are dealt with in Appendix B (Proposition

B.3).

1) - ) .
’See Dixmier [ 8] Ch.2, and [9] Appendix A.
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Let o & g: , for any Ai’ A, 1in the sequence (Ai) define
4

‘ifij = n(Ai)Prr(Aj) e (2.1)
‘fij(a) = G(Aj) Ty (4.0 0 (2.2)
The vectors \yij (resp, ‘&’ij(o)) are dense in ,@ ., resp. 5(0),

With the help of the family (?ij(‘)) a direct Hilbert space integral
@ ; .
] u (do) @0 (2.3)

*)

may be constructed ". It is the Hilbert space consisting of functions

$: 0 €E - g?g such that, for every 1, j, the complex function

o - (Yij(O), $(0)) is p-measurable and o -~ ||3(¢)|| is square-inte-
) 172

grable; the norm is [j”u(da)ﬂé(c)nz 1 . The Hilbert space (2.3) does

not depend on the choice of (A;) . It follows from (2.1), (2.2) and (1.5)

that

(4
(Fpogin ¥y = fmdc) SHMCRINCY

&
There is thus a linear isometry of %? into jr u(da)j?g extending
- {
yij — Wij(w) . This iscometry is onto : suppose that we have

0= f u(do)(“!ij(o),é(o)) m[u(dc) ;&j(O‘)%' (ﬂG(Ai) Oy 8(9))

-~

Since the Aj are dense in Lliﬁ,u) (by (1.5} the mapping ¢ ~> al@)(
is isometric from inﬁﬁu) to ‘P%b , the continuous ¢ are dense in

g
Lz(E,u) and the PT{AMI are dense in I’%? s therefore the A are dense

in LZ(E,H)] we obtain -almost every where
*)

See Dixmier [8) Ch. 2, § 1, Proposition 4.
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(ﬂG(Ai)QU ; 8(o)) =0

and therefore

&(a) = ©

For each ¢ , let T{(g) be a bounded operator on %»7 ; for
i

every i, j, 1', j' let 0-m%-(?i.j.(ﬂ},T(U}?ii(G)) be measurable and let

o—> II1(g){| be essentially bounded.

)
There is an operator )

&
T m[ ulao) (o)

@ .
such that, if § = f' u(dol)d(g) , then T¢ = jfeh(dc) T{o)&(g)

If T(0) 1is a multiple X(0) of the identity for all ¢ , then T is cal-

led diagonalizable ; if A 1is continuous, T is called continuously

diagonalizable .

2.1. Theorem. There is a unique identification

- i, e s o s

) &
@= f wldo) ﬂ? - (2.4)

G
0 =/ wdo) 0 (2.5)
and for all A € (¥

EEFh that

@
m{A) = f pldo) T (A) (2.6)

With this identification, % becomes the von Neumann algebra of diagonali-

zable operators, in particular

%
) See Dixmier [8] Ch. 2, § 2.
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- [Q -
a(A) ==J. wldo) Als) (2.7

¢,
If we identify &) and ( p(dU),?‘j by the isometry extending

, Yii ) Wij(') which we discussed above, we have
A~ {7 )
alaAD)m(A) 0 = m(A) Pr(a') O = wldo) olah) T () a (2.8)

for any A, A' in the sequence (A;} and rherefore for any A, A' € OZ
(the sequence may be enlarged to include them), (2.5), (2.6) and (2.7)
follow from (2.8). The identification (2.4) is uniquely determined by
(2.5), (2.6) because =(J{)7} is dense inrf? . The von Neumann algebra

4

is the strong closure of ol ¥

Iy

()} by Theorem 1.2(c}, by (2.7} it is
thus the weak closure of the algebra of continuously diagonalizable opera-
tors, which Ls precisely the von Neumsann algebra of diagonalizable opera-

)

tors .

1)
Let (Ti) be a sequence of bounded operators In {% guch that

j /‘ . . .
if‘d’q is the von Neumann algebra generated by the Ti(d) , the operators

of the form

&
T = f wlda) T

. 4 g P o .
with T(o) QQX(W form a ven Neumann algebra of" which is said to be
%

decomposable and is dencted by

in r’ﬁ; ) P
Lt *jf HECH S

a .
) See Dixmier [§) Ch. 2, § 2, Proposition 8.
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, #*
aV‘is generated by the Ti and the diagonalizable operators ),

2.2. Theorem. (a) Let 4/ be a decompesable von Neumann

- e -

aigebra H o
= [ uldad
A @

Then uf" is decomposable and

&
N ,f U(dO)uV‘; (2.8)

(b) Let (UVR) be a sequence of decomposable von Neumann

algebras:

@
k/V\i =[ u(dc)d&pic
Then

®
2.10)
n i} = Jf u(ao) (n, W) (

This theorem is proved in Dixmier [7] (Ch. 2, § 3, Théoréme 4)
in the case of a (Radon) measure |i on a locally compact space with

countable basis. The result hold  however without countablility hypothesis

" )
on E as follows from a paper by Effros [18]

sidered by Sakai [3¥] for the central decomposition of a state on a se-

»
parable C -algebra. (The absence of separability condition in the note by

Wils {421 on the same subject is puzzling.) The case of separable Cb ;

and () n )" , is considered in [13).

*)See Dixmier [8] Ch. 2, § 3.

)

This reference was pointed out to the author by J. Dixmier.



3. Ergodic decomposition.

Let G be a group and T a representation of 6 in aut G@ .

We define amn action 1T of ¢ on F by

*
and let I ©E be the set of G-invariant ) states, L.e., of states

such that Tg g=g for all g &€ ¢ .

We assume that p € T ; there is then & unique unitary repre-

. y - . £ .
sentation U of ¢ in 42 such that

Ulg) = Q (3.2

Y 2y ""1 B -
gl (A} U(g ") = n(r A} (3.3)
B
We let P be the orthogonal preojection on the subspace of 42 consti-

tuted of the vectors invariant under U ; (3.2} yields

i

PO={ (3.4}

2L,

a1 L0 . .
3.1. Theoren . The following conditions are ecuivalent

(a) v e o e (e (3.5)
WHHRY ) L 7
{h) I Let A, A, Q;QL and let § € P %3 . Theng given
hentsaate £ £e A —— {

%) , . . X .
"rojinvariant! would be wmore correct but "“C-invarilant" will cause no
confusion,

T

-

See lLanford and Ruelle [2F].

FE . ‘o ;
)One might in (b) suppose A, AZ self-adjoint and/or replace the ex-
A

pectation value for § by a matrix element between él’ @? €P i% .
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¢ >0 , there exist Ai 20, 3 €6 such that T ki = 1 and

p—J

(e, [ = Ay ﬂ(TE A, may 18 < e (3.6)

. . L 2
i 1
The proof will result frowm the following facts
(i} 1f ?l, ?2 £ {% and € > 0 there exist Ai 20, 8y &€ & such that
z Ai =1 and, for a4 =1, 2,

H ™ bR I Ll W - W E( < &
T A ; }\ib(g 5 gi} S 2

where the A' 20 » 8', € G are arbitrary subject to L i', =1

3 ] 3
[Using A.6, we may suppose || Z AiU(gi) ?a - PY& | <& hence
' ? Aty W' ( ? Ag U(gi)Y; -l <e 1
(11) tec A, Ay € (f, be such that [}l < 1, la | =1
Let 9, ¢, €P &) , be such that f@li 1 UQéﬂ s1 . Given € >0 one
can find ki 20, gy € G such that I Ai = 1 and

|3, n(adpn(a,) —m (4,) Prla))]3,)

- - oy ' “ )
(3,, [z] A ; n('rg.jAl),n(Azu &52)] <e

where A', = T A, 7 A, and the A', ; g'. € ¢ are arbitrary subject
1 PR -7 1 3 j
to DA', =1 |
3
[This follows from (i) with ¥, = ﬁ(A )@ Yz = (A )ﬁz 1.
(iii) (a) = (b)
FNotice that, by polarization, (a) is equivalent to

wig, L ma) PW(A ) -m (A )PW(A 318) = 0 for all & € P;@ " . Putting

1
Al =1, g . 1 and él = 2 = & in (i{i) yields the implication

(a) » (b) . To prove (b)= (a) we use again (i1) : if (b) holds we may

choose k‘j, g'. so that
o
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l(g, [ J;Ajz n(?gi AD, m(a)] B <

and (a) follows].

