Recherche Coopérative sur Programme ${ }^{0} 25$

David RUELLE
 Integral Representation of States on a C^{*}-Algebra

Les rencontres physiciens-mathématiciens de Strasbourg - RCP25, 1969, tome 9 «Conférences de J. Carmona, M. Froissart, D.W. Robinson et D. Ruelle », , exp. no 4, p. 1-54
<http://www.numdam.org/item? id=RCP25_1969__9_A4_0>

L'accès aux archives de la série «Recherche Coopérative sur Programme no 25 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

David Ruelte
Institut des Hautes Etudes Scientifiques
91. BURES-sur-YVETTE - France

0. Introduction

Let \mathscr{C} be a C^{*}-algebra with identity, E the set of states on \mathbb{O}. In a number of situations of mathematical physics, a state ρ is "decomposed" into other states σ, i.e. 0 is exhibited as the resultant of a probability measure μ on E, or ρ has an integral representation of the form

$$
\rho=\int_{E} \mu(d \sigma) \sigma
$$

The measure μ is usually defined through a von Neumann algebra $\%$ in the Hilbert space of the cyclic representation π canonically associated with 0 ; is abelian and contained in the commutant $\pi(\mathcal{G})$ ' of the image of O. In Section 1 we describe the relation between 9 and μ. In Section 2 we show, under certain separability conditions, how is diagonalized by a direct Hilbert space integral. In the following sections we consider some examples: decomposition of states invariant under a group into ergodic states, central decomposition, etc.

One can often (under suitable separability assumptions) show that μ is carried by a special class of states: ergodic states, factor states, etc. Otherwise, the various decompositions have their particular problems and properties. For instance in the case of the ergodic decomposition of a G-invariant state ρ on a G mabelian algebra, the mapping $\rho \rightarrow \mu_{p}$ is affine, but for other decompositions (e.g. central) such a property does not hold in general.

There is quite a bit of recent literature on the subject matter
of this article, besides the classic li literature on ergodic theory and dynamical systems (which deals essentially with the case of abelian $(\mathbb{C}$). In order to be reasonably readable, informative and self-contained, we have included bere a relatively laxge amount of material which is not original (in particular much of Section 3). The main results of this work are the general theory of Sections 1 and 2 and the study of "multiperiodic" decomposition in Section 4 and decomposition "at infinity" in Section 5 . Section 4 presents an extension of the theory of dynamical systems with discrete spectrum; in particular Theorem 4.1 shows that the "equicontinuous part" of the action of a locally compact abelina group can be so to say inolated and exhibited as translations on a torus. In Section 5 we consider $C^{\text {** }}$ algebras with "quasi"-local" structure. In such an algebra it makes some sense to say that two elenents A, A" are "far away"; a state σ may be called clustering if $O\left(A A^{\prime}\right)$ is close to $O(A), O\left(A^{\prime}\right)$ when A and A^{\prime} are far away. Theorems 5.3 and 5.4 say essentially that every state ρ has a natural decompostion into clustering states.

For the organization of the artele, we mention that section 5 and $6.1,6.2,6.3$ may be read independently afret section 2 . A mumber of results used in the present work have been colkected in Appendix A fox easy reference. On the other hand the reader is assured to be familiar with the basic results on von heumann algebras and ${ }^{*}-\operatorname{ligebras}$. Appendix B contains technical developments needed in Seccion 2.

1. General theorems.

Throughout this note we use the following notation and assumptions.
Q is a C^{*}-algebra with identity, X is the dual of O with the w^{*}-topology, $\mathrm{E} \in \mathcal{G}$, is the (compact) sec of states on \mathscr{C}. If $a \in M$, the function \hat{A} on E is defined by

$$
\hat{A}(\sigma)=\sigma(A)
$$

A fixed state $0 \in E$ is chosen; the canonical cyclic representtation associated with ρ is $(\hat{g}, \pi, \pi)^{*}$.

$$
\begin{align*}
& \text { 1.1. Theorem. (a) Let the lon Newman algebra satisfy } \\
& \oiint \beta \in \pi(A) \quad \text { 的 } \subset g^{\prime} \tag{1.1}
\end{align*}
$$

Then the orthogonal projection P on the closure of B in f is such that

$$
p \Omega=\Omega \quad P \pi(\alpha) P \subset[p \pi(Q) P] \cdot
$$

(b) Let P be an orthogonal projection in f
satisfying (i.2), then the yon Neman algebra $g=\{\pi(Q) \cup\{p\}]^{\prime}$
satisfies (1.1).
*) In this triple H^{6} is a complex Hilbert space, π a representation of Q_{i} in $\hat{g}, \Omega \in g$, and the following conditions are satisfied (i) $\|\Omega\|=1$
(ii) $\pi(C) \Omega$ is dense in $b(\Omega$ is a cyclic vector for $\pi(K))$ (iii) $(\forall A \in(\mathcal{Q}) \quad o(A)=(\Omega, \pi(A) \Omega)$.
(c) The relations between i and p established
by (a) and (b) are the inverse of each other.

Let the vol Neman algebra $\&$ satisfy (1.1) and let P be the orthogonal projection on the closure of $B Q$ in H. We note the following faces
(i) $P \in G^{\prime}$

LLet $B, B_{1} \in A$, we have $B P B_{1} \Omega=B B_{1} \Omega=P B B_{1} \Omega=P B P B_{1} \Omega$ and, since 4Ω is dense in $P h, B P=P B P$. Therefore $B P=P B]$.
(ii) Multiplication by P yields an isomorphism

$$
[\pi(\mathcal{Q}) \cup\{p\}]^{\prime} \rightarrow p[\pi(C) \cup\{p\}]^{\prime}
$$

$\left[\right.$ Let $B \in[\pi(Q) \cup\{P\}]^{\prime}$, then $\left.B P=0 \Rightarrow B \Omega=0 \Rightarrow B \pi(Q) \cap=0 \Rightarrow B=0\right]$.

$$
\begin{equation*}
P\left[\pi(K) \cup[P]^{\prime}=P[P \pi(C) P]^{\prime}\right. \tag{iii}
\end{equation*}
$$

This follows from the formula $\left(A^{\prime}\right)_{P}=\left(A_{P}\right)^{\prime}$ (see A.1) with $\left.v=[\pi(U) \cup[P\}]^{\prime \prime}\right]$.
(iv) $\quad P M=P(P A)^{\prime}=P[P \pi(O) P]^{\prime \prime}=P\left[P \pi(O) p^{\prime}\right]^{\prime}$

The restriction of p to $p f$ is abelian and has the cyclic vector Ω; by A. 2 it is thus equal to its combatant. Thus $P B=P(P B)$. The set $\operatorname{P\pi }(G) P$ restricted to $P\left\{\begin{array}{l}G \\ G H\end{array}\right.$ Ω, therefore

$$
P(P A)^{\prime} \supset P[P \pi(C) P]^{\prime \prime} \quad \text { or } \quad P[P \pi(K) P]^{\prime} \supset P B
$$

and, by A.2, $\left.P[P \pi(Q) P]^{\prime \prime}=P[P \pi(C) P]^{\prime}\right]$.
(v) $B=[\pi(C) \cup\{p\}]^{\prime}$
$\left[(i)\right.$ yields $\mathscr{B} \in[\pi(C) \cup\{p\}]^{\prime},(i i i)$ and (iv) yield $p \notin=P[\pi(C) \cup\{P\}]^{\prime}$, it suffices then to apply (ii)].

Part (a) of the theorem and one half of part (c) follow from (iv) and (v) respectiveiy.

Let now p be an orthogonal projection in f satisfying (1.2). We note the following facts.
(iv) $P[P T(K) P]^{\prime \prime}=P\left[P H(C O)^{\prime \prime}\right]^{\prime}$
[By A. 2 because the restriction of $[\operatorname{Pr}(C O) P]^{\prime \prime}$ to $\mathrm{P} H$ is abelian and has the cyclic vector Ω].
(vii) $P[P \pi(O) P]^{\prime}=p[\pi(Y) \cup[p]]^{\prime}$
[The proof is the same as for (iii)]
(viii) Multiplication by F yields an isomorphism

$$
[\pi(Q) \cup\{p\}]^{\prime} \rightarrow \mathrm{P}[\pi(Q) \cup\{\mathrm{p}\}]^{\prime}
$$

[The proof is the same as for (ii)]
(ix) The closure of $[\pi(O) U\{p]\} \Omega$ is the range of P.
 by (vi), (vii)].

It follows from (vi), (vii), (viii) that $[\pi(Q) \cup[p]]^{\prime}$ is abelian, proving part (b) of the theorem. The second half of part (c) follows from (ix).
1.2. Theorem. Let 9 and P be as in Theorem 1.1.
(a) Mulciplication by P yields an isomorphism $B P$
(b) $\mathrm{PA}=\mathrm{P}(\mathrm{PA})^{\prime}=\mathrm{P}[\mathrm{PT}(\Omega) \mathrm{P}]^{\prime \prime}=\mathrm{P}\left[\operatorname{PT}(\Omega)_{\mathrm{P}}\right]^{\prime}$
(c) There is a morphism $a: \varphi_{(E)} \rightarrow B$ of C^{*}-algebsas such that $P a(\hat{A})=P M(A) P$ for all $A \in O$. Thismorphismis unique, its image is strongly dense in 8 .

Part (a) and (b) of the theorem follow respectively from (id) and (iv) in the proof of Theorem 1.1.

To prove (c) let first A_{1}, \ldots, A_{n} be self-adjoint elements of Q and ρ be a complex-polynomial in n-variables. Consider a simultaneous spectral decomposition of $\operatorname{P\pi }\left(A_{1}\right) P_{3} \ldots, \operatorname{P\pi }\left(A_{n}\right) P$:

$$
\begin{aligned}
P & =\int F\left(d x_{1} \ldots d x_{n}\right) \\
\operatorname{P\pi }\left(A_{k}\right) P & =\int x_{k} F\left(d x_{1} \ldots d x_{n}\right)
\end{aligned}
$$

We have then

$$
\begin{align*}
& \left\|\rho\left(P \Pi\left(A_{1}\right) P, \ldots, \operatorname{PT}\left(A_{n}\right) P\right)\right\| \\
& =\left\|\int \mathcal{P}\left(x_{1}, \ldots, x_{n}\right) F\left(d x_{1} \ldots d x_{n}\right)\right\| \\
& \left.s \sup _{Y \in \mathrm{P} \eta,\|Y\|=1} \mid \mathcal{P}\left(Y, \pi\left(A_{1}\right) Y\right), \ldots,\left(Y, \pi\left(A_{n}\right) \Psi\right)\right) \mid \\
& \leq \sup _{\sigma \in E}\left|P\left(\sigma\left(A_{1}\right), \ldots, \sigma\left(A_{n}\right)\right)\right|=\left\|P\left(\hat{A}_{1}, \ldots, \hat{A}_{n}\right)\right\| \tag{1,4}
\end{align*}
$$

The polynomials $P\left(\hat{A}_{1}, \ldots, \hat{A}_{n}\right)$ are dense in $\mathcal{Q}(E)$ and therefore (1.4) implies the existence of a unique morphism $B: \mathscr{C}(E) \rightarrow P$ such that

$$
\hat{B(\hat{A})}=p \Pi(A) P
$$

The image of β is strongly dense in PB . In view of (a) there is a unique morphism $\alpha: \varphi(E) \longrightarrow F$ such that for all $\varphi \in \mathscr{Q}(E)$,

$$
\beta(\varphi)=p \alpha(\phi)
$$

If the $\rho(\phi)$ are uniformly bounder and converge strongly to $p B$, the $\alpha(\varphi)$ are uniformly bounded and for each $A \in U$ the $\alpha(\varphi) \pi(A) \Omega=\pi(A) \beta(\varphi) \Omega$ converge, hence the $\alpha(\varphi)$ converge strongly to p, proving part (c) of the theorem.

$$
\begin{align*}
& \text { 1.3. Theorem. (a) Aprobabllity measure } \mu \text { on } \mathrm{E} \text { is defined by } \\
& \mu(\phi)=(\Omega, a(\omega) \Omega) \tag{1.5}
\end{align*}
$$

The resultant of H is ρ.
(b) There is a unique mapping $\vec{a}: L^{\infty}(E, \mu) \rightarrow B$ such that

1. if $\omega \in \mathscr{C}(E)$, then $\bar{\alpha}(\varphi)=\alpha(\phi)^{*}$
2. \bar{a} is continuous from the topology of weak dual of $L^{1}(E, \mu)$ on $L^{\infty}(E, \mu)$ to the weak operator topology on \quad.
 $A \in\left(H, \psi \in L^{\infty}(E, \mu)\right.$,

$$
\begin{equation*}
\mu(\hat{A} \dot{\psi})=(\hat{\Omega}, \pi(A) \hat{\gamma}(\psi) \Omega) \tag{1,6}
\end{equation*}
$$

part (a) is checked immediately. We prove (b).
Let $X=\alpha\left(\varphi_{(E)}\right), x$ the spectrum of $X, B: Y(x) \rightarrow X$ the inverse of the Gel'fand isomorphism. We may identity X to a subset of E such that $\alpha(\phi)=B\left(\left.\varphi\right|_{X}\right)$. Then $\operatorname{supp} \mu=X$ and (b) follows from A. 3 .
48) That is, if P is the canonical mapping $\mathcal{P}(E) \Rightarrow L^{\infty}(E, \mu)$, then $\alpha=\vec{\alpha} \circ p$.
1.4. Corollary. let [B] be a finite set of positive alemints of such that $\ddot{x}_{j}=2$. We define $a_{j} \geq 0$ and $\sigma_{j} \in E$ by

$$
\alpha_{j}=\left(\Omega_{,} \beta_{j} \Omega_{j} \quad \alpha_{j} \sigma_{j}(A)=\left(\Omega, \pi(A) B_{j} \Omega\right)\right.
$$

and introduce a probability measure $\left.\mu_{\left[b_{j}\right.}\right\}^{m a} \sum_{j} G_{j} \delta_{\sigma_{j}}$ on E (δ_{σ} is the unit mass at σ). If $\left\{\begin{array}{c}3 \\ k\end{array}\right\}$ th the set of partial sums corresponding to some partition of $\left[B_{j}\right\}$ water $\left[B_{j}\right\} \geq\left[B_{k}\right\}$. Given two sets $\left\{B_{k}^{\prime}\right]$.
 The directed system $\left.(4,\}^{\prime}\right\}^{*}$ converges to H in the vague topology of measures on E^{*}) . This follows from Theorem $1.3(\mathrm{~b})$ and A.4. If $\left[B_{k}\right] \leq\left\{B_{j}\right\}$ then, using the order of of Bishop -de thew (see A.5) we have $\mu_{\left[B_{k}^{\prime}\right]}\left\langle\mu_{\left[B_{j}\right]}<H\right.$.
1.5. Corollary. Let $\%$ be an abelian won Neumann algebra $\sigma \pi(M)$ " . If we associate with it a measure. \tilde{H} on E by the above

[Corollary 1.4 showa that $(\mathbb{G} \in \omega)=(\tilde{\mu}\langle\mu)$. Conversely, if $\tilde{\mu} \alpha \mu$.
 such that for an t \in

$$
\mu(\vec{k} \hat{p})=\vec{A} \hat{Q}
$$

*) the. in the *-topology of the apse of measures considered as dual of $\mathscr{(E)}$.
*保 Reference [6] Wa pointed out to the author by f. Mixmiex.

