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H.J.Borchers

Institut filr Theoretische Physik

Universitit Gdttingen, Germany

I, {nt‘r‘_o_d}lction

In 1956 Wightman [1] has formulated a set of axioms for the describtion
of relativistic quantum field theory. Since 1962 it was known EL‘J that these
axioms can be re-formulated in terms of positive linear functionals cn a cer-
tain % -algebra of test-functions. Since not very much was known about
general topological algebras, this setting did not attract many physicists, In
addition the so called linear program was quite successful during the first
years of axiomatic field theory and thus people neglected the non-linear as-
pects of this theory, Since nowadays the linear program does not lead very
often to new results it seems to be desirable to enter into a systematic study
of this non-linear aspects of this theory, Some people did work on this subject
e.g. W.Wyss [‘%] , G.Lassner and A, Uhlmann [ 4] . I entered this subject
last year. The connection between Wightman’s axioms and algebras of test-

functions and first results ! represented in the Haifa summer-school [5] .

These notes will deal with the algebra in question, In particular the

structure of the positive cone of this algebra,

1, i\;o_}ations

V.'e denote by x the space of numbers and by <9,; the space of strongly
v
decreasing Ce functions on R‘m with the usual topology and by ¥ 2 x

g 10
the finite direct sums of such spaces. We put }" =2 ® ‘%
= is0
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with the usual direct sum topology which implies that y is also the inductive
v
limit of the .ff

The direct product of functions

(f(xl. xn) . g(y1 cee ¥y ) 2 f(xl, xn) gix )

n+1‘ ess X

n+m
extends by linearity to a product on ff . Thus f becomes an algebra under

this product. Furthermore the mapping

(f")(x1 coex )= f(x ..x))

defines an involution on __(_/7 . With these operatbné _if has the structure of a
X -algebra. As topological vector-space _f_f is a (LF)-space, The involution
is a continuous operation, but the product (f,g)-» f - g is only separately con-
tinuous, This, however, is sufficient to conclude that the clgsure of an ideal

or of a sub-algebra is again an ideal or a sub-algebra,

» 1
By _fh we denote the real elements of j and by é" the positive cone

.’ —
AN IS (N
= on Vers u 6
By f/ we denote eemugs!m’the dual-gpace of f
!
¥ - T S
- posikive
and by y the set of continuous linearfunctionals on f i.e,:

T g TH) 20, v e

Denote by O( the translation automorphism of & definedby o, 1 =1,
(c( f)(x;...x)=f(x; +a, ... x +a). o« o is a continuous ¥ -automor-
phism of y Define the spectral ideal Sp to be the smallest closed left-ideal

containing all elements of the form

Jgeay Ly £ da
f e Y , gla) € f; with (7 g)(p) = O for p in the foreward light-cone
(‘T“denotes the Fourier operator). Furthermore define the locality ideal
Ic to be the smallest closed twosided ideal containing all elements of the

form

flx)) glx,) - glx,) flx,)

f, g ¢ x and supp f is spacelike separated to supp g.
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With these notations we have:

Proposition:

The family of Wightman theories is in one to one correspondence with
continuous linear functionals W on ,f with the properties
L)W (I )=0 (locality)
/3 ) W (Sp) =0 (spectral condition)
i
Y )XqW =W (translational invariance)
(&4
)W & &7 (positivity)

For the proof see [2] or [5] .

This result suggests that a detailed study of the algebra & might give

us some ingight into the structure of Wightman field theorwies,
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IT1I. Algebraic norms on SF

The topology on é{ is given by a family of norms which are
not adarted to the algebraic structure ofé? « Therefore we
will look for continuocus norms on éf which are compaptible
with the algebraic structure oféf. We define:

III. 1. Definition:

A semézorﬁﬁén é( is called an algebraic semiﬁorm if it fulfills
tne relation

p(f+g)ép (£) p(g)
for all f, ge¢¥

—

It 1s the aim of this section to exhibit a family of
continuous algebraic norms and to show that we can find enough

cf them in a sense we will define later.

Recall that the topology on 9? is given by tne norms P !