3.2, Corollary. If the conditions of Theorem 3.1 are satisfied

-t e s st e

with respect to a closed subgroup H of G , they are satisfied with

respect to G

TThis is immediately verified for (b)}].

3.3. Corollary. The conditions of Theorem 3.1 are implied

P g

by the following

(¢) Let &, A, € and @EP,#J then

inf_cq | (g, m(lr, 4y AN =0 (3.7

fThis is irmediately verified for (b)].

. L1
3.4. Theorem ). Consider the following conditions on the

o ot o S

G~invariant state p

(a) p is ergodic, i.e., p 1is an extremal point of I .

(b) The set ﬂ(ﬁ%) U u{G) 1is irreducible in {?

(¢) P 1is one dimensional.

We have (a) ® (b)Y & (¢) . If p satisfies the conditions of

[y

Theorem 3.1, then (a), (b), and (c) are equivalent,

The existence of a self-adjoint operator CEfﬂ(@t)U u(G)]'

" see [161, [34], [277.
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such that 0 s ¢ €1 and € is neot a multiple of 1, is equivalent by
A.7 to non (&) and non (b); thuas (a} @ (b). If {¢) holds, (1.2) is veri-
fied and (c)} = (b) by Theoren 1.2 {a). If the conditions of Theorem 3.1

are satisfied, {1.2) is vevified and Theorem 1.1 gives (b) = (c).

3.5, Propesition, If A€ 0& y define

B N

4 L £ . )q, = v @
conv {7, A) = { LA, ’rgi h:h 20, T A’i 1, g € ¢} (3.8)
Then
» *®
inf olc ¢y = {0, m(a ) pr(A) ) (3.9)
C € coav{r., A) '
&
*3

The proof results from A.6 and the inequality
#* o "
plC C) = §m(cm5{2 = P :7(0)&1]2

= flo w(a)l* = (0, na’IP na) o)

3.6, Theorem., Let the conditions of Theorem 3.1 be satisfied,

" )

g
so that the theory of Section 1 applies )

i)

This simple proof was communicated to the author by H. Araki.

o
) It is interesting to notice that here B = [n((*{) U u(’}]' , we shall

not make explicit use of this fact.



(a) The measure u defined by (1.5) is the unique maximal

measure on I (with respect to the order of Bishop- de Leeuw, see

AL5) with resultant o .

(b} If the condition 8§ of Section 2 is satisfied {e.g. if

4‘5’/ . T - . r
LI, is separable}, the measure 41 1s carried by ergodic states,

The proofl vesults from the following facts
(1) supp mol
El

[Bv Corollary 1.4, i is limit of measures M{B ) carried by finitely
b

E  where

Ty

many poelnts O

b
-1

i

Uj(A3 = (0, Bi oy " L0, A Bj )

and B, € B ; using ({1, ﬂ(A)Bj O o= (0,m(A)P Bi f)) we find o, €1 ]

(ii) (a) holds

e a2 g L '3 - . s "
“We have to show that 1f i 1is any probability measure on I with re-

sultant p and (o a convex continuous function on I, then
fd 4 s . 3 N [ 3
wle) = ule) . In view of A4 we may suppose that | has finite support:
o~ o - o b . R ~ -y d P d ——
ulg) = hoy gﬂ&i) where «, 20, p, €1, Za, =1, Ta p;, = 0,
~ :
but then (see A.7) 4 is of the form “{B y of Corollary 1.4 with
3
B, € (€)' nula)' and, since U(G)' < {P}' by A.6, B, € B . Corollary
3 J

. . oL e
1.4 gives then wlgr s ulpl.
(ii1) 1f o« 1 , let P_ be the projection on the subspace of G-invariant

W

vectors in i}m . For any A € 06 , the following quantity vanishes
[

u~aimost every where in ©
(m (&) O, B w (&) 8 - | a4 a)l’
¢ et o o T A o

(Since this quantity is a priori 2 O , it suffices to remark that
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n

{

‘\*ﬁ.
b P -
| R 0,P T (AN) - A (@A)
fuceort :
= | & 23] -
w(do)finf, . conv(T A) alc €37 - (0,a(A Ya(AXD)
] @ # a
< inf, . CORV(TQ#\ o{c ¢y  (O,m(A Ipa(A)Y) = 0
where we have used twice Proposition 3,33.
(iv) () holds.
[In view of Propositicn B.3 (&) the sequence ﬂé(Ai)(% is dense in,%g

u-almost every where, and {iii) shows that Pg is almost every where

the projection on ﬁg}

3.7. G-abelian algebras,

W W D . s i WA 1 S e T e et B

If the conditions of Theorem 3.1 are satigfied, the integral

representation of p given by W will be called ergodic decomposition

(this terminolegy is justified by Theorem 3.6 (b)). We shall say that

06.15 G-abelian if the conditions of Theorem 3,1 ave satisfied for

every G-invariant state pn . The following characterization 1s readily

deduced from Theorem 3.1 : Gﬁ,5§ G~abelian 1f and only if for all 0 € I

and € > 0 thergﬁexisg‘ Ai =0, 8y € G such that 2 ki = 1 and

—

P Y !
allo A, v A, ALY < ¢
Li igy 1* P2

*
3.8, Theorem °.

s o o b e ke s

1E f%. is G-abelian, then 1 is a simplex
i LYt iamconom

in the sense of Choquat {sse A&, 5),

This follows immediately from Theorem 3.6(a) and the defi-

nitions.

) L .
3.9. Theorem . Let be G-sbelian and let 8 be contained

i e i e e e TS

#)
#3#) ,

This thegrem yas proved oviginally by Stérmer [39] under the assump-

tion that of{A) 1is conteined in the atrong eperator closure of conv mw(T A)

for each A €{1 and esch invariant state p . Here we follow [36], G
Exercise 6.1,

See Lanford and Ruelle [27].
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in m({{)" for each invariant state p . Then two ergodic states

ey and 02 cannot be quasi-aquivalent if they are distinct.

b : . .
Let (%jl, s Ql) , (f?z$ s ﬁz) be the canonical cyclic
representations associated with Py and p, . The states Pysp, are
k ~

called quasi-equivalent if there is an isomorphism & of ﬂl(Oﬂ)"

onto ﬂz(Ot)“ such that & m,(A) = 7, (A) when & eﬁﬁ . Let now 01> Py

1oy
P4

#

y ‘ _
be ergodic, distinct, and take ¢ % P1 + % Py 3 by A.7 and A.6 there

\

exist B; , By €B with O €B,, 0 B, B, +B =1 , and

1 2

are ergodic we have Bl B2 = 0

19

50, (*) = (0, T(A) B, ) . Since the

~
i "1

g0 that B1 and Bz are mutually orthogonal projections, we may identi-
\ . 1 . i 2 : i e 30} = . .
fy Jbi with the range of B, in ,{} and write ﬂi( )ﬂi Jziﬂ( )B, O

We have B € p ()" , let thus w(A) w~ﬁ>31 , then

W(A).l/ggz «—-—;«5141,?2 = 01@2

But if Dl and were quasi-equivalent we would have the contra-

)
diction

Ay, = & madly, 58 1y = 1§
5),0),2 1 ""'31 ){2}2

3.10. Sources. TFor the case of abelian C% (decomposition
of an invarient measure into ergodic measures) see for instance
Phelps [30] Section 10. For the extension to non-abelian ({ see Ruelle
(341 , and in a different spirit Kastler and Robinson [23]1 where an
"abstract" decomposition is discussed. The present treatment largely
follows Lanford and Ruelle [2]] with some improvements in Theorem 3.6

and the addition of Theorem 3.9 ("Stdrmer's theorem" [38]). For further
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results see [28], (14, [40], [41], [38], [17] . A review and applica-
tions to statistical mechanics are given in [36] Ch 6 and 7. In the
examples of ergodic decomposition which occur in statistical mechanics,
G is typically the Euclidean group or the translation group in 3 dimen~
sions; a G-ergodic state is interpreted as "pure thermodynamic phase" ,
and ergodic decomposition is the decomposition of a "mixture" into
pure thermodynamic phases. In physical applications the alge'bra 0‘

is not alwayg separable, but the states of physical ii‘lterest satisfy a
form of condition § . For instance it may be that 0‘&. R 30. are
sub—C*-algebras of 0{ such that OC a is isomorphic to the bounded ope
rators and 3@ " to the compact operators of some Hilbert space (d'ea ;

a state p which has a restriction of norm 1 to each ga is then

called locally normal (see [35}, (201, [36] cn 7).
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4, Multiperiodic decomposition.