If E is metriaable and $\tilde{\mu} \alpha \mu$ there is a family $\left(T_{\sigma}\right)_{\sigma \in E}$

 SEprobability measures on E such hat(a) the resultant of io is o
(b) if $\varphi \in f(E)$ then $\sigma \rightarrow T(\varphi)$ is a Bore function and

$$
\begin{equation*}
\mu(\varphi)=\int_{E} \pi_{\sigma}(\phi) N(\operatorname{\omega } \theta) \tag{1,7}
\end{equation*}
$$

$[T h i s$ results from theorem 2 of [6]]
 the decomposition of ρ associated with Q may be accomplished in two steps, via the decomposition associated with ${ }^{*}$.
1.6. Sources. The use of (1.5) as definition of a measure μ giving an integral representation of 0 appears in Ruelle [34] for the case of ergodic decomposition; form of the same idea is already present in Sakai [37] for central decomposition. Further references are given for each specific application. A version of Theorems 1.2 and 1.3 for the case $\oiint \pi(\mathbb{C}) \cdot \cap \pi(\mathcal{K})^{\prime \prime}$ has been obtained independently of the present work by Doplicher, Guichardet and Kastlex [13].
2. Reduction theory ${ }^{*)}$

In this Section we let S, p be as in Section 1 and we make the following separability assumption.

$$
\begin{aligned}
& \text { Condition } S \text {. For } k=1, \ldots, n \text { there are countable families } \\
& \left(\mathcal{O}_{\alpha_{1} \ldots \alpha_{k}}\right) \text { and }\left(\mathcal{V}_{\alpha_{1} \ldots a_{k}}\right) \text { of sub-C*-algebras of } Q \text { such that } \\
& \text { (i) } \alpha_{\alpha_{1} \ldots \alpha_{k} \alpha_{k+1}} \propto \hat{d} \alpha_{k} \ldots \alpha_{k} \text {, } \\
& \text { (ii) } U_{\alpha_{k+1}} U_{\alpha_{1} \ldots \alpha_{k} \alpha_{k+1}} \text { is dense in } X_{\alpha_{1} \ldots \alpha_{k}} \text { and } U_{\alpha_{1}} Q_{\alpha_{1}} \text { is dense } \\
& \text { in } O \text {, } \\
& \text { (iii) } J_{\alpha_{1} \ldots \alpha_{k}} \text { is a closed two-sided ideal of } \|_{\alpha_{1} \ldots \alpha_{k}} \text {, } \\
& \text { (iv) } J_{a_{1}} \ldots \alpha_{n} \text { is separable, } \\
& \text { (v) the restriction of } 0 \text { co each }]_{\alpha_{1}} \ldots a_{n} \text { has norm } 1 \text {. } \\
& \text { Define } \\
& \mathcal{F}_{\alpha_{1} \ldots a_{n}}=\left\{\sigma \in \mathrm{E} \text { : the restriction of o to } J_{\alpha_{1} \ldots a_{n}} \text { has norm } 1\right\} \\
& \mathcal{F}=\tilde{a}_{1} \ldots \alpha_{n} \quad \underset{\sim}{\alpha_{1} \ldots \alpha_{n}}
\end{aligned}
$$

Let also $\left(A_{i}\right)$ be a sequence in C such that each $J_{\alpha_{1}} \ldots A_{n}$ contains a dense subsequence. We shall denote by (ξ_{0}, π_{σ}, σ_{0}) the cyclic representcation of O associated with $G \in E$. It is convenient to think of a special case of condition s, namely that of separable O. We may then take $\mathcal{F}=\mathrm{E}$ and for (A_{i}) any dense sequence in \mathcal{C}. The further complications which arise in the general case are dealt with in Appendix B (Proposition Be).

[^0]Let $\sigma \in \mathcal{T}^{T}$, for any A_{i}, A_{j} in the sequence $\left(A_{i}\right)$ define $w_{i j} \in h_{i} \forall_{i j}(\sigma) \in \oint_{\sigma} b y$

$$
\begin{align*}
& \Psi_{i j}=\pi\left(A_{i}\right) P \pi\left(A_{j}\right) \Omega \tag{2.1}\\
& \Psi_{i j}(\sigma)=\sigma\left(A_{j}\right) \pi_{\sigma}\left(A_{i}\right) \Omega_{j} \tag{2.2}
\end{align*}
$$

The vectors $\Psi_{i j}\left(r e s p . \Psi_{i j}(\sigma)\right)$ are dense in g, resp. $\mathcal{G}(\sigma)$. With the help of the family ($\left.\Psi_{i j}(*)\right)$ a direct Hilbert space integral

$$
\begin{equation*}
\int^{\oplus} \mu(\mathrm{d} \sigma) h_{\sigma} \tag{2.3}
\end{equation*}
$$

may be constructed ${ }^{*)}$. It is the Hilbert space consisting of functions $\Phi: \sigma \in E \rightarrow \eta_{0}$ such that, for every i, j, the complex function $\sigma \rightarrow\left(\Psi_{i j}(\sigma), \Phi(\sigma)\right)$ is μ measurable and $\sigma \rightarrow\|\Phi(\sigma)\|$ is square-integrable; the norm is $\left[\int \mu(\sigma \sigma)\|\Phi(\sigma)\|^{2}\right]^{1 / 2}$. The Hilbert space (2.3) does not depend on the choice of $\left(A_{1}\right)$. It follows from (2.1), (2.2) and (1.5) that

$$
\left(\Psi_{i j^{\prime}}, \psi_{i j}\right)=\int \mu(d \sigma)\left(\Psi_{i}{ }^{\prime},(\sigma), \Psi_{i j}(\sigma)\right)
$$

There is thus a linear isometry of h into $\int^{(} \mu(d \sigma) g_{0}$ extending $\Psi_{i j} \rightarrow \psi_{i j}(\cdot)$. This isometry is onto : suppose that we have
$0=\int \mu(d \sigma)\left(\psi_{i j}(\sigma), \sigma(\sigma)\right)=\int \mu(d \sigma) \hat{A}_{j}(\sigma)^{*}\left(\pi_{\sigma}\left(A_{i}\right) \delta_{\sigma}, \delta(\sigma)\right)$
Since the \hat{A}_{j} are dense in $L^{2}(E, \mu) \quad[$ by (1.5) the mapping $\varphi \rightarrow \alpha(\varphi) \Omega$ is isometric from $L^{2}(E, H)$ to $P G$, the continuous φ are dense in $L^{2}(E, \mu)$ and the $p \pi(A) \hat{A}$ are dense in $P G$, therefore the \bar{A} are dense in $\left.\mathrm{L}^{2}(\mathrm{E}, \mu)\right]$ we obtain μ-almost every where
${ }^{\text {\#) }}$ See Dimer $[8]$ Ch. 2, 81 , Proposition 4.

$$
\left(\pi_{\sigma}\left(A_{i}\right) \Omega_{\sigma}, \Phi(\sigma)\right)=0
$$

and therefore

$$
\Phi(\sigma)=0
$$

For each σ, let $T(\sigma)$ be a bounded operator on \mathcal{H}_{σ}; for every i, j, i^{\prime}, j let $\sigma \rightarrow\left(\psi_{i, j}(\sigma), T(\sigma) \psi_{i j}(\sigma)\right)$ be measurable and let $\sigma \longrightarrow\|\mathrm{H}(\sigma)\|$ be essentially bounded.
There is an operator ${ }^{*}$)

$$
T=\int^{\oplus} \mu(d \sigma) T(\sigma)
$$

such that, if $\Phi=\int^{\oplus} \mu\left(d_{\sigma}\right) \Phi(\sigma)$, then $T \Phi=\int_{\mu(d \sigma)}^{\oplus} T(\sigma) \Phi(\sigma)$. If $T(\sigma)$ is a multiple $\lambda(\sigma)$ of the identity for all σ, then T is called diagonalizable ; if λ is continuous, T is called continuously diagonalizable.

$$
\begin{align*}
& \text { 2.1. Theorem. There is a unique identification } \\
& h=\int^{\oplus} \mu(\mathrm{d} \sigma) h_{\sigma} \tag{2.4}
\end{align*}
$$

such that

$$
\begin{equation*}
\Omega=\int_{\mu(d \sigma)}^{\theta} \Omega_{\sigma} \tag{2.5}
\end{equation*}
$$

and for all $A \in \mathcal{Y}$

$$
\begin{equation*}
\pi(A)=\int^{\oplus} \mu(d \sigma) \pi_{\sigma}(A) \tag{2.6}
\end{equation*}
$$

With this identification, $\$$ becomes the yon Newman algebra of diagonalizable operators, in particular

[^1]\[

$$
\begin{equation*}
\alpha(\hat{A})=\int^{\theta} u(d \sigma) \hat{A}(\sigma) \tag{2.7}
\end{equation*}
$$

\]

If we identify d and $\int_{\mu(d \sigma)}^{\infty} \hat{g}_{\sigma}$ by the isometry extending $\Psi_{i j} \rightarrow \Psi_{i j}(\cdot)$ which we discussed above, we have

$$
\begin{equation*}
\alpha\left(\hat{A}^{\prime}\right) \pi(A) \cap=\pi(A) P-\left(A^{\prime}\right) O=\int \mu(d \sigma) \sigma\left(A^{\prime}\right) \pi_{\sigma}(A) \Omega_{0} \tag{2.8}
\end{equation*}
$$

for any A, A^{\prime} in the sequence (A) and therefore for any $A, A \prime \in O$ (the sequence may be enlarged to inciude them), (2.5), (2.6) and (2.7) follow from (2.8). The identification (2.4) is uniquely determined by (2.5), (2.6) because $\pi(O)$ is dense in \hat{b}. The von Neumann algebra A is the strong closure of $\alpha(\psi(2))$ by Theorem $1.2(c)$, by (2.7) it is thus the weak closure of the algebra of concinuously diagonalizable operators, which is precisely the von Neumann algebra of diagonalizable operators ${ }^{4 \prime}$.

Let (T_{i}) be a sequence of bounded operators in foch that

$$
T_{i}=\int^{\theta} \mu(d \sigma) T_{i}(\sigma)
$$

If f_{σ} is the von Neumam algebra genexated by the $T_{i}(\sigma)$, the operators of the form

$$
I=\int^{\omega} \mu(d \sigma) T(\sigma)
$$

with $T(O) \in \mathcal{U}_{\mathrm{O}}$ form a von Neumm algebra of which is said to be decomposable and is denoted by

$$
d V=\int^{\theta} \mu(d \sigma)_{0} \gamma_{0}
$$

[^2]$f_{i s}$ generated by the T_{i}. and the diagonalizable operators ${ }^{*}$.
$$
\text { 2.2. Theorem. (a) Let } f \text { be a decomposable vo Neumann }
$$
algebra:
$$
N^{N}=\int^{\oplus} \mu(\mathrm{d} \sigma) N_{\sigma}
$$

Then $U^{\prime \prime}$ is decomposable and

$$
\begin{equation*}
U^{\prime}=\int_{\mu(d \sigma)}^{\infty} V_{\sigma}^{\prime} \tag{2.9}
\end{equation*}
$$

(b) Let $\left(U V_{i}\right)$ be a sequence of decomposable yon Neumann
algebras:

$$
\mathscr{N}_{i}=\int^{\oplus} \mu(\mathrm{d} \sigma) \mathscr{N}_{i \sigma}
$$

Then

$$
\begin{equation*}
n_{i} \mathscr{N}_{i}=\int^{\theta} \mu(\mathrm{d} \sigma)\left(\cap_{i} \mathscr{W}_{i \sigma}\right) \tag{2.10}
\end{equation*}
$$

This theorem is proved in Dixmier [7] (Ch. 2, s 3, Théorème 4) in the case of a (Radon) measure μ on a locally compact space with countable basis. The result hold however without countability hypothesis on E as follows from a paper by Effrös [18 $]^{* *)}$
2.3. Sources. The direct integral $\int^{\theta} \mu(d \sigma) h_{\sigma}$ was considered by Sakai [$3 \boldsymbol{\gamma}$] for the central decomposition of a state on a separable $C^{\#}$-algebra. (The absence of separability condition in the note by Wins [42] on the same subject is puzzling.) The case of separable \mathbb{Q}, and $n \subset \pi(\mathcal{O})^{\prime} \cap \pi(\mathcal{K})^{\prime \prime}$, is considered in [13].
*) See Dixaier [8] Ch. 2, § 3.
**) This reference was pointed out to the author by J. Dixmier.
3. Ergodic decomposition.