(f(x Xe) >S4 Way l" (4416:1)" Dk f(n -‘vxf)l
X kil am

We define now for every c¢> 0 a norm on ﬁf as follows:

ITI. 2. Lefinition:

For every f € é?

£2 {fg, £ypeenntpee]

and every c¢ ) 0 we define .
] . y
?h:mnc ( r) ; LZ ¢ P“.M({‘)

III. 3. Lemma:

The function an c: I - m defines a continuous algebraic

[} 1

norm on z
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Proof:

)
1) Since FL are norms on 4, follows
M

vpn‘m.c (f*lﬁ) : ZciP,.,m ('r.‘*kg,)
¢ T {pnlfi) 40 PR L60]

<P A P ()

h,m,C

This shows T%.ﬁc is a seminorm,
’ [)

Now pn,m,c(f) = 0 implies

Pn,m (f{)= 0 for all i and since
Pn qp are norms follows fi = 0 and hence f = 0, consequently
?
Pn,m,c 1s a norm.

2) In order to show that Pn m.c is continuous choosge the
3y

. . 1)
norm aih.’j,{md‘tc‘;& ‘ -
with n.>n, m;2 m, c; 2 ¢! then we get
i i i

Q‘ni‘st {miS|{ciS (f) 4 1

implies
it Pn'm(g) ¢ 1
and hence

c
Pn’m,c(f) L e

This implies P is continuous

3) It remains to show that P, is an algebraic norm. This

s C
is done by the following computation

1) Q i defiuecl b, the velabt;on

Quuagumy ey I+ S¥p gy (fi)

L3 B ¥
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w—

0

v %_4‘:‘—1..

&J(:i

Pl

.Z CL 2 o, o ".‘fﬁ.) P igé.’

¢
I C&Ph‘mlga) C Pumlqe)

) (EC{ P"«M(f“}) ( gctPnlm(ﬁe))

]

Tihvn‘c (fw 'T)”n“"c (3 )

It is clear that these algebraic norms do not define the
same topology on ;f than the family of norms (Q{nd{wuﬁﬁﬁj

but we get

III. 4, Lemma:

The two families of norms

ipn,m,c } and { Q{"i} '{mis o Cx& define on y'l;;’zl‘:@y: , the same

topology.

Proof: Since we know that the P

” n’m'c
remains to show that on Y the norms Q{n

are continuous norms it

ida{mifagesd 2

continuous with respect to the topology definded by the P's,

Assume Q{“il’{mil'{cil are given then exists b)> o with

i

b™ ¢ c,; for i = O0s1 444 N

1

Choose now n ¢ n; and m ¢ m: for i

> § 1

then we get for f¢ fN

P (£) € 1 implies

Nnymyb

i
b Pn,m, qg) ¢ 1 and consequently

c. P

i "ng, my(£)) £ 1 which implies

Q("i}'f“i}’fcii(f)é 1

=1 ... N
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This implies thattmlyN the Q norms are P continuous.,
From this follows

III. 5. Corollary:

4 - » £ ’
The set of P continuous linear forms on,y is dense in 5“.

—

Proof: Since the norms Pn I define n’.mf“ the topédogy
b ol ]

of _ff » Wwe find that every ngl which has only a finite number
of non vanishing components is continuous with respect to

the P's, But this set is dense in‘ép'éince'the topology in 5V’
is the topology of component=-wise convergence. -

Consider now éf furnished with one of the algebraic norms
Pn m.c then jf becomes a normed * ~algebra with identity.

 Raad |
Its completion is then a Banach % -algebra with identity.

Now to every Banach % -~algebra A with identity exists a
unique Ct-algebra B which is called the enveloping C*-algebra
(see J. Dixmier [6] § 2,7). If |8 denotes the norm of the
Banach % ~algebra A and [+, the norm of the enveloping
c* -algebra B then we have [lxil, £#X} for all x&« A,

This implies that l +l, is a continuous seminorm on A. This
seminorm [+l is a norm on A exactly if A has no radical.

2 . .
For elements X = X € A the C'-norm is given by the equation

Ix| = Sup {,wml} W e A“’ : W(4) 1,”

This implies that A and B have the same set of continuous

positive linear functionals.