Let G be a locally compact abelian group noted multipli-
catively. As in Section 3 we let T be a representation of G 1iun
aut OZ s we assume that the state p is G-invariant and we let U
be the unitary representation of G in 1? satisfying (3.2) and (3.3).

’ i
We assume that U is strongly continuous ) and we let E(¢) be the

- 3
spectral measure on the charactergroup G such that, )
ulg) = J7A X(g) E(dX) (4.1)
G

Let X be the subset of G consisting of the points X such that the
corresponding projection does not vanish: E({X}) # 0 . For simplicity

we write E({X1}) = E[X] . Then

% = {x€c: E[X]# 0} (4.2)

We define the projection

p= I E[X1 = £ E[X] (4.7)
XEG XeX

From (3.2) we obtain then
PO = 0 (4.4)

$#it)

1
It is known that the range PJ? of P consists of the almost
periodic vectors of J?r, i.e. of the vectors ¥ with a relatively com-

pact orbit U(G)Y¥

*) 1f for each A €0L and o € E the function g ——)G(Tg A) 1is conti-

nuous on G , then it can be shown that U is strongly continuous.

##)

The existence of E(+) is asserted by the S.N.A.G. theorem, see for
instance Maurin [28] p. 218.

i3t
)See‘for instance [24] Ch 1 §7.



4.1, Theorem. The folluwing conditions are equivalent.

- . - s

(a) pr(()p < [P w(C)p] (4.5)
(b) Let A, &, € (¥ , and let X, X, X, €G , then

E(x, Im(a)) EDxy %] mA,) ElX,]

B[X, In(ay) E[CE X7 m(a,) E[X,] (4.6)

() Let A, 4, €l , let 3, &, € PA), and let X €6 .

Then, given € >0 , there exist Ai 20, g € G such that ¥ ki= 1

and

- -1,
1(8,.0 Ehy X(g)Tnlry 4),m(Ay)] 3,)] <e (4.7)

The proof will result from the following facts;
(1) If S is @ finite subset of 4}, X € G and € >0 there exist

Ki 20, g €G such that DA, =1 and

A, x(gi)°1 ulg,) ¥ - B[X]¥ < e (4.8)
i

for all ¥ € 8§
[{Notice that E[X] is the projection on the space of invariant vectors

for the representation g--?'x(g)—1 U(g) of G in Aé . It suffices then
to use A.6 .
(11) If (4.8) holds and if A' 20, g8; € G are such that I kg =1,
then uiz:j by M) XGgg ggyl Jg(gi.g;)‘y ~E[XJ¥ || <e

, A

[Because if (4.8) holds and g € G , then

2y X(g;-8) ™" Ul g)¥ - BLXDY |

= I x@ ™ ue) [ A, xe) ! ulg) ¥ - E(X] ¥ < e )
i
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(iif) Tet Ay, A, € ¥ ve such that VIS ﬁAZH $1 . Let

~ B p P fy "f;" TP %4 2 "! o= '{ !

X %y X3 € G and il’ @2 & y be such that “éid s 1, hézh =1 and
EEX17 4 =& EEXZEQZ =&, . Given ¢ >0 , there exist hi 20,
8 € G such that ¢ }‘i = 1 aund

i & < ‘4 wr{ ) - ~1
[0 Ay BIX) X0 wlay) - mlay) B[XGT X, n(A)13,)

- (&

o LBA K3(gg) ﬂ(ng AD),m(a) 18] <6

J

and the ki 20, gg € ¢ are arbitrary

. - A :
where AJ f i X3(gi)¢g Al

i
subject to T K; = 1.

[In view of (i) and (ii) one can choose the ki, 8y such that

DA

¥ ~1 o -1 . t #
i ! ? Ai Xl(gi gj) x3(gi &j) U(;,i gj) n(Al)é1

'
J

- E el <
E[x, XB] m(a,) &} < c/2»

e '«‘, < ¥ } ‘“1 -
1l ? j ; Ai XB(gi gj) Xz(gi gj) U(gi &j) n(Al) @2
~ o1
- El
(X" %,] W(Al)@zﬂ < /2

This yields immediately the result].

(iv) () = (b) = (a)

[(iii) yields the first implication, the second results from summation
£6 i

1’ Xz € G in {(4.6)].

(v) = (a) = (b)

over XB’ X

[ter 2 €E Xk . 8 €5 X140 . (a) gives
(@1, ﬂ(Tg Al) P v(Az)@z) = (él,n (Az) Prr (Tg AI)QZ) .

Writing P = ¥ E[XIX] = 7 E[x'l X,7 yields then
X X <
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£ x(pt

XeEG

(2, m(a) E[x X1 n(a,)8,)

= 3R (3, m(A) Brx* X, na)e,)
XEG -

and (b) follows].
(vi) Let & €E [X,] 403 , 8, €E fxzj/@ and ¢ >0 , (b) implies the
existence of ki 20, 84 € ¢ such that T ki = 1 and
-1
é ] 1
;(mlsng kikj X(gi gj) ﬁ(Tg' o AI)’ ﬁ(Az)] Qz)l <€
1,1 L7}
where the AE'Z 0, gé € G are arbitrary subject to I A; =1
[This follows directly from (iii)7.
(vii) (b)) = (c)
[it suffices to prove (c) for the case of finite sums §1 = 3 Qf s
X
X X X e ‘ .
3, = T &, where &7 , &, € E[X]F; , and this follows from (vi)].
275 %2 1 %2 7

4.2. Corollary. 1If the conditions of Theorem 4.1 are satis-

- - - o ot o T s

fied with respect to a closed subgroup H of G , they are satisfied

with respect to G

[This is immediately verified for (c)].

4,3, Corollary. The conditions of Theorem 4.1 are imglied

PURVIIDINTOREETDIS Spes

by the following

(d) Let Ay, A, be self-adjoint elements of @Z and

@1, @2 € P/?z , then

tnf (&, M7 A, ADEI]| =0 (4.9)
e € G (2 g 10 f2d7%2

[This is immediately verified for (c)J.
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*
4.4, Theorenm ) Let the conditions of Theorem 4.1 be satisfied,

- - - o o o

then -
(a) The conditions of Theorem 3.1 are satisfied
-1
(b) X = X

(¢) 1If p is ergodic, then E[X] 1is one dimensional for

every X €X and ¥ 1is a subgroup of G

From Theorem 4.1 (b) we obtain

(e(x] m(A;) E[X], E[X] ﬂ(Az) E[x]1=0 (4.10)
E{11 m(a)) E[X) n(a,) E[1] = E[17 m(a)) ELx™M) mia) E(1) (4.11)
z«:[xl] Tr(Al) E[x1 xzj 11(A2) E[x23 = E[Xl] Tr(Az) E[1] ﬂ(Al) F.[X2] (4.12)

Inserting X = 1 into (4.10) we obtain (3.5), proving (a).
Part (b) of the theorem results from (4.11). By Theorem 3.4, the ergodi-
city of p implies the irreducibility of m((}{) U u(g) , therefore the
algebra

Elx7 (e[x) m(({» e[x1®

restricted to the range of E[X] is irreducible and since it is abelian
by (4.10), E[X] is one dimensional. In particular E[1] 1is one dimensional
and (4.12) gives X . ¥ < X , which together with (b) proves that X

is a group.