Let G be a group and T a representation of G in aut $(\mathbb{C}$. We define an action τ of G on E by

$$
\begin{equation*}
T_{g} \sigma(A)=\sigma\left(\tau_{g}^{-1} A\right) \tag{3.1}
\end{equation*}
$$

and let $I \subset E$ be the set of g-invarianti*) states, i.e., of states such that $T_{g} \sigma=\sigma$ for all $g \in G$.

We assume that $\rho \in I$; there is then a unique unitary representation U of G in f such that

$$
\begin{equation*}
u(g) \Omega=\Omega \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
U(g) \pi(A) U\left(g^{-1}\right)=\pi\left(T_{8}^{-} A\right) \tag{3.3}
\end{equation*}
$$

We let p be the orthogonal projection on the subspace of \mathcal{H} constituted of the vectors invariant under U; (3.2) yields

$$
\begin{equation*}
p n=n \tag{3.4}
\end{equation*}
$$

3.1. Theoten ${ }^{\text {t4 }}$) The following conditions are equivalent
(a) $\quad \mathrm{ar}(\alpha) \mathrm{Q} \in[\mathrm{B}+(\mathbb{O}) \mathrm{p}]^{\prime}$

") "T-invariant" would be more correct but "G-invariant" will cause no confusion.
${ }^{\text {thit) }}$ See Lanford and Ruelle $[2 \%]$.
${ }^{3}+f+$) One might in (b) suppose A_{1}, A_{2} self-adjoint andfor replace the expectation value for $\}$ by a mix element between $\mathbb{Q}_{1}, \Phi_{2} \in f$.
$\varepsilon>0$, there exist $\lambda_{i} \geq 0, g_{i} \in G$ such that $\sum \lambda_{i}=1$ and

$$
\begin{equation*}
\left|\left(W_{i},\left[\sum_{i} \pi\left(T_{g_{i}} A_{1}\right), \pi\left(A_{2}\right)\right] \Phi\right)\right|<\varepsilon \tag{3.6}
\end{equation*}
$$

The proof will result from the following facts

(i) If $\dddot{Y}_{1}, \psi_{2} \in \mathcal{F}$ and $\epsilon>0$ there exist $\lambda_{i} \geq 0, g_{i} \in G$ such that $\Sigma \lambda_{i}=1$ and, for $\alpha=1,2$,

$$
\left\|\sum_{i, i} \lambda_{j}^{\prime} \lambda_{i} U\left(g_{j}^{i} g_{i}\right) \psi_{\alpha}^{*}-P \psi_{\alpha}\right\|<c
$$

where the $\lambda_{j} \geq 0, g_{j}^{\prime} \in G$ are arbitrary subject to $\Sigma \lambda_{j}=1$ [Using A. σ, we may suppose $\left\|\sum_{i} \lambda_{i} U\left(g_{i}\right)_{\alpha}^{\Psi}-P \Psi_{\alpha}\right\|<\varepsilon$ hence $\left\|\left(\sum_{j} \lambda_{j}^{\prime} U\left(g_{j}^{\prime}\right)\right)\left(\sum_{i} \lambda_{i} U\left(g_{i}\right) \Psi_{a}-P \Psi_{a}\right)\right\|<\varepsilon \quad$.
(ii) Let $A_{1}, A_{2} \in D$ be such that $\left\|A_{1}\right\| \leqslant 1,\left\|A_{2}\right\| \leq 1$.

Let $\Phi_{1}, \Phi_{2} \in P \not \subset$, be such that $\left\|\Phi_{1}\right\| \leq I\| \|_{2} \| \leq 1$. Given $\epsilon>0$ one can find $\lambda_{i} \geq 0, g_{i} \in G$ such that $\Sigma \lambda_{i}=1$ and

$$
\begin{aligned}
& \mid\left(\Phi_{1},\left[\pi\left(A_{1}\right) \operatorname{P\pi }\left(A_{2}\right)-\pi\left(A_{2}\right) \operatorname{P\pi }\left(A_{1}\right)\right]_{2}\right) \\
& -\left(\Phi_{1},\left[\sum_{j} \lambda_{j}^{\prime} \pi\left(\tau_{g}, A_{j}^{\prime}\right) \pi\left(A_{2}\right)\right] \Phi_{2}\right) \mid<\varepsilon
\end{aligned}
$$

where $A^{\prime}{ }_{1}=\sum_{i} \lambda_{i}{ }^{T_{g}} g_{i} A_{1}$ and the $\lambda_{j}^{\prime} ; g_{j}^{\prime} \in G$ are arbitrary subject to $\Sigma \lambda_{j}^{\prime}=1$.
[This follows from (i) with $\psi_{1}=\pi\left(A_{1}^{*}\right) \Phi_{1}, \psi_{2}=\pi\left(A_{1}\right){\Phi_{2}}_{2}$].
(iii) (a) $\Leftrightarrow(b)$
[Notice that, by polarization, (a) is equivalent to
$"\left(\Phi,\left[\pi\left(A_{1}\right) \operatorname{P\pi }\left(A_{2}\right)-\pi\left(A_{2}\right) P \pi\left(A_{1}\right)\right] \Phi\right)=0$ for all $\Phi \in P d "$. Putting $\lambda_{1}^{\prime}=1, g_{1}^{\prime}=1$ and $\Phi_{1}=\Phi_{2}=$ in (ii) yields the implication $(a) \Rightarrow(b)$. To prove $(b) \Rightarrow(a)$ we use again (ii) : if (b) holds we may choose $\lambda^{\prime}{ }_{j}, g^{\prime}{ }_{j}$ so that

$$
\left|\left(\Phi,\left[\sum_{j} \lambda_{j}^{\prime} \pi\left(\tau_{g_{j}^{\prime}} A_{1}^{\prime}\right), \pi\left(A_{2}\right)\right] \Phi\right)\right|<\varepsilon
$$

and (a) follows 7.
3.2. Corollary. If the conditions of Theorem 3.1 are satisfied with respect to a closed subgroup H of G, they are satisfied with respect to G.
[This is immediately verified for (b)].
3.3. Corollary. The conditions of Theorem 3.1 are implied by the following
(c) Let $A_{1}, A_{2} \in M$ and $\Phi \in P H$ then

$$
\begin{equation*}
\inf _{g \in G}\left|\left(\Phi, \pi\left(\left[\tau_{g} A_{1}, A_{2}\right]\right) \Phi\right)\right|=0 \tag{3.7}
\end{equation*}
$$

[This is immediately verified for (b)].
3.4. Theorem ${ }^{*)}$ Consider the following conditions on the G-invariant state 0 .
(a) ρ is ergodic, ie. ρ is an extremal point of I.
(b) The set $\pi(\mathbb{O}) \cup U(G)$ is irreducible in y.
(c) P is one dimensional.

We have $(a) \approx(b) \in(c)$. If ρ satisfies the conditions of
Theorem 3.1, then (b), (b), and (c) are equivalent.

The existence of a self-adjoint operator $c \in[\pi(C) \cup U(G)]^{\prime}$,

[^3]such that $0 \leq C \leq 1$ and C is not a multiple of 1 , is equivalent by A. 7 to non (a) and non (b); thus (a) \Leftrightarrow (b). If (c) holds, (1.2) is verified and (c) \Rightarrow (b) by Theorem 1.2 (a). If the condithons of Theorem 3.1 are satisfied, (1.2) is verified and Theorem 1.1 gives $(b) \Rightarrow(c)$.
\[

$$
\begin{align*}
& \text { 3.5. Proposition, } I S \in O, \text { define } \\
& \operatorname{conv}\left(T_{G} A\right)=\left\{\Sigma_{i} \lambda_{E_{i}} A: \lambda_{i} \approx 0, \sum \lambda_{i}=1, g_{i} \in G\right\} \tag{3.8}
\end{align*}
$$
\]

Then

$$
\begin{equation*}
\inf _{C \in \operatorname{cony}\left(T_{G} A\right) \rho\left(C^{*} C\right)=\left(0, \pi\left(A^{*}\right) \operatorname{Pr}(A)(n)\right.} \tag{3.9}
\end{equation*}
$$

The proof resulcs from A. 6 and the inequality ${ }^{*}$

$$
\begin{aligned}
& \rho\left(C^{*} \mathrm{C}\right)=\|\pi(\mathrm{C}) \Omega\|^{2} \geq\|\mathrm{P} \pi(\mathrm{C}) \mathrm{A}\|^{2} \\
& =\|P \pi(A) \Omega\|^{2}=\left(\Omega, \Pi\left(A^{*}\right) P \pi(A) \cap\right)
\end{aligned}
$$

3.6. Theorem. Let the conditions of Theorem 3.1 be satisfied, so that the theory of Section 1 applies*).
*) This simple proof was communicated to the author by H. Araki.
**) It is interesting to notice that here $\$=[\pi(Q) \cup \cup(\prime)]$, we shall not make explicit use of thia fact.
(a) The measure μ defined by (1.5) is the unique maximal
measure on I (with respect to the order of Bishop- de Leeuw, see
A.5) With resultant 0 .
(b) If the condition S of Section 2 is satisfied (e.g. if
Q is separable), the measure is carried by ergodic states.
The proof results from the following facts
(i) supp $H \subset I$

By Corollary 1.4, μ is limit of measures $\mu_{\left[B_{j}\right]}$ carried by finitely many points $\sigma_{j} \in E$ where

$$
\sigma_{j}(A)=\left(\Omega, B_{j} \Omega\right)^{-1}\left(\Omega, \pi(A) B_{j} \Omega\right)
$$

and $B_{j} \in M ;$ using $\left(\Omega, \pi(A) B_{j} \Omega\right)=\left(\Omega, \pi(A) P B_{j} \Omega\right)$ we find $\left.\sigma_{i} \in I\right]$ (ii) (a) holds

We have to show that if $\tilde{\mu}$ is any probability measure on I with resultant ρ and 0 a convex continuous function on I, then $\ddot{\sim}(\varphi) \leq \mu(\varphi)$. In view of $A \cdot 4$ we may suppose that \tilde{H} has finite support: $\tilde{H}(\phi)=\Sigma \alpha_{i} \phi\left(p_{i}\right)$ where $\alpha_{i} \geq 0, \rho_{i} \in I, \Sigma \alpha_{i}=1, \Sigma \alpha_{i} \rho_{i}=\rho$, but then (see $A .7$) $\tilde{\mu}$ is of the form $\left.\mu_{\left\{B_{j}\right\}}\right\}$ of Corollary 1.4 with $B_{j} \in \pi(G) \cdot \cap U(G)^{\prime}$ and, since $U(G)^{\prime} \subset\{P\}^{\prime}$ by A. $6, B_{j} \in \mathcal{G}$. Corollary 1.4 gives then $\tilde{\mu}(\varphi) \leq \mu(\varphi)]$.
(iii) If $O \in I$, let P_{O} be the projection on the subspace of G-invariant vectors in ho. For any $A \in O$, the following quantity vanishes H-almost every where in o

$$
\left(\pi_{\sigma}(A) \Omega_{\sigma}, P_{\sigma} \pi_{\sigma}(A) \Omega_{\sigma}\right)-\left|\left(\Omega_{\sigma}, \pi(A) \Omega_{\sigma}\right)\right|^{2}
$$

[Since this quantity is a priori ≥ 0, it suffices to remark that

$$
\begin{aligned}
& \int \mu(\alpha \sigma)\left[\left(\pi_{\sigma}(A) \Omega, P_{\sigma} \pi_{\sigma}(A) n_{\sigma}\right)-\hat{A}^{*}(\sigma) \hat{A}(\sigma)\right] \\
= & \int \mu(d \sigma)\left[\inf C \in \operatorname{conv}\left(\tau_{G}^{A}\right) \sigma\left(C^{*} C\right)\right]-\left(\Omega, \alpha\left(\hat{A}^{*}\right) \alpha(\hat{A}) \Omega\right) \\
& \leq \inf _{C \in \operatorname{conv}\left(\tau_{G} A\right) D\left(C^{H} C\right) \quad\left(O, \pi\left(A A^{*}\right) P \pi(A) \Omega\right)=0}
\end{aligned}
$$

where we have used twice proposition 3.5].
(iv) (b) holds.
[In view of Proposition $B .3$ (a) the sequence $\Pi_{\sigma}\left(A_{i}\right) \Omega_{\sigma}$ is dense in h_{σ}
 the projection on Ω_{0}]
3.7. G-abelanalgebras.