We want now to introduce on 5” the corresponding family

——

of seminpoprg. jurs

III. 6., Definition If
Ln

", bhe Semiuorm olef-'ued b,}

Let P an algetralic norm on 9; than we denote bnyhe
i gidy —

enveloping C*-algebra of { gn Pn,m,c}'

From this definition follows directly
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III. 7. Lemma:
&
a) The seminorms P are continuous
n,m,cC

b) Every P*

Nam.C continuous positive linear functional
t andt

is P continuous and vice versa
n,m,c

c) Every hermitian P m,c -continuous linear functional is
'
the difference of two P} ~-continuous positive linear

ngm,cC
functionals.

Proof: a and b follows from the definition of the enveloping
C'-algebra. Statement c follows from the fact that on a C‘-algebra
ever??gbntinuous linear functional is the difference of two
continuous positive functionals (see J, Dimmier[6] Corollaire 2.6.8).

s . s * .
Next we want to investigate the seminorms Pn m.c D more
S

detail. To this end we need some preparatory results.

III. 8. Lemma

v

Let ¥V = Zo‘fﬂ' and [k;[{k i=1...N
120

Then we get for every f & ff

c n ok P (F)
(£ 1T o™ DY fone, o | €4 P (f
124 / )

Proof: Define a continuous x* -homomorphism /3 of ¥ into the

(N+1) X (N+1) matrices by means of the distribution

% ' -~y X E
E{.&'t&.gé x(fA ; (/Af ) Z td‘ t Xo K .‘ﬁ)fn

s b
W;‘:“‘ : n \
t;|;:0} t;'c*‘i=0"i>4‘l t"‘L‘A:-lg(A*‘X.']) (S)(‘- :
L
(gx- \f) = -DQ‘f(x«‘)

We get bie, Pl < ¢ pn‘&(f) \ fe\?,

From this followsl/ﬁ(fﬁ & P (f) and therefore for any state u

n,h.c



we get |
[ Wiptf] < n/hf"n ¢ Ph.k,cc€)

&

continuous and a: state follows ¢
n,K,c ‘

[doptfrl ¢ P‘u,&,c(f‘

Since this holds for every state w follows by polarisation:
¥
| < D
. A‘nJ{F)’ h L’ h.&,C(F)‘

Choosing now i = 1 and j = N+1 we get

v
v X IRV
(£) l‘u (4+b:)" D fw("*."‘xv)‘épr:»,&‘c(t“'

itz 4

Since m/i is P

With this result we get

III. 9. Theoren:

. i .
a) Every seminorm P 18 a norm
n,m,c

b) The two families of norms
3
{pn’mvc i and { Pn,m,c i

v oV
induce on y =ZG‘9 g the same topology.

120
Proof:
A
a) Assume f ééf and P (f) = 0. If £4 0 then exists a

ny,m,c
highest component fk* O. But we get from Lemma III.S8.

(%J& 'Dhim (f&) < b -p:.m'c(f) = 0

This contradicts the assumption f# 0

v
b) From Lemma III.8., we get for féy

P (vl ¢4 P (f)

hom, Q¢
and hence

?" m ¢ (-?‘V"") < L*D: “a flc(f'fh/)

¢ 4P, (f) + 4P, (f)

h, 2C hiwm, 4
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Iteratin this equation again we get !

?n,m,c (fl\i-&) ¢ i (;) "*“ Dn,m,lh;_ (f)

(-]
9

Summing over j we obtain for all £ s!/ N

n wm, € ({> < é? ?%1 " 2 ‘% ( f))

This proves statement b.

IV, Consequences of the algebraic semi-norms

The existence of a family of algebraic semi-norms which
induce on y7N the original topology has some important
consequences for the structure of the algebra f’.

IVv. 1. Theoren:

al 37'-0 les dense in 5’“
b) JZ /\'jp = {

.:n _ YH - [03

——

o ¥ -F - 7

Remark: J. Yngvason has given an example showing that not
every real linear functional °n1;f is the difference of two

) Qg—‘

c)

positive ones.