B N .

1f the conditions of Theorem 4.l are satisfied, equations (4.4),

(4.5) hold and therefore the theory of Section 1 applies. In particular

* See [23]
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there is a natural integral representation of p given by a probability
measure | on E (see Theorem 1.3). We call this integral representaticn

the multiperiodic decomposition of p . We shall show (Theorem 4.7) that

if p is ergodic and P,i} separable, the action of G on the measure
W 1s equivalent to a certain equicontinuous action of G on the Haar
measure m of a compact abelian group M . This will justify the phrase

"multiperiodic decomposition',

Let K be a compact space and T a continuous action of

G on K , i,e., T: G XK=3K 1is continuous and is a representation
of G by homeomorphisms of K . We say that the action T is equicon-
tinuous 1f, for each @ € E(K) , the set {¢ o Tg = g € G} is relative-

ly compact in ¥ (K)

~

Let G be obtained by replacing the original topology by
the discrete topology on G . The character group G of G 1is the

compact group associated with G . Define a group isomorphism y:G-§?§

such that (vyg) (X) = X(g) for all X € G , then ¥y is continuous and
has dense image. For every continuous group homomorphism ™:G ~>H where

H is compact, there is a continuous homomorphism T :lﬁ-w?li such that

- *
n=ay .

4.6. Theorem. Let T be an equicontinuous action of G on

P

the compact space K

#
) For a proof see [9] 16.1.
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{a) There exists a& continuous action T ¢f G on K such

It w is a probability measure on K , invariant and

ergodic with respect to the action T of & , then the support M o

JeomE——" ey

m in K is a homogeneous space of G {for the action T } and m

restricted to M is the Haar measure of this homogenesus space,

.

(¢} Conversely, let T be a continuous action of G on a

homogeneous space M and let m be the Haar measure on M . Then the

action g “%'&Vg of G on M is equicontinuous and m is ergodic

with respect to it.

We prove successively the three parts of the theorem
(a) The equicontinuity of the action of G implies that the
closure of the set of operators Tg T~y ° 'rg in g(K) s with
*)

respect to the strong operator topology, is a compact group H . There-

fore there exists a continuous homomorphism T .: G —>»H such that for

all g € G we have Tg = ﬁyg . By continuity H consists of auto-
morphisms of {(K) ; there is thus a homeomorphism ‘?g of K such
that
Te ¢ = T
g #T 9Ty

e

The mapping T : [ K 3% K is continuous and ?Yg = Tg if g€G
(b) If M were not a homogeneous space of G , we could find

X, vy €M such that x ¢ ?E y {where 7= y 1is compact), There would then

#)

See for instance Jacobs [227 p 112.
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exist a compact neighbourhood L of x such that L N ;é y = ¢ or equiva-
lently vy éﬂ?éL . Then ;@L would b a compact set with x in its interior

and y £ %5 L . Because of the ergodicity of m with respect to the

action T of G , m would be carried by ?‘a L or the complement of this

set in M , in contradiction with the fact that M is the support of m .

If x €M , the Haar measure mw on M is defined by

n@ = [ ai gy 0
G

The measure m is independent of the choice of x because of the

-

transitivity of ;E; on M and the invariance of the Haar measure on G
Notice now that the invariance of m with respect to the action T of
G implies its invariance with respect to the action T of &

m{e e‘rg) = m(p) gives by continuity m(@ e ?g) = m(@) .

We have thus

0] 9_( m{dx) (%) = j_‘ dé[f n{dx) go("f'é x))
K G R

= j‘K m(dx) ['_( 5 dg o7z x)] = m (p)

and therefore m = mx .

() 1f o€ P , ¢ o 'T'é is compact, hence ¢ o ?YG is

relatively compact, and g —¥ T ?YS is equicontinuous. Since there
is a measure on M invariant under G (namely m), there exists also an
ergodic measure on M , but such an ergodic measure is by (b) necessari-

ly the Haar measure m , therefore m is ergodic.)
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s o s W 0w v

let p be ergodic and let ?%9 be separable.

Replacing the original topology of ¥ (defined by (4.2)) by

3
thie discrete topology we obtaino a group 3{- ; we let M be the compact

3
character group of X%  and m the normalized Haar measure on M

We define a continuous homomorphism 6 : G —>M with dense image by

(6g)(X) = X(g) for all X € X . The action (g, x) ~%x . bg of

G on M is equicontinuous and m is ergodic with respect to it.

There exists a mapping £ : M —>E with the following pro-

mertg_z‘_s__.

(a) f transforms m into | in the sense that the mapping

@(+) = (f) 1is isometric from Lz(E, W) onto LZ(M, m) .

(b) For all A€(l , g€6

3 hY = & m“l
£ (A = £ (xg A) (4.13)

x.bg

&

m-almost everywhere with respect to =x

If A€ (7'\, s X & X we define

A% = 5 Eraxt] ma) E[x) (4.14)

XX
#
We let QL be the { -algebra generated by the AX and define a re-~

presentation T of G inte  aut ﬁl by
T, ulg) Q ulg) ™ (4.15)

We have in particular

roaf e x(p) . AT (4.16)
&

The proof of the theorem will result from the following facts.
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(1) :? is abelian

2

[Using (4.6) we have [A }

X, X
s Az

[y

= Zigﬁfxxlxzjﬁ(AI)EEXXZ?W(AZ)E[X]»EEXXlXZJH(AQ)E[Xxl]n(Al)E[X]] = 0] .
X€E) : <

(ii) Let M be the spectrum of 462 , we denote by Q - [Q] the
Gel'fand isomorphism 9”‘} Y(M) . The action T of G on M de-
fined by [qQ] (Tg x) = [T;l Q1 (x) is equicontinuous.

[It follows from (4.16) that the mapping g — Ty Q 1is continuous and
the orbit Ty Q relatively compact for the norm tOpolﬁgy of Q 1.

(£ii) The algebra P 8 (see Theorem 1.1 and Theorem 1.2 (b)) is equal

-1 ,
to the weak closure Q of 2

X

[(We have P m(A)P = £ A" 1in the sense of strong convergence, hence
. XeX
PBC :(/ . The restriction of P 8 to P,{a is abelian and has the

cyclic vector ) , hence it is maximal abelian and contains the restriction
of 4 to P,‘?B (which commutes with it); therefore P B 32].

(iv) A measure m on M is defined by

w({Q]) = 1, o (4.17)

m 18 ergodic and its support is M
(if m were not ergodic there would exist a G-invariant vector ¥ im
the closure of Q, {1 such that Y 1is not a multiple of ) , in contra-

diction with the ergodicity of p (see Theorem 4.4(a) and Theorem 3.4).

Let O SQ € 92 , then wm({Ql) = 0= ¢ 1/2 Pr(AYp Q=0 (bec.ause of (1)
and (iii)) = Q]L/2 ma) =0 = Qllz = 0 ; therefore suppm=M 1.

o
(v) M can be identified to the character group of ¥ 8o that m {is

*
the Haar measure and 'rg %= x. bg (here X and & are defined as



in the statement of the theorem).
[By (ii), {iv) and Theorem 4.6 (a). (b), T extends to a continuous
action T of G on M and one may identify M with G/H  where
H= {g €C: ?g =1 }; in this identification m is the Haar measure
of G/H and Ty <g> = <g.yg> where <> : G -—y G/H 1is the quotient
mapping. From (4.16) it follows that H = {g €& : X €X = §(X) = 1}
- *
and we may therefore identify G/H to the character group of E[, .
" )
The image of <yg> in EE is &g so that ?gx = x.0g J.
?