If the conditions of Theorem 3.1 are satisfied, the integral representation of ρ given by μ will be called ergodic decomposition (this terminology is justified by Theorem 3.6 (b)). We shall say that IV is G-abelian if the conditions of Theorem 3.1 are satisfied for every G-invariant state ρ. The following characterization is readily deduced from Theorem 3.1 : W is G-abelian if and only if for all $\sigma \in I$ and $\varepsilon>0$ there exist $\lambda_{i} \geq 0, \xi_{i} \in G$ such that $\Sigma \lambda_{i}=1$ and

$$
\left|\sigma\left(\sum_{i} \lambda_{i} i_{g_{i}} A_{1}, A_{2}\right]\right|<\epsilon
$$

3.8. Theorem ${ }^{*}$) If (4 is G-abelian, then I is a simplex in the sense of chagres (see A. 5).

This follow itmodately frow Theorem 3.6(a) and the deftnitions.
3.9. Theorem ${ }^{*}$. Let U be G-abelian and let be contained

[^4]in $\pi(U)^{\prime \prime}$ for each invariant state ρ. Then two ergodic states
ρ_{1} and ρ_{2} cannot be quasi-equivalenc if they are distinct.
Let $\left(\gamma_{1}, \pi_{1}, \Omega_{1}\right),\left(\gamma_{2}, \pi_{2}, \Omega_{2}\right)$ be the canonical cyclic representations associated with ρ_{1} and ρ_{2}. The states ρ_{1}, ρ_{2} are called quasi-equivalent if there is an isomorphism δ of $\pi_{1}(N)$ " onto $\pi_{2}(M)^{\prime \prime}$ such that $\delta \pi_{1}(A)=\pi_{2}(A)$ when $A \in \mathcal{C}$. Let now ρ_{1}, ρ_{2} be ergodic, distinct, and take $\rho=\frac{1}{2} \rho_{1}+\frac{1}{2} \rho_{2} ;$ by $A .7$ and A. 6 there exist $B_{1}, B_{2} \in \mathfrak{g}$ with $0 \leq B_{1}, 0 \leq B_{2}, B_{1}+B_{2}=1$, and $\frac{1}{2} p_{i}(\cdot)=\left(\Omega, \pi(A) B_{i}(\cap)\right.$. Since the p_{i} are ergodic we have $B_{1} B_{2}=0$ so that B_{1} and B_{2} are mutually orthogonal projections, we may identify f_{i} with the range of B_{i} in f and write $\pi_{i}(\cdot) \Omega_{i}=\sqrt{2} . \pi(\cdot) B_{i} \Omega$. We have $B_{i} \in \Re \in \pi(B) \prime$, let thus $\pi(A) \rightarrow B_{1}$, then
$$
\left.\left.\pi(A) \cdot\right|_{g_{2}} \rightarrow B_{1}\right|_{g_{2}}=\left.0\right|_{g_{2}}
$$

But if ρ_{1} and ρ_{2} were quasi-equivalent we would have the contradiction

$$
\left.\pi(A)\right|_{g_{2}}=\left.\delta \pi(A)\right|_{g_{2}} \rightarrow \delta I_{g_{1}}=1 g_{2}
$$

3.10. Sources. For the case of abelian $Q($ decomposition of an invariant measure into ergodic measures) see for instance phelps [30] Section 10 . For the extension to non-abelian $O C$ see Ruelle $[34]$, and in a different spirit kastler and Robinson [23] where an "abstract" decomposition is discussed. The present treatment largely follows Lanford and Ruble [27] with some improvements in Theorem 3.6 and the addition of Theorem 3.9 ("Stammer's theorem" [39]). For further
results see $[25],[14],[40],[41],[33],[17]$. A review and applications to statistical mechanics are given in [36] Ch 6 and 7. In the examples of ergodic decomposition which occur in statistical mechanics, G is typically the Euclidean group or the translation group in 3 dimensions; a G-ergodic state is interpreted as "pure thermodynamic phase", and ergodic decomposition is the decomposition of a "mixture" into pure thermodynamic phases. In physical applications the algebra \mathcal{O} is not always separable, but the states of physical interest satisfy a form of condition s. For instance it may be that M_{α}, J_{α} are sub-C*-algebras of \mathcal{C}^{*} such that \mathcal{C}_{α} is isomorphic to the bounded ope rators and J_{a} to the compact operators of some Hilbert space \mathcal{H}_{α}; a state ρ which has a restriction of norm 1 to each J_{α} is then called locally normal (see [35], [20], [36] Ch 7).
4. Multiperiodic decomposition.

Let G be a locally compact abelian group noted multiplicatively. As in Section 3 we let T be a representation of G in aut U, we assume that the state ρ is G-invariant and we let U be the unitary representation of G in k satisfying (3.2) and (3.3). We assume that U is strongly continuous ${ }^{* \prime}$) and we let $E(\cdot)$ be the spectral measure on the charactergroup \hat{G} such that ${ }^{* * *}$)

$$
\begin{equation*}
U(g)=\int_{\hat{G}} X(g) E(d X) \tag{4.1}
\end{equation*}
$$

Let X be the subset of \hat{G} consisting of the points X such that the corresponding projection does not vanish; $E(\{X\}) \neq 0$. For simplicity we write $E(\{X\})=E[X]$. Then

$$
\begin{equation*}
\not x=\{X \in \hat{G}: E[X] \neq 0\} \tag{4.2}
\end{equation*}
$$

We define the projection

$$
\begin{equation*}
\mathrm{P}=\sum_{\mathrm{X} \in \hat{G}} \mathrm{E}[\mathrm{X}]=\sum_{X \in X} \mathrm{E}[\mathrm{X}] \tag{4.3}
\end{equation*}
$$

From (3.2) we obtain then

$$
\begin{equation*}
p \Omega=\Omega \tag{4.4}
\end{equation*}
$$

It is known ${ }^{\text {trift }}$ that the range $p h$ of P consists of the almost periodic vectors of \mathscr{y}, i.e. of the vectors ψ with a relatively compact orbit $U(G) \Psi$.
*) If for each $A \in Q$ and $\sigma \in E$ the function $g \rightarrow \sigma\left(\tau_{g} A\right)$ is continuous on G, then it can be shown that U is strongly continuous.

FH) The existence of $E(\cdot)$ is asserted by the S.N.A.G. theorem, see for instance Maurin [29] p. 218.
$*^{* *}$ See for instance $[21]$ Ch 187 .
4.1. Theorem. The following conditions are equivalent.
(a) $\quad P \pi(Q) P \quad \subset[P \pi(C) P]^{\prime}$
(b) Let $A_{1}, A_{2} \in Q$, and let $X_{1}, X_{2}, X_{3} \in \hat{G}$, then $E\left[X_{1}\right] \pi\left(A_{1}\right) E\left[X_{1} X_{3}\right] \pi\left(A_{2}\right) E\left[X_{2}\right]$
$=E\left[X_{1}\right] \pi\left(A_{2}\right) E\left[X_{3}^{-i} X_{2}\right] \pi\left(A_{1}\right) E\left[X_{2}\right]$
(c) Let $A_{1}, A_{2} \in O$, let $\Phi_{1}, \Phi_{2} \in p \not \subset$, and let $x \in \hat{G}$. Then, given $\varepsilon>0$, there exist $\lambda_{i} \geq 0, g_{i} \in G$ such that $\sum \lambda_{i}=1$ and

$$
\begin{equation*}
\left|\left(\Phi_{1},\left[\sum_{i} \lambda_{i} x\left(g_{i}\right)^{-1} \pi\left(\tau_{g_{i}} A_{1}\right), \pi\left(A_{2}\right)\right] \Phi_{2}\right)\right|<\epsilon \tag{4.7}
\end{equation*}
$$

The proof will result from the following facts;
(i) If S is a finite subset of $\hat{H}, X \in \hat{G}$ and $\varepsilon>0$ there exist $\lambda_{i} \geq 0, g_{i} \in G$ such that $\Sigma \lambda_{i}=1$ and

$$
\begin{equation*}
\left\|\sum_{i} \lambda_{i} X\left(g_{i}\right)^{-1} U\left(g_{i}\right) Y-E[X] \Psi\right\|<\varepsilon \tag{4.8}
\end{equation*}
$$

for all $\Psi \in S$.
[Notice that $E[X]$ is the projection on the space of invariant vectors for the representation $g \rightarrow X(g)^{-1} U(g)$ of c in h. It suffices then to use A.6].
(ii) If (4.8) holds and if $\lambda^{\prime} \geq 0, g_{j}^{\prime} \in G$ are such that $\sum \lambda_{j}^{\prime}=1$, then $\quad\left\|_{i, j} \lambda_{i} \lambda_{j}^{\prime} X\left(g_{i} \cdot g_{j}^{\prime}\right)^{-1}{ }^{j} U\left(g_{i} \cdot g_{j}^{\prime}\right) \Psi-E[X] \Psi\right\|<\epsilon$
[Because if (4.8) holds and $g \in G$, then

$$
\begin{aligned}
& \left\|\sum_{i} \lambda_{i} X\left(g_{i} \cdot g\right)^{-1} U\left(g_{i} \cdot g\right) \Psi-E[X] \Psi\right\| \\
= & \| X(g)^{-1} U(g)\left[\sum_{i} \lambda_{i} X\left(g_{i}\right)^{-1} U\left(g_{i}\right) \Psi-E[X] \Psi \|<\varepsilon\right]
\end{aligned}
$$

(iii) Let $A_{1}, A_{2} \in Q$ be such that $\left\|A_{1}\right\| \leq 1,\left\|A_{2}\right\| \leq 1$. Let $x_{1}, x_{2}, X_{3} \in \hat{G}$ and $\tilde{X}_{1}, x_{2} \in \hat{Z}$ be such that $\left\|\Phi_{1}\right\| \leq 1,\left\|\Phi_{2}\right\| \leq 1$ and $E\left[X_{1}\right] \Phi_{1}=\Phi_{1}, E\left[X_{2}\right] \Phi_{2}=\Phi_{2}$. Given $\varepsilon>0$, there exist $\lambda_{i} \geq 0$, $g_{i} \in G$ such that $E \lambda_{i}=1$ and

$$
\begin{aligned}
& \mid\left(\delta_{1},\left[\pi\left(A_{1}\right) E\left[X_{1} X_{3}\right] \pi\left(A_{2}\right)-\pi\left(A_{2}\right) E\left[X_{3}^{-1} X_{2}\right] \pi\left(A_{1}\right)\right] \Phi_{2}\right) \\
& -\left(\mathbb{W}_{1},\left[\sum_{j} \lambda_{j}^{\prime} X_{3}\left(g_{j}^{\prime}\right) \pi\left(\tau_{g_{j}^{\prime}} A_{1}^{\prime}\right), \pi\left(A_{2}\right)\right] \Phi_{2}\right) \mid<\varepsilon
\end{aligned}
$$

where $A_{i}^{\prime}=\sum_{i} \lambda_{i} X_{3}\left(g_{i}\right) T_{g_{i}} A_{1}$ and the $\lambda_{j}^{\prime} \geq 0, g_{j}^{\prime} \in G$ are arbitrary subject to $\sum \lambda_{j}=1$.
[In view of (i) and (ii) one can choose the λ_{i}, g_{i} such that

$$
\begin{gathered}
\sum_{j} \lambda_{j} \sum_{i} \lambda_{i} x_{1}\left(g_{i} g_{j}^{\prime}\right)^{-1} x_{3}\left(g_{i} g_{j}^{\prime}\right)^{-1} U\left(g_{i} g_{j}^{\prime}\right) \pi\left(A_{1}^{*}\right) \Phi_{1} \\
-E\left[x_{1} x_{3}\right] \pi\left(A_{i}^{*}\right) \Phi_{1} \|<\varepsilon / 2 \\
\sum_{j} \lambda_{j}^{\prime} \sum_{i} \lambda_{i} x_{3}\left(g_{i} g_{j}^{\prime}\right) x_{2}\left(g_{i} g_{j}^{\prime}\right)^{-1} \cup\left(g_{i} g_{j}^{\prime}\right) \pi\left(A_{1}\right) \Phi_{2} \\
\\
-E\left[x_{3}^{-1} x_{2}\right] \pi\left(A_{1}\right) \Phi_{2} \|<\varepsilon / 2
\end{gathered}
$$

This yields immediately the result 7 .
(iv) $(c) \Rightarrow(b) \Rightarrow(a)$
[(iii) yields the first implication, the second results from summation over $x_{3}, x_{1}, x_{2} \in \hat{G}$ in $\left.(4.6)\right]$.
(v) $\quad(a) \Rightarrow$ (b)
$\left[\right.$ Let $\Phi_{1} \in E\left[X_{1}\right] d, \Phi_{2} \in E\left[X_{2}\right] g,(a)$ gives
$\left(\Phi_{1}, \pi\left(T_{g} A_{1}\right) p \pi\left(A_{2}\right) \Phi_{2}\right)=\left(\Phi_{1}, \pi\left(A_{2}\right) P \pi\left(T_{g} A_{1}\right) \Phi_{2}\right)$.
Writing $P=\sum_{X} E\left[X_{1} X\right]=\sum_{X} E\left[X^{-1} X_{2}\right]$ yields then

$$
\begin{aligned}
& \sum_{\mathcal{G}} X(g)^{-1}\left(\Phi_{1}, \pi\left(A_{2}\right) E\left[X_{1} x\right] \pi\left(A_{2}\right) \Phi_{2}\right) \\
= & \sum_{X \in \hat{G}} X(g)^{-1}\left(\Phi_{1}, \pi\left(A_{2}\right) E\left[X^{-1} X_{2}\right] \pi\left(A_{1}\right) \Phi_{2}\right)
\end{aligned}
$$

and (b) follows].
(vi) Let $\Phi_{1} \in E\left[X_{1}\right] g, \Phi_{2} \in E\left[X_{2}\right] f$ and $\varepsilon>0$, (b) implies the existence of $\lambda_{i} \geq 0, g_{i} \in G$ such that $\Sigma \lambda_{i}=1$ and
$\left|\left(\Phi_{1},\left[\sum_{i, j} \quad \lambda_{i} \lambda_{j}^{\prime} X\left(g_{i} g_{j}^{\prime}\right)^{-1} \pi\left(\tau_{g_{i}} g_{j}^{\prime} A_{1}\right), \pi\left(A_{2}\right)\right] \Phi_{2}\right)\right|<\varepsilon$
where the $\lambda_{j}^{\prime} \geq 0, g_{j}^{\prime} \in G$ are arbitrary subject to $\Sigma \lambda_{j}^{\prime}=1$. [This follows directly from (iii)].
(vii) (b) \Rightarrow (c)
[It suffices to prove (c) for the case of finite sums $\Phi_{1}=\sum_{X} \Phi_{1}^{X}$, $\Phi_{2}=\sum_{X} \Phi_{2}^{X}$ where $\Phi_{1}^{X}, \Phi_{2}^{X} \in E[X]$ of , and this follows from (vi) $]$.
4.2. Corollary. If the conditions of Theorem 4.1 are satisfied with respect to a closed subgroup H of G, they are satisfied with respect to G.
[This is immediately verified for (c)].
4.3. Corollary. The conditions of Theorem 4.1 are implied
by the following
(d) Let A_{1}, A_{2} be self-adjoint elements of G and
$\Phi_{1}, \Phi_{2} \in \mathrm{P}$ 有, then

$$
\begin{equation*}
\inf _{g \in G}\left|\left(\Phi_{1}, \pi\left(\left[\tau_{g} A_{1}, A_{2}\right]\right) \Phi_{2}\right)\right|=0 \tag{4.9}
\end{equation*}
$$