Proof:

d) follows from the fact that 5p contains the identity.
this implies for f = f the equation

1 2 2
£=3{@n? - a-n?,
¢) follows from d) by duality.

a) is a consequence of Theorem III,9. The real linear
functionals on j? with only a finite number of
components are continuous with respect to some C -Nnorm
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n.m.c and hence the difference of two positive functionals.
| Rt

/
But since these elements are dense in jh follows a).
b) follows from a) again by duality.
A further consequence is given in the following

IV, 2. Lemma:

. + . .
The product fromyN x Y9 M__) ‘:fN M is simultaneously
continuous.

Proof: This follows from the fact that the topologies on
these spaces are given by algebraic norms.

The product defines a linear map P from y’N@i ff N _pfm,
Since this mapping is continuous we can extend it to complete
tensor product f”(;j.r fN. let X be the kernel of this map
then we have an imbedding of yN(;)/', fN/K in § 2N Since
ffNévz? ff N is a nuclear Frechet space follows that yN Q;W_TN/K
is a complete Frechet space, From the well known fact that
xéjﬁ_i’“ is isomorpl'fic to f,“, follows that y'Néi_ffN//K
must be isomorphic to fZN.

4
Denote by D =¢il { 2 fi QﬁSiané\)}fN then we know from
the definition of ¥?that P D = f’()y N, From this follows
that f‘/} f 2N is closed if and G-nly if D + K is a closed cone.

The proof of this fact needs some preparation.

IV, 3. Lemma:

Let P be the product map from ‘YNQ(]W\VN onto ¥ then we
get for any bounded set B ¢ _\‘_f“n <f 2N

" 8 AD

is a bounded set in D,

; #
5* then we get sup P (x) = H"( L oo
xeB

Since I:* is a C -norm follows that every linear functional T

A %
Proof Let 11 be a C -norm on
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i .
with ﬁ: (T) £ 1 can be written as T = T1 - T2 + L (T3 - T

with P (T ) £ P (T)
From thls follows for Z_f é§ f; € P™" B
sup ?_(T,f;-f)gzz (TJ,f £< 4 M

] ‘:4

Y
-1

a
'y

Pq (T) 44
This shows that the set of sequences

{f;- fis N if; 'fi € B is a bounded set in the ¢ -topology

of the weak summable sequences,

Since 9’” is a nuclear space follows that the £ and T topology
on this spaces are the same (see e.g.A.Pietsch [ 7] Satz 4.2.2.)
and hence we get
P
1 [
;E PLUES ¢ £) ¢ M! < =,
This implies

')
2 P(f) P (£) & M!
a

and consequently follows for any semi-norm T ¢P )P )
A
sup‘]’(?a » Py ) (< Ml <

Q
~A4
4P BAD |
This shows P~ B/l D is bounded .

IV, 4, Lemma D + K is a closed cone.

Proof Let x¢ cl {B + K] Since .7 O y is a (F)-space exists
a sequence X, & D + K which converges to X . Since a converging
sequence is bounded follows P {x%S is bounded in y’n(fa"
Consequently by the previous lemma follows that

{X%} + K/ D is a bounded set,

Since x is the limit of the x] follows that for every
neighbourhood U we get

(x + K+ Wnlixy +kpD) + &
Since yN is nuclear, follows that j"Néﬂ j"N is nuclear([?]

Satz 5.4.2). This implies that all bounded sets are pre-compact
[ [7] satz 4.4.7).
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This implies that

x4+ K n d{ixitk n D] +

Since D itself is closed follows x € D + K,
Collecting these results we get

IV. 5. Proposition:

- . - [ 4 » i -
The intersection of the positive come 57 wlth‘YZN 1s closed,

—

Proof. Since P is continuous follows

p‘id{f;)fmj = (j{D + K& = D+ K

4 4
This implies ¢ N Y & is closed.

Using the Knowlegde of a dense set of explizitly given
positive linear functionals one can show that the positive
. . . fé 2N :
cone ZHIS closed 1f and only 1f all J n jr age closed,
Hence the last proposition shows thatj4 is closec, Up to
now I did not find a direct proof of this fact and therefore

I will not bring this result in this note.
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