(vi) The space (M) 1s separable
[Because the separability of P{% implies that the character group :{?
of M is countable].
(vii) The Gel'fand isomorphism ﬁ?-n> €(K) extends uniquely to a

% -~ o
morphism of C ~algebras §£~ﬁ> L (M, m) , again denoted by [+] , such

that

m([R1) = (O, R ) (4.18)

This morphism is an isomorphism onto.
{This results from A.3 applied to the restriction of & to P/é]
(viii) There is a mapping £ : M —> E such that for all A € X, x'--?ff‘(A)

is measurable and for all ¢ € LI(M, m)

(,m(dx)W(x)[Pﬁ(A)F}(x) = J.m(dx)WCK) fx(A) (4.19
We have i~almost everywhere

(Pa(a)](-) = [pmapl(e) = £ (A) = A(£)) (4.20)
[The function £, defined by A.8 satisfies (4.19); since sup foH = ]
X .
and f (1) = 1 m-almost everywhere we may assume that £, maps M into
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E ; (4.20) follows from (4.19) and Theorem 1.27.

(ix) Property (a) of the theorem holids.

Tsince polynomials in the ;L are dense in K(M‘} and since

© = [Pale)] is a morphism (B —> 174, m) (by Theorem 1.2, (iii)
and (vii)), (4.20) gives [P alp)} (+) = ¢(f,) m-almost everywhere if

¢ € £ (E) . Therefore

@) = (0,6 = | nlan)[Pale) 100 %‘{m(dx)w(fx)

Therefore the mapping ¢ > @¢(f, ) is isometric iz(E, ) *e»Lz(M, m) .
The image of £M) in :Zm by @ —>» P a{p) is strongly dense (Theorem
1.2 and (iii)). Since the morphism [+ : % -5 L”(M, m) is onto by
(vii) and since the norm of [R1 in 12(M, m) 1is H[R1H2 = IR al] by
(4.18), we find that the image of £ ) by ¢~ [P alp)] is dense in
L:_Z('M, m) . Therefore t;{e isometry I.QCE, u) - LZ(M', m)} 1is onto].

(x) Property {(b) of the theorem holds

[In view of (4.20) we have w-almost everywhere in x

£ ¢ (A) = [pr(A)YP] (x.8p) = [pn(adP) (Tg %)

x.5
-1 S | -1
= [u(g em(are t(gii(x) = [P T, AP)(x) = fx(Tg A) ]
4.8. Remarks on Theorem 4.7.
(a) Define unitary representations V and W of G in
LZ(E, () and LZ(E, m) respectively by

vig) @lg) = w(7;1

o)
Wig) y(x) = ¥(x. 6g)™H)

Define further the mapping T : LQ(E, ) -——)L2(M, m). by
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T o(x) = w(fx)

Part (a) of Theorem 4.6 exnpresses that T 18 an isometry of LZ(E, M)
onto LZ(M, m) and part (b) that

Tvig) = Wig) T

(b) Let the conditions of Theorem 4.1 be satisfied and p

¥}
be ergodic. Let X be any subgroup of ¥ and define

T T EC{xD
XEX

Then (4.6) gives
Lot ~r 2 »
P (0L P [Pl ]
Furthermore Theorem 4.7 remains true if £ and P are replaced every-

o~ ~
where by £ and P
(¢) Suppose that ¥ 1s a discrete subgroup of G and define

H={g€6:xeX = X(g) =1}

then H is a closed subgroup of G , G/H is compact, and P{B con-
sists exactly of the vectors invariant under H . The multiperiodic
decomposition is in that case an ergodic decomposition with respect to

H and it will follow from 6.4 that u is carried by H-ergodic states,

B Y Y

with discrete spectrum and to the discrete part of the spectrum of dyna~-
mical systems (see for instance Arnold and Avéz (31 9.13, Append;x 7,
an& references quoted there). A version of Theorem 4.4 with non commuta-
tive GC was proved by Kastler and Robinson [23], see also [15] . A

first attempt at understanding the decomposition studied here was made by
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Doplicher, Gallavotti and Ruelle [11] .

If the ideas expressed by Landau and Lifshitz about the nature
of turbulence in hydrodynamics ([267] § 27) are correct, the multiperiodic
decomposition may be useful in the description of a turbulent state.
Other applications exist in statistical mechanics (see [3#]). The inte-
resting situations are those for which :zj is not a discrete subgroup

of G , this corresponds for physical systems to the existence of periods

with irrational ratios.
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5, Quasi-local structure and decomposition at infinity,

~ cvo (1Y : * .
When a family (UVA) of sub-C -algebras of (¥, is given,
we may say that a quasi-local structure is defined on Oﬁ . The following

theorem is then often ugeful.

"
5.1. Theorem. Let o be a directed ) ordered set and let

Wi - i o pam i T oSN

(s.‘aA)A A be a decreasing famlly of von Neumann algebras in {2 . Define
o 4203

g=n, ¥ %, and assume ® < m(({()'. The following conditions are

equivalent.

{(6) B consists of the multiples of 1 .

(b) Given A € Gl there exists A € £ such that

BEB, = [(0ma)B0) - o), B}| < B |

(c) Given ¢ >0 and A€ . there extsts A Ex such

that

BED, = o, ma)B 0 - plAX(O, B)] s¢ || B

Using the replacement A —)A/e one verifies (b) @ (c)..

The proof of (a) ® (b) is obtained by observing the equivalence of the
following conditions [To obtain (iv) = (1ii) use the compacity of the
set of operators of norm £ 1 in the weak operator topology].
(1): non (a)
(i1): there exist Al’ AZ €0 and B W aﬁch that

0, n(Al)B w(Az)m # (G, 1~r(A1 Az)ﬁ) {, 3 5M
(ii1): there exist A € ({ and B € B such that

Nl =1 and [(O,ma)sm - (O,mA)0) (0, BOY 21

*) & is directed if, given /‘\1, Az 636 there exists A Ea?,’ such that

Aa, Ay A
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(iv): there exists A € G@ and for every A there exists BA € %A

such that
| 51 and [(0,m (BB, O - (Q, n(AD(, B, Ml =1

(v) : won (b) .

We shall now study an example where algebras %A are construc-
ted from a quasi-lncal structure.

Let £ be an ordered set where a relation AJ M may hold
between pairs of elements, and let (@CA)A ¢ ¢ bea family of sub-
C%—algebras'of @K . We assume that the following conditions are satis-.
fied.
0L 1. If Al < Az and AZ.L M , then Al'L M
QL 2..The set £ is directed and if A L Ml’ A:.L MZ’ there exists

M £ £ such that N&, MZ <M and AL M

QL 3. If AL M , then sj{ﬁ,’,% , . T=0
I3

Bt
A

/ " ’l S i /'{
QL &, UA € ¢ OﬁA is deuse in 6}
We define
L QL
A { 5 1
0//\ Yrn 1w M (5.1)
N 4
By QL 2, C&A is a self-adjoint algebra and QL 1 gives
N e
I ¢ (¥ )i .
(A sA) = (0 = C‘CA2> (5.2

Define also

ﬁ/\ = (X‘:’\}H B = (5.3)

" e s ®A

Clearly ® c:ﬁ(CQ}“ . On the other hand QL 3 and (5.1) give [ailékk]ao .
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hence [, w(t%/\)'} =0 and, by QL 4, P cm(()* . We shall call B

the algebra at infinity ; we have just shown that the algebra at infinity

is contained in the center of m(()" . In particular the theotry of

Section 1 applies. The corresponding decomposition of p given by u

(see Theorem 1.3) will be called decomposition at infinity ; under

suitable separabllity assumptions | is carried by states with a trivial

algebra at infinity {(see Theorem 5.4 below). From (5.2) we get

hysA)) = (B, 2 B,)
1 2 Al )

Therefore Theorem 5.1 holds, it characterizes the cases where the alge-

bra at infinity is trivial, we reformulate this theorem as follows,

#*) ] . :
5.3. Theorem ', We let (GﬁA)A g satisfy QL 1 - QL 4, and

Lo iepututpuip eyt

use the notation (5.1), (5.3). The following conditions are equivalent.