[This is immediately verified for (c)].
4.4. Theorem") Let the conditions of Theorem 4.1 be satisfied,
then.
(a) The conditions of Theorem 3.1 are satisfied
(b) $x=x^{-1}$
(c) If P is ergodic, then $E[X]$ is one dimensional for
every $x \in \mathcal{X}$ and \mathcal{X} is a subgroup of \hat{G}.
From Theorem 4.1 (b) we obtain

$$
\begin{gather*}
{\left[E[X] \pi\left(A_{1}\right) E[X], E[X] \pi\left(A_{2}\right) E[X]\right]=0} \tag{4.10}\\
E[1] \pi\left(A_{1}\right) E[X] \pi\left(A_{2}\right) E[1]=E[1] \pi\left(A_{2}\right) E\left[X^{-1}\right] \pi\left(A_{2}\right) E[1] \tag{4.11}\\
E\left[X_{1}\right] \pi\left(A_{1}\right) E\left[X_{1} X_{2}\right] \pi\left(A_{2}\right) E\left[X_{2}\right]=E\left[X_{1}\right] \pi\left(A_{2}\right) E[1] \pi\left(A_{1}\right) E\left[X_{2}\right] \tag{4.12}\\
\text { Inserting } X=1 \text { into (4.10) we obtain (3.5), proving (a). }
\end{gather*}
$$

Part (b) of the theorem results from (4.11). By Theorem 3.4, the ergodicity of ρ implies the irreducibility of $\pi(\mathcal{O}) \cup U(G)$, therefore the algebra

$$
E[X][E[X] \pi(H) E[X]]^{\prime \prime}
$$

restricted to the range of $E[X]$ is irreducible and since it is abelian by (4.10), $E[X]$ is one dimensional. In particular $E[1]$ is one dimensional and (4.12) gives $X, X \in X$, which together with (b) proves that X is a group.

4.5. Eguicontinuous actions.

If the conditions of Theorem 4.1 are satisfied, equations (4.4), (4.5) hold and therefore the theory of Section 1 applies. In partialar
there is a natural integral representation of ρ given by a probability measure μ on E (see Theorem 1.3 . We call this integral representation the multiperiodic decomposition of ρ. We shall show (Theorem 4.7) that if ρ is ergodic and $p f$ separable, the action of G on the measure μ is equivalent to a certain equicontinuous action of G on the Haar measure m of a compact abelian group M. This will justify the phrase "multiperiodic decomposition".

Let K be a compact space and T a continuous action of G on K, i.e., $T: G X K \rightarrow K$ is continuous and is a representation of G by homeomorphisms of K. We say that the action τ is equicontinuous if, for each $\varphi \in \mathscr{C}(\mathrm{K})$, the set $\left\{\varphi\right.$ o $\left.T_{g}=g \in G\right\}$ is relativeIy compact in $\varphi(\mathrm{K})$.

Let \hat{G}^{*} be obtained by replacing the original topology by the discrete topology on \hat{G}. The character group \bar{G} of \hat{G}^{*} is the compact group associated with G. Define a group isomorphism $\gamma: G \rightarrow \bar{G}$ such that $(y g)(X)=X(g)$ for $a l l X \in \hat{G}$, then Y is continuous and has dense image. For every continuous group homomorphism $\eta: G \rightarrow H$ where H is compact, there is a continuous homomorphism $\bar{\eta}: \bar{G} \rightarrow H$ such that $\eta=\bar{\eta} \gamma^{\text {F }}$.
4.6. Theorem. Let T be an equicontinuous action of G on the compact space K.
*)
For a proof see [9] 16.1 .
(a) There exiscs a continuous action T of \bar{G} on K such that $\bar{T}_{Y g}=T_{g}$ 王 $g \in G$.
(b) If m is aprobability measure on K, invariant and ergodic with respect to the action T of G, then the support if of m in K is a homogeneous space of \bar{G} (for the aciron T) and m restricted to M is the Haar measure of this homogenedus space.
(c) Conversely, let \bar{T} be a continuous action of \vec{G} on a
homogeneous space M and let m be the Haar measure on M. Then the
 With respect to it.

We prove successively the three parts of the theorem
(a) The equicontinuity of the action of G implies that the closure of the set of operators $T_{g}: \varphi \rightarrow \varphi \operatorname{or}_{g}$ in $\varphi(K)$, with respect to the strong operator topology, is a compact group H *) Therefore there exists a continuous homomorphism $\bar{T}: \bar{G} \rightarrow H$ such that for all $g \in G$ we have $T_{g}=\bar{T}_{Y g}$. By continuity H consists of automorphisms of $\mathscr{C}(\mathrm{K})$; there is thus a homeomorphism $\overline{\mathrm{T}} \mathrm{g}$ of K such that

$$
\bar{T}_{\mathrm{g}} \varphi=\varphi \cdot \frac{T_{\mathrm{g}}}{}
$$

The mapping $\vec{T}: \bar{G} \times K \rightarrow K$ is continuous and $\bar{T}_{Y g}=\tau_{g}$ if $g \in G$
(b) If M were not a homogeneous space of \bar{G}, we could find $x, y \in M$ such that $x \notin \widetilde{T}_{G} y$ (where $\underset{\sim}{T} y$ is compact). There would then
*)
See for instance Jacobs [22] p 112.
exist a compact neighbourhood L of x such that $L \cap \bar{T}_{\bar{G}} y=\emptyset$ or equivalently $y \notin \bar{T}_{\bar{G}}^{-L}$: Then $\bar{T}_{G} \mathrm{~L}$ would b a compact set with x in its interior and $y \notin \vec{T}_{\vec{G}} L$. Because of the ergodicity of m with respect to the action \bar{T} of \bar{G}, n would be carried by $\bar{T}_{\bar{G}} L$ or the complement of this set in M, in contradiction with the fact that M is the support of m.

$$
\begin{aligned}
& \text { If } x \in M \text {, the Haar measure } m_{x} \text { on } M \text { is defined by } \\
& m_{X}(\varphi)=\int_{\bar{G}} d \bar{g} \varphi\left(\bar{T}_{\bar{g}} x\right)
\end{aligned}
$$

The measure m_{x} is independent of the choice of x because of the transitivity of $\bar{T}_{\bar{G}}$ on M and the invariance of the Haar measure on $\overline{\mathbf{G}}$. Notice now that the invariance of m with respect to the action τ of G implies its invariance with respect to the action \bar{T} of \bar{G} : $m\left(\varphi \circ \tau_{g}\right)=m(\varphi)$ gives by continulty $m\left(\varphi \circ \bar{\tau}_{\bar{g}}\right)=m(\varphi)$. We have thus

$$
\begin{aligned}
m(\varphi) & =\int_{K} m(d x) \varphi(x)=\int_{\bar{G}} d \bar{g}\left[\int_{K} m(d x) \varphi\left(\bar{T}_{\tilde{g}} x\right)\right] \\
& =\int_{K} m(d x)\left[\int_{\bar{G}} d \bar{g} \varphi\left(\bar{\tau}_{\bar{g}} x\right)\right]=m_{x}(\varphi)
\end{aligned}
$$

and therefore $m=m_{x}$.
(c) If $\varphi \in \varphi(\mathrm{K}), \varphi \circ \bar{\tau}_{\bar{G}}$ is compact, hence $\varphi \circ \bar{\tau}_{\gamma G}$ is relatively compact, and $g \rightarrow T_{g}=\bar{\tau}_{Y g}$ is equicontinuous. Since there is a measure on M invariant under G (namely \mathfrak{m}), there exists also an ergodic measure on M, but such an ergodic measure is by (b) necessarily the Haar measure m, therefore m is exgodic.]
4.7. Theorem. Let the conditions of Theorem 4.1 be satisfied, Let O be ergodic and let if be separable.

Replacing the original topology of X (defined by (4.2)) by the discrete topology we obtain a group \mathscr{X}^{*}; we let M be the compact character group of X^{*} and m che normalized Haar measure on M. We define a continuous homomorphism $\delta: G \rightarrow M$ With dense image by $(\delta g)(x)=x(g)$ for all $x \in X \quad$ The action $(g, x) \rightarrow x . \delta g$ of G on M is equicontinuous and m is ergodic with respect to it.

There exists a mapping $f: M \rightarrow E$ with the following proparties.
(a) E transforms m into H in the sense that the mapping $\varphi(*) \rightarrow \varphi(5)$ is isometric from $L^{2}(E, \mu)$ onto $L^{2}(M, m)$.
(b) For all $A \in Q, g \in G$

$$
\begin{equation*}
f_{x .8 g}(A)=f_{x}\left(T_{g}^{-1} A\right) \tag{4.13}
\end{equation*}
$$

m-almost everywhere with respect to x.
If $A \in Q \quad, X \in X$ we define

$$
\begin{equation*}
A^{X}=\sum_{X^{\prime} \in X} E\left[X X^{\prime}\right] \pi(A) E\left[X^{\prime}\right] \tag{4.14}
\end{equation*}
$$

We let 2 be the C^{*}-algebra generated by the A^{X} and define a representation T of G into att 2 by

$$
\begin{equation*}
\tau_{g} Q=U(g) Q U(g)^{-1} \tag{4.15}
\end{equation*}
$$

We have in particular

$$
\begin{equation*}
T_{B} A^{X}=X(g) \cdot A^{X} \tag{4.16}
\end{equation*}
$$

The proof of the theorem will result from the following facts.
(i) 2 is abelian
$\left[0 \operatorname{sing}(4.6)\right.$ we have $\left[A_{1}^{X_{1}}, A_{2}^{X_{2}}\right]$

$$
\left.=\Sigma \sum_{X \in X}\left[E\left[X X_{1} X_{2}\right] \pi\left(A_{1}\right) E\left[X X_{2}\right] \pi\left(A_{2}\right) E[X]-E\left[X x_{1} X_{2}\right] \pi\left(A_{2}\right) E\left[X X_{1}\right] \pi\left(A_{1}\right) E[X]\right]=0\right] .
$$

(ii) Let M be the spectrum of Q, we denote by $Q \rightarrow[Q]$ the Cel'Sand isomorphism $Q \rightarrow \mathscr{C}(M)$. The action T of G on M defined by $[Q]\left(\tau_{g} x\right)=\left[T_{g}^{-1} Q\right](x)$ is equicontinuous.
[It follows from (4.16) that the mapping $g \longrightarrow \tau_{g} Q$ is continuous and the orbit $T_{g} Q$ relatively compact for the norm topology of $\left.Q\right]$.
(iii) The algebra $P\{$ (see Theorem 1.1 and Theorem 1.2 (b)) is equal to the weak closure 2^{-1} of 2 .
We have $P \pi(A) P=\sum_{X \in X} A^{X}$ in the sense of strong convergence, hence $P B C 2^{-}$. The restriction of $P G$ to $P A$ is abelian and has the cyclic vector Ω, hence it is maximal abelian and contains the restriction of 2 to P, y (which commutes with it); therefore $\mathrm{P}:>2$]. (iv) A measure m on M is defined by

$$
\begin{equation*}
m([0])=(\cap, Q n) \tag{4.17}
\end{equation*}
$$

m is ergodic and its support is M.
[If m were not ergodic there would exist a G-invariant vector ψ in the closure of 2Ω such that Ψ is not a multiple of Ω, in contradiction with the ergodicity of ρ (see Theorem 4.4(a) and Theorem 3.4). Let $0 \leq Q \in Q$, then $m(Q])=0 \Rightarrow Q^{1 / 2} p \pi(A) P \cap=0$ (because of (i) and (iii)) $\Rightarrow Q^{1 / 2} \pi(A) \Omega=0 \Rightarrow Q^{1 / 2}=0$; therefore supp $\left.m=M\right]$. (v) M can be identified to the character group of X^{*} so that w is the Har measure and $\tau_{g} x=x . \delta g$ (here X^{*} and δ are defined as
in the statement of the theorem).
[By (ii), (iv) and Theoren 4.6 (a), (b), τ extends to a continuous action \bar{T} of \bar{G} on M and one may identify M with \bar{G} / H where $H=\left\{\bar{g} \in \bar{G}: \bar{T}_{\bar{g}}=1\right\}$; in this identification m is the Har measure of G / H and $T \mathrm{~g}\langle\overline{\mathrm{~g}}\rangle=\langle\overline{\mathrm{g}} \cdot \mathrm{Yg}\rangle$ where $\langle\cdot\rangle: \overline{\mathrm{G}} \longrightarrow \overline{\mathrm{G}} / \mathrm{H}$ is the quotient mapping. From (4.16) it follows that $H=\{\bar{g} \in \vec{G}: X \in X \Rightarrow \bar{g}(x)=1\}$ and we may therefore identify \bar{G} / h to the character group of X^{*}. The image of $<\gamma \mathrm{g}\rangle$ in \mathcal{K}^{*} is δg so that $\left.\tau_{g} x=x . \delta g\right]$. (vi) The space $\ell(M)$ is separable
[Because the separability of $P G$ implies that the character group \mathscr{X}^{*} of M is countable].
(vii) The Gel'fand isomorphism $\rightarrow \mathscr{C}(\mathrm{k})$ extends uniquely to a morphism of C^{*}-algebras $\quad \mathcal{L}^{-} \rightarrow L^{\infty}(M, m)$, again denoted by $[\cdot]$, such that

$$
\begin{equation*}
\mathfrak{m}([R])=(\Omega, R \Omega) \tag{4.18}
\end{equation*}
$$

This morphism is an isomorphism onto.
[This results from A. 3 applied to the restriction of 2 to $p g$]. (viii) There is a mapping $f_{4}: M \rightarrow E$ such that for all $A \in \mathcal{O}, x \rightarrow f_{x}(A)$ is messurable and for all $\psi \in L^{1}(M, w)$

$$
\begin{equation*}
\int m(d x) \psi(x)[P \pi(A) P](x)=\int m(d x) U(x) f_{x}(A) \tag{4.19}
\end{equation*}
$$

We have m-almost everywhere

$$
\begin{equation*}
[\mathrm{Pa}(\hat{A})](\cdot)=\left[P \Pi(A) P^{\prime}\right](\cdot)=f_{0}(A)=\hat{A}(E) \tag{4.20}
\end{equation*}
$$

[The function E. defined by A. 8 satisfies (4.19); since $\sup \left\|f_{x}\right\|=1$ and $f_{\text {. (}}(1)=1$ malmost everywhere we may assume that f, maps M into

E ; (4.20) follows from (4.19) and Theorem 1.27.
(ix) Property (a) of the theorem holds.