(a) The algebra at infinity M consists of the multiples

(b) Given € >0 and A ¢ ({ there exists A € £ such that

if Al E 0(,: , then

loa A") - p(a) plan)] s || A" |

Let D, be the weak closure of ﬂ(@@i) and P, be the
largest projector in D, . Every B €%  is of the form B=Bl+k(1-PA)
with 8, €9 , 03 <], Ixls]8] ; cherefore B =1 L+B'

. g Il
vhere B' =3 -1P €T, Bl =<jle, I+1ats2]s]. From

Theorem 5.1, we see thus that (a) is equivalent to

#)

This theorem is of the Sinai-Powers type (see Sinai [38], Powers [81],
Lanford and Ruelle [287).
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(') Given A € 0{ there existes A € & such that

- t PR SETa 3 ol } -~ §
B' €D = [, Al S pladE, B ) e B
Using Kaplansky's density theorem ' we may write equivalently
A' € G{: = lola A" - pla) plany] £ e [In(a)]l
ot & » x B} { 4 1] 4 i
This in turn is equivalent te (k) because if A' € OLA there exists

o i
A" € (U such that n{A') = n(A"} and || A" || is arbitrarily clese to

A
At
i (a™)] ’

!
5.4. Theorem. lLet (Gbﬁ)A £ g be a countable family of

1 o e e S8

b2

3
sub~C -~algebras of @ﬂ satisfying the conditions QL 1 - QL & . If either

of the conditions (a), (b} below is satisfied, the measure  1is carried

by states ¢ with trivial algebra at infinity,

(a) ﬁé is separable.

(b) For each A € £ there is a separable closed rwo-sided

g
ideal :IA of Oﬁﬁ such thet the restriction of p to :IA has

norm 1

eSS

In both cases, the condition 85 is satisfied and we may use

the results of Secrion 2. Tor each A let (AA } be a dense sequence

¥ Ly ¢ P
in Oﬁﬁ (case (a)) or in Jy fease (b})). The von Neumann algebra B,

is generated by the ﬂ(Ayi} with AL M eund contains the diagonalizable
“.

operators (Theorem 2.1); furthermore the von Neumann algebra generated

i
3 oo tﬁ(

o P i ‘) 1 . p . '
by the ﬂékAMj) is ﬁﬁg ﬁﬁ( R We may therefore write
¥*) , A

See Dixmier (8] Ch 1, § 3, Théoréme 3.
#4t)

See Dixmier [ 9] Proposition 1.8.2.



1 [&*' 1
¢ = AR TR, am) w0 1
B W(CLA) ] wtdo) ”g(‘iA)

Using Theorem 2.2 (b) this g.ves
2 g

-

A Lo
%= nmlo" = | uln) n 'r“fO,CG"CA)"

|
d
Since M 1is the algebra of diagonalizable operators we find that

Wi \
n ﬂj(CﬁA)” consists of the multiples of the identity operator in {ZJ

Jd~almost everywhere in ¢ .

o i, e g i S

in local quantum field theory (see for instance Araki [1])where & con-
sists of the bounded open regions in Minkowskil sPaée ordered by inclusion
and AL M if A and M are space-like regions. Similar situations
arise in statistical mechanics (see for instance [3§]), the definition of
K-systems (see Sinai [38§1), or the study of canonical (anti) commutation
relations (see Powers [3!]). In statistical mechanics, Theorem 5.4 may

be used to describe the decomposition of equilibrium states invariant
under space translations into clustering equilibrium states (see
Dobrushin [#d], [1#], Lanford and Ruelle [28]). When such a decomposition
is non triviai, symmetry breakdown is said to occur, concrete and non
trivial examples of symmetry breakdown have been worked out by Dobrushin
F117. The case (b) in Theorem 5.4 is useful in dealing with states of

hysical interest, for instance locally normal states {see 3.9).
pny ’ y
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6. Turther decompositions.

In Sections 3-5 we have discussed some typlical iLntegral re-

3

presentations of states on a ¢ -algebra. We consider here briefly some
further examples. Many more applications of the general theory of
p J ek
k]

Sections 1 and 2 are of course possible, the choice of M depending

' sug )
1 DY
o the extra structurs present on ut .

- - . Iy %S:
6.1. Canonical representation of states on an abelian ¢ -al-

- 0w w0 e i MDY L Nin ek b M s i o I i AL A i Ay S Sk A Yo S . Pt A L A e W Sl 0t i e e O

IE (% is abelian, we can apply the theory of Section 1 with
/7 " . . . R 3
%= ~(00) . in rhat case i is carried by the set of extremal
, - . 7t . o
points of E , i.e. the spectrum of i , and p -2 is the adjoint

of the Gel'fand isomorphism.

6.2, Central decomposition,
VTR . : :
AT (i.e. ® is the center of m({L)™)

the theory of Section L1 applies. The integral representation of o given

by W is called ceantral decomposivion . If ® consists of the multiples

#

oy i - TRV . ; . .
af 1 (i.e. if ()" is a factor), p is called a factor state . Sup-

2

pose that condition § of Section 2 isg satisfied, then u 1is carried by

'

thie factor states. It follows indeed from Theorem 2.2 that

7

i éh

%= (i) 0O = |t [n O nm @O (6.1)

) . C . .
"If a gquasi-local structure is given, various decompositions, analogous

to that of Section 5, arise naturally. 1f a group of automorphisus is
given, a decomposition of quasi~invariant states, similar to the ergodic
decomposition of imvariant states, has been discussed ri3) .
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and since % consists of the diagenalizable operators (Theorem 2.1),

£ ‘/’ e . - 5 -
ﬂq(GC)' 0 ﬂU(Jﬁ)" consisis of the multiples of 1 py~aimost everywhere

in o .

6.3. Relation with thes disintegration of measures,

. O T o S R 1 B AN e D 8 Ay e o s Y o . A5 Ak s A < S e, lEh e i AR

s S e

Let K be a metrizable compact space, 801 = ¥(K) the

i
separable C -algebra of complex continuous functions on K and

&: Cil-?17(@6)' n (e 5 worphism of Ctl into the center of

n(({)" such that 6L = 1 . A nrobability measure My

defined by

L ) = (0, 8(HR)

on K 1is

(6.2)

If ® = 6(06 3", the theory of Section 1 applies and we shall show
1 y P

that there is. a mapping' £, : K~%E such that £ (A) is Wy -measu-

rable for A E’OC, and

(0,al@ 5()D) = f’ by () () (£ )
Y

for ¢ € %Z(E) , U € OO pariicular
4]
)] = 1
() ju Mf@)yﬂﬁ)

let B €® and ¢ & F(&) , then

[(a, B oM < s 1, ls0pio) < i §u (D

e o
Therefore there is a unique [B) ¢ L (X, Hl) such that
i

JERCORTEVNSINEY

i

(A, BECY IO

and one can see that |+ is a morphism (using A.3).

If ¢ € FR) et ¥, ¢ (K*' be defined by

(6.3)

(6.4)

(6.5)
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FL(A) = (0, mA) 50 = (0, ald) 8(3)A) (6.6

'
3

Then (6.4) gives 1 F i s ul(iwi) and F, has a unique extension to

§ ;

a continuous mapping from Li(K, i, ) to the strong dual of C% ; A8

1
] . ! et
gives the existence of £, : K —> Gﬁ such that £ (A) is pl—measurabie

Cf.l 1 and

f _
F&(A) =S Wy (dx) ¢ (x) £ (A) (6.7)

4 :
Since | £l €1 and i-ul(dx) £.(1) =1 we have W;-almost everywhere
. €E ; by a change of definition on a set of measure zero we assume
now f € E for all x € K . Using (6.5) and (6.6) ve may rewrite (6.7)

0

| a0 g0 TalA) 1) =~f uy (dx) §(x) ACE)

0 that we have ulualmcst everywhere in x

-

(a0 = A

Since o and [*] are morphisms and the polynomials are dense in

A

o’

C(E) we bave, for all ¢ ¢ v,

laled (k) = ¢{f%)
Hy-almost everywhere in x , yielding (6.3).

The problem of disintegrating a measure with respect to a
mapping (see for instance Bourbaki [57 §3, n® 1) corresponds to the
o G = o — _ '

special case Uiv= [{(L) where L 1is compact and metrizable,

6.4, Decomposition with respect to @ normal subgroup.

.t e md po R R Rty T

Let G be a topulogical group and ¥, a vepresentation of

L4

¢ in aut (¥ such that the functions g *%'U(TE A} are continuous



(with o €E , A &f% }. Let also H be a closed normal subgroup of

o)

G such that G/ iz compsct. We assume that the state p is CG-ergodic
{(see Theorem 3.4} aud that i, is H-ahelian (see 3.7). If u is the

measure giving the ergodic decomposition of p (with respect te H J,

then the support of u  is a homogenecous space of G/H and y is the

Haar measure of this homogeneous spnace. [The support of 4 consists of

P-invarisnt states on which G/H acts continuously, U 1is ergodic for
this action and the proof proceeds as for part (b) of Theorem 4.6].

Let o & supp w , then

ol&) ={ dg 7 o(a) (6.8)
G/H 5

where g 1is the class of ¢ in G/H . The support of | consists of

H-ergodic states. [By A.9; we may assume that ¢ is an extremal point

. ; . 1 1
of the closed convex hull of supp u . Let o = 5 0; + 5 Oy where O
&

G, are H-invariant states. Define probability measures “1’ by by

l *

The ergodicity of p implies that it is che resultant of by and Mo
. . 1 1
Theorem 3.6 (a) yields then My “2'< W and, since = 5 Hy t 5 My s

U= U, = W . This shows that oy, 5 GOy € supp i . But since ¢ 1is an

extremal point of the closed convex hull of supp U we have 0, = 0y 1.

6.5, Sources. Central decomposition has been studied by

P o W - (% ) .
Sakai [37. in the case of separable Op , sealso [42) ; for physical

I
H
N

17l.

applications see Araki and Miyata {27, Haag, Kastler and Michel

The decomposition in 6.4 of a G-ergodic state into H-ergodic states
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improves a theorem of Ginibre (for which see [33]) by weakening the

continuity conditiouns.
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ftp_g_erxd ix A,

A.1l. Let d% be a von Neumann algebra in ‘%} s P € J% a pro-
jection. Let u% P be the restriction of PJ% P to Plfy and (Jé')P
the restriction of Pt;f' to P %3 . Then VfP and (uf')P are von
Neumann algebras in PA% and (ufi)P = (uép)‘ . [See Dixmier [8§7 Ch 1,

§2, n° 171,

A.2. A von Neumann algebra 8 is called maximal abelian if
W= m' | If an abelian von Neumann algebra has a cyclic vector, then it

is maximal abelian. [See Dixmier [g] Chl, § 6, n°3, Corollaire 27.

A.3. Extension of the Gel'fand isomorphism.
K3 -\* - 3
Let 9@ be an abelian C -algebra of operators on the Hilbert
. 4 ' . ' el
space ﬁa , € Ja a cyclic vector for the commutant ¥£ of SE . Ve
iS
LAVAY . -
denote by X the spectrum of JE s by ‘ﬁ{x) the space of complex con-
vinwous fuonctions vanishing at infinity, by B ¢ ‘ﬁ(x) % 3€ the Inverse
of the Gel'fand iszomorphism, and by m the measure on ¥ such that

alf) = (7, (DN

The mapping B extends by continuity to a unique mapping B: Lm(x,m)wﬁrﬁ
where L (X,m) has the topoliogy of weak dual of L'(X,m) and B is
the weak c¢losure of 3€ with the wesk operator topolegy ; B thus ex-
tended is onto and is an isomorphism of C%walgebras‘ [ See ﬁixmier [8]

Ch 1, § 7].

A.4, Let E Dbe a convex compact set in a locally convex space

and let (wj) be a continuous partition of unity on . E (lL.e. a finite



family of continuous functions §, 2 O such that % ¢, = 1 ). If u
J : 1
. 4
is a probability measure on £ , lec a, = uly,) and o, be the

. i R
resultant of aj §. M . Define

LRe]

where & is the unit mass at ¢ . The measure (i can be approxi-

o}

Fy; .
mared in the vague topology by measures of the form u . [Take (wj)

i

subordinate to a sufficiently fine open covering of E , see Bourbaki

(4 p. 217 Prop. 37.

.

e e o e Kl ey i e St oy i

Lert E Dbe a convex compact set in a locally coavex space,

An order relation <« 1is defined (Bishop and de Leeuw) on the probabi-
lity measures on E Dby u, P4 My 1f gliw) 3 u2(¢) for all convex
continuous function ¢ on E . If My 4 My then by aund My have

the same resultang.

E is said to be a simplex (Choquet) if for every p € E
there is a unique probability measure up on £ which bas resultant
p and is maximal for the order < . [See Choquet et Meyer [7]].

~ . . . ) . .
Let (L be a semi-group of contractions of a Hilbert space,
and let P be the orthogonal projection on the space of vectors in-

a1

variant under every U € (4, ; then P is contalned in the strong

operator closure of the convex hull of W [See Riesz and Nagy [32]
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n® 1467,

. iy . . .
A.7. Let ¢ be a state on Vb and £ a positive linear
form oun Oi such that £ s p ; then there exists 7T € m({(]f)' such
that

£y = (Q, nC-) T W
T is unique and O £ T %1 ., [See Dixmier [4] 2.5.17.
Let a group G act by automorphisms on #  ana p, » £ be G-in-
variant (See Section 3) then the uniqueness of T yields T € U(G)'.

4.8, A variant of the theorem of Dunford Pettis.

i e 2 S . i 0 O S A O o o o S P s S A e e A 2 Qo o B

Let m be 3 measure on the compact set M such that L;(m)
is separable. Let 05 be any Banach space and 0(' its strong dual.
. L4
For any continuvous linear mapping F. : Im) => (  there is a func-
. ‘ LU b
tion f, : M'“%*GL with SUp, ¢ i H fx H Sy F “ such that for every

€ 0L , £,(8) is m-measurable and, for every { € Li(m) .

(m(dx) y(x) fx(“) = FW (A)
*)-T

-

-,

CSee Bourbaki [57 § 2, Exercise 19

A.9. Theorem of Milman.

oty U Y ety i A, Sl LMD o A A s s s T,

Let M be a set in a locally convex space. If the closed
convex hull of M is compact, its extremal points lie in the closure

of M . [See Kothe [24] § 25, 1, (7)7.

#) I am indebted to A. Grothendieck for explaining a solution of this
exercise to me.
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Appendix B,

e S i b i o L o

) . .. t . .
3.1. Proposition. let ,[ be a closed two-sided ideal of

* L/ N fp . .
the C ~algebra 6@ . Bvery stste ' on (f has a unique extension

/ ) [
to a state p on 0{ S S

‘2, =, () is rhe canonical cyclic re-
~

. . o : .
presentation associated with ¢ , n( ) is strongly denee in ﬂ(d%).

This follows from Dixmier [9. Proposition 2.10.4.

Lo

e 1, e Trm e e s Mt e

./ : . *oo -
and $CO be a separable sub~C -algebra of 6%

(a) The set ?fo of states on 5@ which have a restriction

of norm 1 to Oﬁo is a Baire subset of the set E .of all states on
& .