SSince polynomials in the \hat{A} are dense in $\mathscr{C}(M)$ and since $\varphi \rightarrow[\operatorname{Pa}(\varphi)]$ is a morphism $\quad \ell_{(B)} \rightarrow L^{\infty}(M, m)$ (by Theorem1.2, (iii) and $(v i i)),(4.20)$ gives $[P(\omega)](*)=\varphi(f$,$) malmost everywhere if$ $\varphi \in \mathcal{L}(E)$. Therefore

$$
\mu(\varphi)=(\Omega, a(\rho) \cap)=\int m(d x)[p \rho(\varphi)](x)=\int m(d x) \varphi\left(f_{x}\right)
$$

Therefore the mapping $\varphi \rightarrow \varphi(f$,$) is isometric L^{2}(E, \mu) \rightarrow L^{2}(M, m)$. The image of $\varphi(M)$ in 2^{-}by $\varphi \rightarrow p$ a (φ) is strongly dense (Theorem 1.2 and (iii)). Since the morphism $[\cdot]: 2^{-} \rightarrow L^{\infty}(\mathrm{M}, \mathrm{m})$ is onto by (vii) and since the norm of $[R]$ in $L^{2}(M, m)$ is $\|[R]\|_{2}=\| R$ $\cap \|$ by (4.18), we find that the inage of $\varphi(M)$ by $\varphi \rightarrow[P \alpha(\varphi)]$ is dense in $L^{2}(M, m)$. Therefore the isometry $L^{2}(E, \mu) \rightarrow L^{2}(M ; m)$ is onto $]$.
(x) Property (b) of the theorem holds
[In view of (4.20) we have m-almost everywhere in x

$$
\begin{aligned}
& f_{x . \delta g}(A)=[P \pi(A) P](x \cdot \delta g)=[P \pi(A) P]\left(\tau_{g} x\right) \\
& \left.=\left[U\left(g^{-1}\right) P H(A) P U(g)\right](x)=\left[P \Pi\left(\tau_{g}^{-1} A\right) P\right](x)=f_{x}\left(\tau_{g}^{-1} A\right) \quad\right]
\end{aligned}
$$

4.8. Remarks on Theorem 4.7.
(a) Define unitaxy representations V and W of G in $L^{2}(E, \mu)$ and $L^{2}(E, m)$ respectively by

$$
\begin{aligned}
& V(g) \varphi(\sigma)=\varphi\left(\tau_{g}^{-1} \sigma\right) \\
& W(g) \psi(x)=\psi\left(x \cdot(\delta g)^{-1}\right)
\end{aligned}
$$

Define further the mapping $T: L^{2}(E, \mu) \rightarrow L^{2}(M, m)$ by

$$
T \varphi(x)=\varphi\left(f_{x}\right)
$$

Part (a) of Theorem 4.6 expresses that T is an isometry of $L^{2}(E, \mu)$ onto $L^{2}(M, m)$ and part (b) that

$$
T V(g)=W(g) T
$$

(b) Let the conditions of Theorem 4.1 be satisfied and ρ be ergodic. Let \tilde{X} be any subgroup of \mathcal{X} and define

$$
\underset{P}{\tilde{P}}=\sum_{X \in \mathscr{X}} \mathbb{E}(\{X\})
$$

Then (4.6) gives

$$
\tilde{p} \pi(\alpha) \widetilde{\mathrm{P}} \in[\tilde{\mathrm{P}} \pi(\alpha) \tilde{\mathrm{P}}]^{\prime}
$$

Furthermore Theorem 4.7 remains true if \mathcal{X} and P are replaced every m where by $\widetilde{\mathscr{X}}$ and \tilde{p}.
(c) Suppose that X is a discrete subgroup of \hat{G} and define

$$
H=\{g \in G: X \in X \Rightarrow X(g)=I\}
$$

then H is a closed subgroup of $G, G / H$ is compact, and $P \delta$ consists exactly of the vectors invariant under H . The multiperiodic decomposition is in that case an ergodic decomposition with respect to H and it will follow from 6.4 that μ is carried by H-ergodic states.
4.9. Sources. Much interest has been paid to dynamical systems with discrete spectrum and to the discrete part of the spectrum of denamical systems (see for instance Arnold and Ave [3] 9.13, Appendix 7, and references quoted there). A version of Theorem 4.4 with non comma tafive C was proved by Kastler and Robinson [23], see also [15]. A first attempt at understanding the decomposition studied here was made by

Doplicher, Gallavotti and Ruelle [12] .

If the ideas expressed by Landau and Lifshitz about the nature of turbulence in hydrodynamics ([26] §27) axe correct, the multiperiodic decomposition may be useful in the description of a turbulent state. Other applications exist in statistical mechanics (see [30). The interesting situations are those for which \mathfrak{X} is not a discrete subgroup of \hat{G}, this corresponds for physical systems to the existence of periods with irrational ratios.
5. Quasi-local structure and decomposition at infinity.

When a family $\left(U_{n}\right)$ of sub- C^{+1}-algebras of $(Q$ is given, we may say that a quasi-local structure is defined on O. The following theorem is then often useful.
5.1. Theorem. bet \mathcal{X} be a directed ${ }^{*)}$ ordered set and let $\left(B_{\wedge}\right)_{\wedge \in \mathcal{L}}$ be a decreasing family of won Newman algebras in h. Define $\mathscr{A}=\cap \wedge \in \mathcal{L}^{M_{A}}$ and assume $\mathcal{A} \in T(O)$ '. The following conditions are equivalent.
(a) © consists of the multiples of 1 .
(b) Given $A \in \mathcal{C}$ there exists $A \in \mathscr{L}$ such that
$B \in A_{A} \Rightarrow|(\cap, \Pi(A) B \cap)-\rho(A)(B, B \quad \cap)|<\|B\|$
(c) Given $\in>0$ and $A \in \mathcal{O}$ there exists $\wedge \in \mathscr{L}$ such
that
$B \in B_{A} \Rightarrow|(\Omega, \pi(A) B \Omega)-\rho(A)(\Omega, B \Omega)| \leq \varepsilon\|B\|$
Using the replacement $A \rightarrow A / E$ one verifies $(b) \Leftrightarrow(c)$.
The proof of $(a) \Leftrightarrow(b)$ is obtained by observing the equivalence of the following conditions [To obtain (iv) \Rightarrow (iii) use the compacity of the set of operators of norm ≤ 1 in the weak operator topology].
(i): non (a)
(ii): there exist $A_{2}, A_{2} \in O$ and $B \in M$ such that $\left(\Omega, \pi\left(A_{1}\right) B \pi\left(A_{2}\right) \Omega\right) \neq\left(\Omega, \pi\left(A_{1} A_{2}\right) \Omega\right)(\Omega, B \Omega)$
(iii): there exist $A \in Q$ and $B \in B$ such that
$\|B\| \leq 1$ and $|(\Omega, \pi(A) B \cap)-(\Omega, \pi(A) O)(\Omega, B \cap)| \geq 1$
*) \mathscr{L} is directed if, given $\Lambda_{1}, \Lambda_{2} \in \mathscr{Z}$ there exists $\Lambda \in \mathscr{L}$ such that $\hat{A}_{1}=\lambda_{2} \leq \Lambda$.
(iv): there exists $A \in O$ and for every \wedge there exists $B_{\wedge} \in M_{\wedge}$ such that

$$
\left\|B_{\Lambda}\right\| \leq 1 \text { and }\left|\left(\Omega, \pi(A) B_{\Lambda} \Omega\right)-(\Omega, \pi(A) \Omega)\left(\Omega, B_{\Lambda} \Omega\right)\right| \geq 1
$$

(v) : non (b).

5.2. Quasi -local structure:

We shall now study an example where algebras ${ }^{A} \wedge$ are construeted from a quasi-local structure.

Let S be an ordered set where a relation $\wedge \perp M$ may hold between pairs of elements, and let $\left(K_{\wedge}\right) \wedge \in \mathcal{S}$ be a family of sub-c^{*}-algebras of \mathscr{O}. We assume that the following conditions are satisfled.

QL 1. If $\Lambda_{1} \leq \lambda_{2}$ and $\lambda_{2}+M$, then $\Lambda_{1}+M$
QL 2. The set $\&$ is directed and if $A \perp M_{1}, \wedge \perp M_{2}$, there exists $M \in E$ such that $M_{1}, M_{2} \leq M$ and $\wedge \perp M$.
QL 3. If $A \perp M$, then $\left[U_{A}, \hat{\mu}_{\mathrm{N}}\right]=0$
QL 4. $U_{A} \in \mathbb{Q _ { A }}$ is dense in O.
We define

$$
\begin{equation*}
a_{\Lambda}^{\perp}=U_{M: \wedge \perp M} O_{M} \tag{5.1}
\end{equation*}
$$

By QL 2, Q_{\wedge}^{\perp} iss a self -adjoint algebra and QL 1 gives

$$
\begin{equation*}
\left(\Lambda_{1} \leq \Lambda_{2}\right) \Rightarrow\left(u_{\Lambda_{1}}^{\perp} \supset u_{\Lambda_{2}}^{\perp}\right) \tag{5.2}
\end{equation*}
$$

Define also

$$
\begin{equation*}
\mathscr{B}_{\Lambda}=\pi\left(Q_{\Lambda}^{\perp}\right)^{\prime \prime} \quad B=\cap_{\Lambda \in \mathcal{L}^{M}} \tag{5.3}
\end{equation*}
$$

Clearly $A_{0} \subset \pi(U)^{\prime \prime}$. On the other hand $Q L 3$ and (5.1) give $\left[Q_{\Lambda}^{\perp}, Q_{\Lambda}\right]=0$.
hence $\left[M, \pi\left(C_{\Lambda}\right)\right]=0$ and, by $Q L 4, M \in \pi(M)$. We shall call B the algebra at infinity; we have just shown that the algebra at infinity is contained in the center of $T(U)^{19}$. In particular the theory of Section 1 applies. The corresponding decomposition of ρ given by μ (see Theorem 1.3) will be called gecomposition at infinity; under suicable separability assumptions u is carried by states with a trivial algebra at infinity (see Theorem 5.4 below). From (5.2) we get

$$
\left(\Lambda_{1} \leq \Lambda_{2}\right) \Rightarrow\left(\mathfrak{B}_{\Lambda_{1}} \supset \mathfrak{B}_{\Lambda_{2}}\right)
$$

Therefore theorem 5.1 holds, it characterizes the cases where the algebra at infinity is trivial, we reformulate this theorem as follows.
5.3. Theorem* ${ }^{*}$ We 1et $\left(O_{\Lambda}\right)_{\wedge} \in \mathcal{L}$ satisfy QL $1-Q L 4$, and use the notation (5.1), (5.3). The following conditions are equivalent.
(a) The algebra at infinity A consists of the multiples of 1.
(b) Given $\varepsilon>0$ and $A \in O$ there exists $A \in \mathcal{L}$ such that if $A^{\prime} \in \mathcal{O}_{A}^{i}$, then

$$
\left|\rho\left(A A^{\prime}\right)-\rho(A) \rho\left(A^{\prime}\right)\right| \leq \varepsilon\left\|A^{\prime}\right\|
$$

Let D_{Λ} be the weak closure of $\pi\left(Y_{\wedge}^{\alpha}\right)$ and P_{\wedge} be the largest projector in D_{Λ}. Every $B \in B_{\Lambda}$ is of the form $B=B_{1}+\lambda\left(I-P_{\Lambda}\right)$ with $B_{1} \in \mathcal{D}_{A},\left\|B_{1}\right\| \leq\|B\|,|\lambda| \leq\|B\|$; therefore $B=\lambda 1+B^{\prime}$ where $B^{\prime}=B_{1}-\lambda P_{A} \in{\underset{N}{A}}^{W_{1}},\left\|B^{\prime}\right\| \leq\left\|B_{1}\right\|+|\lambda| \leq 2\|B\|$. From Theorem 5.1, we see thus that (a) is equivalent to
\#) This theorem is of the Sinai-Powers type (see Sinai [38], Powers [31], Lanford and Ruelle [20]).
(b') Given $A \in U$ there exists $A \in \mathcal{S}$ such that

$$
B^{\prime} \in S_{A} \Rightarrow \mid\left(\cap, H(A) B^{\prime} \Omega-\rho(A)\left(\Omega, B^{\prime} \Omega \mid \leq \in\left\|B^{\prime}\right\|\right.\right.
$$

Using Kaplansky's density theorem ${ }^{\text {tr }}$) we may write equivalently

$$
A^{\prime} \in \alpha_{A}^{\perp} \Rightarrow\left|p\left(A A^{\prime}\right)-\rho(A) \rho\left(A^{\prime}\right)\right| \leq \varepsilon\|m(A)\|
$$

This in turn is equivalent to (b) because if $A^{\prime} \in \mathcal{O}_{A}^{+}$there exists $A^{\prime \prime} \in\left(X_{A}^{\perp}\right.$ such chat $\pi\left(A^{\prime}\right)=\pi\left(A^{\prime \prime}\right)$ and $\left\|A^{\prime \prime}\right\|$ is arbitrarily close to $\left\|\pi\left(A^{3}\right)\right\|^{n+5)}$ 。
5.4. Theorem. Let $(\mathbb{U}) \wedge \in \mathbb{B}$ be a countable family of sub-C *-algebras of \mathbb{C} satisfying the conditions QL 1 - QL 4 . If either of the conditions (a), (b) below is satisfied, the measure μ is carried by states σ with trivial algebra at infinity.
(a) O is separable.
(b) For each $A \in \&$ there is a separable closed two -sided
ideal J_{A} of U_{A} such that the restriction of ρ to J_{A} has norm 1.