(b} If a measure 14 on E has resultant p € ?fo , then

. ; s
w. 1s carried by 1;@

Let CAn) be a dense sequence in the self-adjoint part of

the unic ball of Cﬁa ; {a) results from

f’ P
F - {c € 8 : sup G(An} = 1Y = 0

Q
1oy
o . |
v = U {cek:olhA)>1 «=1
i3 n n 1 A

¥
ST ' 1"

&

To prove {(b) suppose that u where ' and y" are

carried respectively by Vm and its complement,

We have

|

vA nk'(.t !n. 1
ola ) =w(a )+ ) s lp i+l -2

oy
*'The main ideas of this appendix come from [35], see also (3&] Ch. 6.
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Since sup EQ(A“H =1 ,we find Ju'li=o0
n

B.3, Proposivion. We use the notation of Section 2 and

—n s o . v

assume that condition 8 is satisfiied.

(a) If 0 €7 , then A} 1is separable and the sequence
46

(A 2nge i 4
J( i) Q@ is dense in {?U

o . —
(b) 4 is a Baire subset of &

«

(e) o is cacrisd by ¥ .
part {(a} results from Propesition B.1, parts (») and (&)

result from Proposition B.Z.

e R I ——

prhauipdh g N L

7 am indebted to U. Kastler for advanced communication of his results on
integral representations of states. I want also to thank H, Argki for

critical reading of the manuscript, and J. Dixmier fot‘usgful references,



References,

- ok o T 0D ) N W B

ra ARAKI, H. Zi.ouhrung in die Awicmatische Quantenfeldtheorie,
Lecture Wotes, ETH, Zurich (1961-62).
f21 ARAKI, H. and MIYATA, H. On the KMS Boundary Condition.
Publ. R.I.M.S. Kyoto Univ. Ser. A, 4, 361-371.
237 ARRGLD, ¥.I. et AVEZ, A, Probloimes Ergodiques de la Mécanique
Classique. Gauthier-Villars, Peris, 1967.
'4} BOURBAKI, M. Eléments de Mathématique. Intégration
Chapitres 1, 2, 3 ex &4, an ed. Hermann, Paris, 1965,
5y BOURBAKI, N. Eléments de Mathématique. Intégration Chapitre 6

Hermann, Paris, 1960,
&3 P, Cartier, J.M.G. Fell et P.~A. Meyer. Comparaison des mesures

portées par un ensemble convexe compact.Bull., Soc. Math. France. 92,
435-445 (1964).

£7] CHOQUET, 6. et MEYER, P.-A. Existeunce et Unicité des Re-
présentations Intégrales dans les Convexes Compacts

Quelconques. Ann.Inst. Fourier. 13, 139-154 (1963).

(8] DIXMIER, J. Les alpgkbres d'opérateurs dans ]'espace hilbertien
(Algtbres de von Neumann). Gauthier-Villars, Paris,
1457,
Eﬁ? DIXMIER, J. Tes G%~a1gabr&s et leurs représentations,
Gauthier-Villavs, Pavis, 1964,
(o) DOBRUSHIN, R.L. Gibbsian probability field for lattice
systems wich palyr dnteractions. Funkts., Analiz 1 ego
Pril. 2, 3143 (1968},
L1 DOBRUSHIN, K.L. The question of uniqueness of a Gibbsilan
probability field and problems of phase transitions.
Funkts., Analiz { ego Pril. 2, 44~57 (1968).
[12] DOPLICHER, 5;, CALLAVOTTI, G. and RUELLE, D. Almost Perioedic

‘ States on C%wﬁlgabras {(Unpublished Report (1966},
(18] DOPLICHER, ., GUICHARDET, A, snd KASTLER, D. Désintégration
des Btats quasi-iovarlancs des G%Falg&bres.
Unpublished report (1969).



- 54 -

[14° DOPLICHER, S., KADISON, R.YV., KASTLER, D. and ROBINSON, D.W.
Asymptotically Ab lian Systems. Cowmr. Math. Phys. 6,
101-120 (1967).

L1 DOPLICHER, 5. and KASTLER, D. Ergodic States in a Non Commu~
tative Ergodic Theory. Commun. Math. Phys., 7, 1-20
(1968},

L6 DOPLICHER, &5., HASTLER, D, and RUBINSON, DLW, Covariance
Algebras in Field Theory and Statistical Mechanies,
Commun. Math. Phys. 3, 1-28 {1966).

7 DOPLICHER, ., KASTLER, D. and STERMER, E; Iavariant States
and Asymptotic Abelianness. Unpublished Report (1968).

“18 7 E.G. EFFRUS . The Borel space of von Neumann aigebras on a separable
Yilbert space. Pacific J. Math. 15, 1153-1164(1965).

L9 HAAG, R., KASTLER, D. and MICHEL, L. Central Decomposition
of Ergodic States. Unpublished Report (1968).
207 HUGENHOLTZ, N.M. and WIERINGA, J.D. On Locally Normal States

in Quantum Statistical Mechanics, Commun. Math, Phyé‘
11, 183-197 (1969).
3213 JACOBS, K. Neusre Methoden und Ergebnisse der Ergcdentheorie
Springer, Berlin {1960). '
28 JACOBS, K. FErgedic Theor,, Lecture Notes, Aarhus Universitet,

Aarbus (1963},

r25] KASTIER, D. and ROBINSON, B.W. Invariant States in Statistical
Mechanics, Comnun, Math. Phys., 3, 151 180 (1966).

"24] KBTHE, G. Topologische Linears Rsume L. Springer, Berlin,
1860,

rey] KOVACS, I. aund “ZL“%; J. EBrgedle Type Theovems in von
Neumann algebras. Acta Sci. Mach. 27, 233-246 (1966).

e LANDAU, L.D. and LIFSHITZ, E.M. Fluid Mechanics,
Pergamon Press, Oxford, 1959,

rz77 '~ LANFORD, ©O. and RUELLE, D. Integral Representations of In-
varignt States on B% Algebras, J. Math. Phys. 8,
1460-1463 (1967},

r28] LANFORD, 0. and RUELLE, D. Observables at Infinity and States

with short Range Corvelations in Statistical Mechanics.
Unpublished Report (1968).



- Gy

LZQJ MAURIN, K. Eigenfunction Expansions. Monovgrafie Matematyczne.
48 PWN, Warssw, 1968,

PHELPS , R.R. lectures on Choqguet's Theorem. D. Van Nostrand,
Princeton, L9605,

T30 POWERS, R.T. Repr-scatations of Uniformly Hyperfinite Alge-

bras and tholr associated Von Neumann Riongs.

Ann, Malh. %6, 138-171(1967),

32 RIESZ, F. er 3Z,-M&GY, B. Legons d'iAnalyse Foonctionnelle
3-rd ed., Acedémie des Bciences de Hongrie, 1955.
[33” ROBINSON, D.W. and RUELLE, D. Extremal Invariant States,
Ana. lunst. Henri Poincaré 6, 299-310 (1967).
T34 RUELLE, D. States of Physical Systems, Commun, Math. Phys,
3, 133-150 (1966). _
7557 RUELLE, D, States of Classical Statistical Mechanics.
J. Math. Phys. 8, 1657-1668 (1967),
ri¢t RUELLE, D. Statistical Mechanics. Rigorous Resuits.
Benjamin, New York, 1969,
a7 SAKAL, 5. On the Central Decomposition for Positive
Functionals on C%—algebras. Trans. Amer. Math.
Soc. 118, 406-419 (1965).
380 SINAI, Ya. G. ©Probabilistic Ideas in Ergodic Theory.
International Coigress of Mathemati:lans, Stockholm
1962, 540-559, and Amer. Math. Soc. Transl, (2) 31,
62-81 (1963).
ST@RMER, E. Large Groups of Automorphisms of C%-Algebras.
Commun. Math. Phys. 5, 1-22 {1967).
40 STORMER, E. Types of von Neumann Algebras Associated with

~
("
S

-

Extremal Invariant States. Commun, Mach. Phys. 6,
194-204 (1967).
L41] STPRMER, E. Symmetric States of Infinite Tensor Products of
C"-Algebras. J. Functional Analysis 3, 48-68 (1969).
(42 WILS, W. Désintégration centrale des formes positives sur
les C -algebres. C.R. Acad, Sci. 267, 810-812 (1968).

I«HtEcSo - x. 029