In both cases, the condition S is satisfied and we may use the results of section 2. For each A let ($A_{A_{j}}$) be a dense sequence in U_{\wedge} (case (a)) ar in g_{\wedge} (case (b)). The vo Neunann algebra $\#_{\wedge}$ is generated by the $\pi\left(A_{M j}\right)$ with $A \perp M$ and contains the diagonalizable operators (Theorem 2.1); furthermore the vo Newman algebra generated by the $\pi_{O}\left(A_{M j}\right)$ is $B_{A O}=\pi_{O}\left(Q_{A}^{2}\right)^{\prime \prime}$. We may therefore write

[^5]Using Theorem 2.2 (b) this gives

$$
B=\cap \pi\left(Q_{\lambda}^{1}\right)^{n}=\int_{\mu(d \sigma)}^{\theta} \Pi_{\sigma} \pi_{\alpha}\left(X_{A}^{\perp}\right)^{n}
$$

Since $\{$ is the algebra of diagonalizable operators we find that $\cap T_{\sigma}\left(Q_{A}^{\prime}\right)^{\prime \prime}$ consists of the multples of the identity operator in X_{o} u-almost everywhere in σ.
5.5. Sources. The concept of quasi-local structure originates in local quantum field theory (see for instance Araki [1]) where \mathcal{S} consists of the bounded open regions in Minkowski space ordered by inclusion and $\wedge \perp M$ if A and M are space-like regions. Similar situations arise in statistzcal mechanics (see for instance [36]), the definition of K-systems (see Sinai [38]), or the study of canonical (anti-) commutation relations (see powers [31]). In statistical mechanics, Theorem 5.4 may be used to describe the decomposition of equilibrium states invariant under space translations into clustering equilibrium states (see Dobrushin [10], [11], Lanford and Ruelle [28]). When such a decomposition is non trivial, symmetry breakdown is said to occur, concrete and non trivial examples of symetry breakdown have been worked out by Dobrushin [12]. The case (b) in Theorem 5.4 is useful In dealing with states of physical interest, for instance locally normal states (see 3.9).
6. Further decompositions.

In Sections 3-5 we have discussed some typical integral representations of states on a G^{*}-algebra. We consider here briefly some further examples. Many more applications of the general theory of Sections 1 and 2 are of course possible, the choice of $\{$ depending on the extra structure present on K^{*}).
6.1. Canonical representation of states on an abelian C^{*} alSebra.

If X is abelian, we can apply the theory of section 1 with $\hat{A}=-(G)^{\prime \prime}$. In that case μ is cartied by the set of extremal potincs of E, i, e. the spectrum of C, and $\rho \rightarrow \mu$ is the adjoint of the Gel'fand isomorphisa.
6.2. Central decomposition.

If $M=\pi(K){ }^{\prime} \Pi \pi(K) "$ (i.e. A is the center of $\left.\pi(K) "\right)$
the theory of Section 1 applies. The integral representation of ρ given by H is called central decompostion. If I consists of the multiples of 1 (i.e. if $\pi()^{n}$ is a factor), ρ is called a factor state. Suppose that condition S of section 2 is satisfied, then, μ is carried by the factor states. It follows indeed from Theorem 2.2 that

$$
\begin{equation*}
A=\pi(Q)^{\prime} n \pi(U)=\int^{\prime \prime} \mu(\alpha \sigma)\left[\pi_{\sigma}(U)^{\prime} \cap \Pi_{\sigma}(U)^{n}\right] \tag{6.1}
\end{equation*}
$$

\#)
If a quasi-iocal structure is given, various decompositions, analogous to that of Section 5 , axise naturally. If a group of automorphisms is given, a decomposition of quasi-invariant states, similar to the ergodic decomposition of invariant states, has been discussed [13] .
and since $\%$ consists of the diagonalizable operators (Theorem 2.1), $T_{\sigma}(U)$ ' $\cap \pi_{o}(U) "$ consists of the multiples of $1 \mu-E$ most everywhere in σ.
6.3. Relation with the disintegration of measures.

Let K be a metrizable compact space, $\mathcal{U}_{1}=\mathscr{Q}(\mathbb{K})$ the separable $C^{\text {th }}$-algebra of complex continuous functions on K and $\varepsilon: C_{1} \rightarrow \pi(Q) \cdot \cap \pi\left(Q_{n}\right.$ a amorphism of Q_{1} into the center of $\pi(C) "$ such that $\delta 1=1$. A probability measure μ_{1} on K is defined by

$$
\begin{equation*}
\mu_{1}(\psi)=(\Omega, \delta(\psi) \Omega) \tag{6.2}
\end{equation*}
$$

If $g=\delta\left(X_{1}\right)^{\prime \prime}$, the theory of Section l applies and we shall show that there is a mapping $f . K \rightarrow E$ such that $f(A)$ is μ_{1} measroble for $A \in \mathcal{O}$, and

$$
\begin{equation*}
(\Omega, \alpha(\varphi) \delta(\psi) \rho)=\int_{K} \mu_{1}(d x) \psi(x) \varphi\left(f_{x}\right) \tag{6.3}
\end{equation*}
$$

for $\varphi \in \mathscr{C}(E), \psi \in \mathscr{L}(K)$. In particular

$$
\mu(\varphi)=\int_{k} \quad \mu_{1}(d x) \varphi\left(f_{x}\right)
$$

Let $B \in M$ and $\psi \in \mathscr{C}(x)$, then

$$
\begin{equation*}
|(\Omega, B \delta(\psi) \Omega)| \leq\|B\|(0,|\delta(\eta)| n) \leq\|B\| \mu_{1}(\| \mid) \tag{6.4}
\end{equation*}
$$

Therefore there is a unique $[B] \in I^{\infty}\left(K, \mu_{1}\right)$ such that

$$
\begin{equation*}
\left(b, B 6(b)(\eta)=\int u_{1}(d x) \forall(x)[B](x)\right. \tag{6.5}
\end{equation*}
$$

and one can see that $[\cdot]$ is a morphinism (using A.3).
If $\# \in \mathcal{Z}(X)$ let $F_{\psi} \in O^{\prime}$ be defined by

$$
\begin{equation*}
F_{\psi}(A)=(\Omega, \pi(A) \delta(\psi) \rho)=(\Omega, \alpha(\hat{A}) \delta(\psi) \Omega) \tag{6,6}
\end{equation*}
$$

Then (6.4) gives $F_{i} \| s \mu_{l}(\| \mid)$ and F. has a unique extension to a continuous mapping from $L^{1}\left(K, L_{1}\right)$ to the strong dual of Q; A. 8 gives the existence of $f,: K \rightarrow C^{\prime}$ such that f. A) is μ_{1}-measurabia:
c. $\| \leq 1$ and

$$
\begin{equation*}
F_{f}(A)=\int \mu_{1}(d x) \psi(x) \bar{F}_{x}(A) \tag{6.7}
\end{equation*}
$$

Since $\|f\| \leq$.1 and $\int \mu_{1}(d x) f_{X}(1)=1$ we have μ_{I}-almost everywhere f. EE ; by a change of definition on a set of measure zero we assume now $f_{x} \in E$ for all $x \in K$. Using (6.5) and (6.6) we may rewrite (6.7) as

$$
\int \mu_{1}(\mathrm{~d} x) \psi(x)[\alpha(\hat{A})](x)=\int \mu_{1}(d x) \psi(x) \hat{A}\left(f_{x}\right)
$$

so that we have μ_{1}-almost everywhere in x

$$
[\alpha(\hat{A})](x)=\hat{A}\left(E_{x}\right)
$$

Since α and $[\cdot]$ are morphisms and the polynomials are dense in $\varphi(\mathrm{B})$ we have, for all $\varphi \in \mathscr{Q}(\mathrm{B})$,

$$
[\alpha(\varphi)](x)=\varphi\left(f_{x}\right)
$$

H_{y}-almost everywhere in x, yielding (6.3).

The problem of disintegrating a measure with respect to a mapping (see for instance Bourbaki [5] §3, n° 1) corresponds to the special case $\mathscr{C}=\mathscr{\mathcal { U } (L)}$ where L is compact and metrizable.
6.4. Decomposition with respect to a normal subgroup.

Let G be a topological group and T. a representation of G in att $\left(4\right.$ such that the functions $g \rightarrow \sigma\left(r_{g} A\right)$ are continuous
(with $\sigma \in E$, $A G$). Let also H be a closed normal subgroup of 0 such that $G /$ is compect. We acoune that the state 0 is G-crgodic (see Theorem 3.4) and that iv is H-abelian (see 3.7). If u is the measure giving the exgodic decomposition of O (with respect to H), then the support of H is a honogencous space of G / H and it is the Haar measure of chis homogeneous space. TThe support of 4 consists of H-invariant states on which G / G acts continuougly, μ is ergodic for this action and the proof proceeds as for part (b) of Theorem 4.6].

Let $\sigma \in \operatorname{supp} \mu$, then

$$
\begin{equation*}
\rho(A)=\int_{G / H} d \vec{g} \quad \tau_{g} \sigma(A) \tag{6.8}
\end{equation*}
$$

where \bar{g} is the class of g in G / H. The support of μ consists of H-ergodic states. [By A. 9, we may ascume that o is an extremal point of the closed convex hall of supp H. Let $\sigma=\frac{1}{2} \sigma_{1}+\frac{1}{2} \sigma_{2}$ where σ_{1}, σ_{2} are H-invariant states. Detine probability measures H_{1}, H_{2} by

$$
i_{i}(\varphi)=\int_{\mathrm{G} / \mathrm{H}} \mathrm{~d} \overline{\mathrm{~g}} \mathrm{~T}_{\mathrm{g}} \sigma(\varphi)
$$

The ergodicity of ρ implies that it is the resultant of μ_{1} and μ_{2}; Theorem 3.6 (a) yields then $\mu_{2}, \mu_{2} \alpha \mu$ ands since $\mu=\frac{1}{2} \mu_{1}+\frac{1}{2} \mu_{2}$, $\hat{H}_{1}=\mu_{2}=\mu$. This shows that $\sigma_{1}, \sigma_{2} \in$ supp μ. But since σ is an extremal point of the closed convex hall of supp H we have $\left.\sigma_{1}=\sigma_{2}\right]$.
6.5. Sources. Central decomposition has been studied by sakai [3t in che case of sepatable 6, ses also 44$]$; for physical applications see Araki and Miyata [2], Haag, Kastler and Mochel [13]. The decomposition in 6.4 of a -ergodic state into H-ergodie states
improves a theorem of Ginibre (for which see [33]) by weakening the continuity conditions.

Appendix A.
A.1. Let $u t$ be a vo Newman algebra in $M, P \in f$ a projection. Let t_{P} be the restriction of $p_{A} P$ to p / f and (A_{P} the restriction of $P_{V} L^{\prime}$ to $p h$ "Then t_{p} and ($\left.t^{\prime}\right)_{p}$ are vo Neumanin algebras in $p \not g$ and $\left(f^{\prime}\right)_{p}=\left(t_{p}\right)$. [See Dixmier [8] Ch 1 , $\left.\$ 2, n^{\circ} \quad 1\right]$.
A.2. A vo Neman algebra ${ }^{\text {A }}$ is called maximal abelian if $\$=A^{\prime}$. If an abelian vo Newman algebra has a cyclic vector, then it is maximal abelian. [See Dimmer [8] Chi, $56, n^{\circ} 3$, Corollaire 2].

A.3. Extension of the Gel'fand isomorphism.

Let χ be an abelian C^{*}-algebra of operators on the Hilbert space id, $O \in \mathscr{Z}$ a cyclic vector for the comment X^{\prime} of \mathcal{X}. We denote by x the spectrum of X, by $\mathcal{H}(x)$ the space of complex convinous functions vanishing at infinity, by $E: Y(X) \rightarrow f$ the inverse of the Gel'fand isomorphism, and by m the measure on X such that

$$
m(f)=(\Omega, B(f) M)
$$

The mapping B extends by continuity to a unique mapping $B: L^{\infty}(X, m) \rightarrow B$ where $L^{\infty}(X, m)$ has the topology of weak dual of $L^{\prime}(X, m)$ and 4 is the weak closure of f with the weak operator topology ; B thus ex-
 $\mathrm{Ch} 1,87]$.
A.4. Let E be a convex compact set in a locally convex space and led (ψ_{j}) be a continuous partition of unity on E (Le. a finite
family of continuous functions $\psi \geq 0$ such that $\sum_{j} \psi_{j}=1$). If μ is a probability measure on $E, \operatorname{let} \alpha_{j}=\mu\left(\psi_{j}\right)$ and σ_{j} be the resultant of $\alpha_{j}^{-1} \psi_{j} \mu$. Derine

$$
\tilde{\mu}=\sum_{j} \alpha_{j} b_{o_{j}}
$$

where δ_{0} is the unit mass at σ. The measure μ can be approximated in the vague topology by measures of the form $\widetilde{\mu}$. [Take (ψ_{j}) subordinate to a sufficiently fine open covering of E , see Bourbaki [4] p. 217 Prop. 3].
A.5. Integral representations on convex compact sets.

Let E be a convex compact set in a locally convex space. An order relation γ is defined (Bishop and de Leeuw) on the probabiILty measures on E by $\mu_{1}\left\{\mu_{2}\right.$ if $\mu_{1}(\varphi) \leq \mu_{2}(\varphi)$ for all convex continuous function φ on E. If $\mu_{1} \leqslant \mu_{2}$ then μ_{1} and μ_{2} have the same resultant.
E is said to be a simplex (Choquet) if for every $\rho \in E$ there is a unique probability measure μ_{ρ} on E which has resultant ρ and is maximal for the order $\}$. [See Choquet et Meyer [$\gamma]$].

A.6. Theorem of Alagglu-Birkhoff.

Let η_{l} be a semi-group of contractions of a Hilbert space, and let P be the orthogonal projection on the space of vectors invariant uader every $U \in \mathcal{U}$; then P is contalned in the strong operator closure of the convex hull of U [See Eiesz and Nagy [32]
n° 146].
A.7. Let p be a state on $O C$ and f positive linear form on O such that $f \leq p$; then there exists $T \in \pi(O)$ ' such that

$$
f(\cdot)=(\Omega, \pi(\cdot) T \Omega)
$$

T is mique and $0 \leq T \leq 1$. [See Dixmier [9] 2.5.1]. Let a group G act by automorphisms on O and ρ, f be G-invariant (See Section 3) then the uniqueness of T yields $T \in U(G)$ '.
A.8. A variant of the theorem of Dunford-Pettis.

Let m be a measure on the compact set M such that $L(m)$ is separable. Let O be any Banach space and $O_{\text {, }}$ its strong dual. For any continuous linear mapping $F .: \mathcal{L}^{1}(m) \rightarrow \mathcal{O}^{\prime \prime}$ there is a fundtron $E: M \rightarrow M^{\prime}$ with $\sup _{X \in M}\left\|f_{X}\right\| \leq\|F\|$ such that for every $A \in \hat{U}_{V}, f,(A)$ is m-measurable and, for every $\psi \in L^{1}\left(m_{n}\right)$,

$$
\int m(d x) \psi(x) f_{x}\left(L_{x}\right)=F_{\psi}(A)
$$

[See Bourbaki [5] § 2, Exercise 19 ${ }^{\text {\#) }}$]
A.9. Theorem of Mailman.

Let M be a set in a locally convex space. If the closed convex hull of M is compact, its extremal points lie in the closure of M.[See Kothe $[24] \$ 25,1,(7)]$.
*) I am indebted to A. Grothendieck for explaining a solution of this exercise to me.

Appendix B. *)
B.1. Proposition let if be a closed two-sided ideal of the C^{*}-algebra $O C$ Every state ρ^{\prime} on f has a unique extension to a state ρ on O; if (H, π, O) is the canonical cyclic representation associated with $0, T(7)$ is strongly dense in $\pi(O)$.

This follows from Dixmier [9] Proposition 2.10.4.
B.2. Proposition. Let the C^{*}-algebra $(C$ hove an identity and U_{0} be a separable sub-C**gebra of Q.
(a) The set F_{0} of states on W which have a restriction of norm to M_{o} is a Bare subset of the set E of all states on θ.
(b) If a measure it on E has resultant $\rho \in \mathcal{F}_{0}$, then \therefore is carried by ${\underset{F}{0}}_{0}$

Tet $\left(A_{n}\right)$ be a dense sequence in the self-adjoint part of the unit ball of α_{o}; (a) results from

$$
\begin{gathered}
\mathcal{T}_{0}=\left\{0 \in E: \sup _{n} \sigma\left(A_{n}\right\}=1\right\}=n m>0 V_{m} \\
V_{n}=U_{n}\left\{\sigma \in E: \sigma\left(A_{n}\right)>1-\frac{1}{m}\right\}
\end{gathered}
$$

To prove (b) suppose that $\mu^{\prime \prime} \mu^{\prime}+\mu^{\prime \prime}$ where μ^{\prime} and $\mu^{\prime \prime}$ are carried respectively by V_{m} and its complement.

We have

$$
\begin{aligned}
o\left(A_{n}\right) & =\mu^{\prime}\left(\hat{A}_{n}\right)+\mu^{\prime \prime}\left(\hat{A}_{n}\right) \leq\left\|\mu^{\prime}\right\|+\left\|\mu^{\prime \prime}\right\|\left(1-\frac{1}{m}\right) \\
& =1-\frac{1}{m}\left\|\mu^{\prime \prime}\right\|
\end{aligned}
$$

Since $\sup _{\mathrm{n}} \operatorname{lo}_{\mathrm{n}}\left(\mathrm{A}_{\mathrm{n}}\right)=1$, we find $\left\|\mu^{\prime \prime}\right\|=0$
B. 3. Proposition. We use the notation of Section 2 and
assume that condition S is satisfied.
(a) If $0 \in \mathcal{F}$, then η_{0} is separable and the sequence
$\pi_{\sigma}\left(A_{i}\right) O_{\sigma}$ is dense in $f o$
(b) F is a Bate subset of E .
(c) μ is carried by 7 .

Part (a) results from Proposition B.1, parts (b) and (c)
result from Proposition 8.2.

Acknowledgements.

I am indebted to D. Raster for advanced command cation of his results on integral representations of states: I want also to thank H. Araki for critical reading of the manuscript, and J. Dixmiex for useful references.
[1] ARAKI; H. Zhuturug in die Axiomatsehe Quantenfeldtheorie. Lecture Notes, ETH, Zuxich (1961-62).
[27 ARAKI, H. and WMYATA, it. On the kMs Boundary Condition. Publ. R.T.M.S. Kyoto Univ. Ser. A, 4, 361-371.
-3] ARNOLD, V.I. et AVER, A. Problemes Ergodiques de la Mécanique Ciassitque. Gauther-Vinlars, Paris, 1967.
[4] Bourbakx, N . Elementa de Machématique. Intégration Chapitres $1,2,3$ et $4.2^{\text {nd }}$ ed. Hermann, Paris, 1965.
[5] BOURBAKI, N. Elements de Mathematique. Integration Chapitre 6 hermann, Paris, 1960.
© 6.7 P. Cartier, J.M.G. Fell et P.-A. Meyez. Comparaison des mesures portés par un ensemble convexe compact, Bull. Soc. Math. France. 92, 435-445 (1964).
[7] CHOQut, G. et MEYER, $P,-A$. Existence et Unicité des Representations Integrales dans les Convexes Compacts Quelconques. Ann. Tnst. Fourier. 13, 139-154 (1963).
DIXMIER, J. Les alebres d'operateurs dans l'espace hilbertien (Algebres de won Nemam). Gauther-Villars, Paris, 1957.
Q) DTXMER, J. ies $c^{*}-$ algebres et leurs representations. Gather-villaxs, Paris, 1964.
[10] Dobrusmin, Reto Gibbstan grobabillidy field for lattice
 pril. 2, 31-43 (1968).
[11] Dobroshim, k. ... The question of uniqueness of a Gibbsian probability field and probiems of phase transitions. Funkts. Aamiliz i ego Fril. 2, 44-57 (1968).
DOPLICHER, S; GALAVOTTI, G. and RUELLE, D. Almost Periodie stares on C^{*}-Aigebras (Unpublished Report (1966).
[13] DOMLTCHER, S., GUTCHARDET, A. and KASTLER, D. Désintégration des Etact quast-invarianta des C"-algebres. Unpublished report (1969).
[14] DOPLTCHER, S., KADISON, R. V., KASTTER, D. and ROALNSON, D.W. Asymptotically AD Lida Systems. Comm. Math. Phys. 6, 101-120(1967).
DOPHICHER, B. and KASTLER; D. Exgodic Statea in a Non Commutative Regodic Theory. Commun. Math. Phys. I, 1-20 (1968).
DORETCHER, S., KASTERR, D. and ROBTNGON, D.W. Covariance Algebras in Field Theory and Statistical Mechanics. Commun. Mah. Bhys. 3, 1-28 (1966).
DOPLICHER, S., KASTERR, D, and SWRMER, E Invariant States and Asymptotic Abetianness. Unpublished Reporc (1968).
" ${ }^{-1 *}$. G . EFFROS The Eorel space of von Neumann algebras on a separable HiLbert space. Pacific J. Mach. 15, 1153-1164(1965).
[9] HAAG, R., KASTLER, D. and MICHEL, Lo Central Decomposition of Ergodic Staces. Unpublished Report (1968).
HUGENHOLTK, N. W. amd WLERINGA, J.D. On Locally Normal States In Quantum Statistical Mechanics. Commun. Math. Phys. 11. 183. 197 (1969).
$[21]$ JACOBS, K, Neuexe Mechoden unc Ergebnisae dex Ergodentheorie Springer, Bexlin (1960).
-22] JACOBS, K. Ergodic Theot, Tecture Notes, AREhus Universitet, Aarhas (1963).
[25] KASTLER, D. and ${ }^{2}$ (OBLNSOM, D. W. Tmuariant States in Statistical Mechenics. Comman. Math. Phys. 3, 151-180 (1966).
[24] KOTHE, G. Topologhsche Lineats Fäume X. Springer, Berlin, 1960.
[25] KOVACS, I. and gitus. 3 . Frgodic mpe theoreme in von Newnan algebtas. Acta Sct. Math. 27, 233-246 (1966).
 Pergamon presa, oxforo, 1959.
(27) LANFORD, O. and NUELTE, D. Integral Representations of Invarinut States on ${ }^{\text {th }}$ Algebras. J. Math. Phys. g, 1460-1463 (1967).
 with short Range Coxrelathong in Statiatical Mechanica. Uneubleated meport (1968).

[29]	MAJRIN, K. Rigenfunction Expansions. Monografie Matematyczne. 48 RHN, Warsew, 1968.
30	PHELPS , R.R. Toctures on Choquet's Theorem. D. Van Nostrand, Princeton, 1966.
33	POWERS, R.T. Representations of Uniformly Hyperfinite Algebras and theit associated Vor Neunann Rings. Ann. Math. 55, 138-171(1967).
532°	RIESZ, F. et 52 . MAGY, B. Lecons d'Aalyse Fonctionnelle 3 -ra ed. Académie des Bciences de Hongrie, 1955.
[33]	ROBINSON, D.W. and RUETLE, D. Extremal Invariant States. Ann. Inst. Henri Poincare 6, 299-310 (1967).
54"	RUELIE, D. States of Physical Systems. Gommun. Math. Phys. 3, 133-150 (1966).
-35	RUELLE, D. States of Classical Statistical Mechanice. J. Nath. Phys. 8, 1657-1668 (1967).
	RUELLE, D. Statistical Mechanics. Rigorous Resuits. Benjamin, Ned York, 1969.
377	SAKAI, S. On the Central Decomposition for Positive Functionals on $C^{3 /}$-algebras. Trans. Amer. Math. Soc. 118, 406-419 (1965).
T387	SINAI, Ya, G. Probabilistic Ideas in Ergodic Theory. International Corgress of Mathematicians, Stockholm 1962, 540-559, and Amer. Math. Soc. Trans1. (2) 31, 62-81 (1963).
[39]	STORMER, E. Large Groups of Automorphisms of C^{*}-Algebras. Commun. Math. Phys. 5, 1-22 (1967).
407	STøRMER, E. Types of von Neumann Algebras Assocfated with Extremal Invariant States. Commun. Mach. Phys. 6, 194-204 (1967).
[41]	ST@RMER, E. Symecric States of Inflnite Tensor Products of C*-Algebras. J. Functional Analysis 3, 48-68 (1969).
[42]	WLLS, W. Desintegration centrale des formes positives sur les C ${ }^{*}$-alagèbreg. C.R. Acad, Sci. 267, 810~812 (1968).

[^0]: *) See Dixmier [8] Ch. 2, and [9] Appendix A.

[^1]: *) See Dixmier [8] Ch. 2, $\$ 2$.

[^2]: *)
 See Dixmier [8] Ch. $2, \$ 2$, Proposition 8

[^3]: *) See [16], [34], [27].

[^4]: 7) See hanford and Ruble [27].
 **) This theorem gas proved originally by St $\begin{aligned} & \text { tier [39] under the assump- }\end{aligned}$ Lion that $\alpha(\lambda)$ is contained in the strong operator closure of conn $\pi\left(T G^{A}\right)$ for each $A \in O$ and each invariant state ρ. Here we follow [36], Exercise 6.D.
[^5]: *) See Dimer [8] Ch 1,83 , Théoreme 3. **)

 See Dixmier [9] Proposition 1.8.2.

