Recherche Coopérative sur Programme ${ }^{0} 25$

Elliott H. Lieb
Mary Beth Ruskai
A Fundamental Property of Quantum-Mechanical Entropy
Les rencontres physiciens-mathématiciens de Strasbourg - RCP25, 1973, tome 19
«Conférences de : P. Lelong, A. Lichnerowicz, E. Lieb et C. Stanojevic», , exp. n ${ }^{\circ}$ 3, p. 1-2
http://www.numdam.org/item?id=RCP25_1973__19_A3_0

© Université Louis Pasteur (Strasbourg), 1973, tous droits réservés.
L'accès aux archives de la série «Recherche Coopérative sur Programme no 25 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

A Fundamental Property of Quantum-Mechanical Entropy

Elliott H. Lieh* \dagger
Institut des Hautes Etudes Scientifiques, 91 Bures-rur-Yvette, France
and
Mary Beth Ruskai* \dagger
Department of Mathematics, Massachuselts Institule of Technology, Cambridge, Massachusetts 02139 (Received 26 December 1972)

We have proved the strong subadditivity of quantum-mechanical entropy and the Wig-ner-Yanase-Dyson conjecture.

There are some properties of entropy, such as concavity and subadditivity, that are known to hold (in classical and in quantum mechanics) irrespective of any assumptions on the detailed dynamics of a system. These properties are conse-
quences of the definition of entropy as

$$
\begin{aligned}
& S(\rho)=-\operatorname{Tr} \rho \ln \rho \text { (quantum) }, \\
& S(\rho)=-\int \rho \ln \rho \text { (classical continuous), } \\
& S(\rho)=-\sum p_{i} \ln \rho_{i} \text { (classical discrete) },
\end{aligned}
$$

can think of (2) as defined for all $\rho=0$ and ask whether $S_{\rho}(\rho . K)$ is concave as a function of ρ. The term $-\frac{1}{2} \operatorname{Tr} \rho K^{2}$ is obviously concave since it is linear, so the problem reduces to that of the concavity of $\operatorname{Tr} \rho^{\phi} h \rho^{1-\phi} K$. This was proved when $p=\frac{1}{2}$. We have proved the following:
Theorem: For each fixed K (not necessarily self-adjoint), $\operatorname{Tr} \rho^{\ell} K^{\dagger} \rho^{r} K^{k}$ is a concare function of ρ for $\rho \geqslant 0$ whenever $p \geqslant 0, r \geqslant 0$. and $p+r \leqslant 1$. This theorem is obviously stronger than necessary.
Returning to the conventional entrupy (la), we suppose that the Hilvert space of the system is a tensor product of three spaces, $H=H^{2} \& H^{2} \& H^{3}$. Thus, the system has three sets of degrees of freedom: for example, these may be thought of as the degrees of freedon of a gas in three disjoint regions in space (R^{\prime}). Given a density ma trix ρ^{123} on H, we can define a density matrix ρ^{12} on $H^{1} \otimes H^{2}$ by partial trace, i.e., $\rho^{12}=\mathrm{Tr}_{3} \mu^{123}$. In like manner we can form ρ^{23}, ρ^{2}, etc., and for each of these we have an entropy given by (la). Denoting $S\left(\rho^{123}\right)$ by S^{123}, etc., subadditivity states that

$$
\begin{equation*}
S^{12} \leqslant S^{1}+S^{2} \tag{3}
\end{equation*}
$$

while SSA states that

$$
\begin{equation*}
s^{124}+s^{n}=s^{17}+s^{n} \tag{4}
\end{equation*}
$$

We first show that $S^{1}-S^{12}$ is convex in ρ^{12}.
This implies SSA because, as was pointed out previously, ${ }^{5}$ in the quantum or classical discrete case SSA is equivalent to

$$
\begin{equation*}
F \equiv\left(S^{1}-S^{12}\right)+\left(S^{2}-S^{23}\right) \leqslant 0 \tag{5}
\end{equation*}
$$

but as F is convex in ρ^{123}, it is less than its maximum value on extremal points, which latter are those ρ^{123} that are pure states. For pure states, $F=0$.
We also prove some other related theorems,

TABLE 1. Fundamental properties of entropy and their truth (T) or falsity (F) in three kinds of mechanics

	Classical discrete	Classical continuous	Quantum
(a) $S(\rho)$ is concave in ρ	T	T	T
(b) $S^{12} \leqslant S^{1}+S^{2}$	T	T	T
(c) $S(\rho) \geqslant 0$	T	F	T
(d) $S^{12} \geqslant S^{1}$	T	F	F
(e) $S^{12} \geqslant \mid S^{1}-S^{2 \mid}$	T	F	T
(f) $S^{123}+S^{2} \leqslant S^{12}+S^{22}$	T	T	T
(g) $S^{12}-S^{1}$ is concave in ρ^{12}	T	T	T

anong which is the following:
Theorem: Let K be self-adjoint on a Hilbert space H and fixed. Then $\operatorname{Tr}[\exp (K+\ln \rho)]$ is a concave function of ρ for $\rho>0$. Closer inspection shows that this theorem is a generalization of the Golden-Thompson inequality ${ }^{10,11}$ to three oper ators.

To conclude, in Table I we append a list of the known fundamental entropy [Eq. (1)] inequalities and their physical significance. The following remarks clarify the physical significance of Table I. The letters (a)-(g) refer to entries in Table I.
(a) states that if two different ensembles are united, the entropy of the resulting ensemble is greater than the average entropy of the component ensembles. ${ }^{6}$
(b) is a statement of subadditivity and is the basic tool for proving that the entropy per unit volume has a thermodynamic limit (which may, however, depend on the particular sequence of domains).
(c) expresses a well-known defect of classical continuous statistical mechanics with respect to the third law of thermodynamies.
(d) expresses an intuitive defect of quantum and classical continubus statistical mechanics. An example occurs when ρ^{12} is a pure state, so that $s^{i-}=0$. Thus, the entropy of the universe can remain zero while the entropy of Earth increases without limit
(e) is a consequence of SSA in the alternative form of inequality (5) (cf. Ref. 5) and is included as partial conpensation for (d).
(f) is the statement of SSA. As a technical tool it allows one to prove that the entropy per unit volume for quantum continuous systems is independent of shape, at least for rectangular parallelepipeds of fixed orientation (cf. Ref. 5). If one is willing to assume that the entropy of every bounded region is finite |which cannot be proved, as (d) is false quantum mechanically], then the limit exists for arbitrary regions in the sense of Van Hove. However, (f) has a more heuristic interpretation. Although the connection between entropy and information is hedged with controver sy, we may suppose, along with the Copenhagen school, that when we measure a system its density matrix is reduced to that of a pure state and the entropy is reduced to zero. Thus, entropy
measures the information gain in an experiment. $S^{23}-S^{2}$ can be thought of as the information gained upon measuring a total system (23) when a subsystem (2) is known. In quantum mechanics it may be negative because of (d). $S^{123}-S^{12} \leqslant S^{23}$ $-S^{2}$ states that this incremental information is smaller when the initial information [(12) as against (2)] is larger. This, at least, is the interpretation given in information theory.
(g) states that the incremental information, like the entropy itself, increases when two ensembles are united
We thank D. Ruelle for generating and encour aging our interest in this problem. We are also grateful to R. Jost, O. Lanford, and D. Robinson for their encouragement and for helpful conversations. One author (E.L.) would like to thank the Chemistry Laboratory III, University of Copenhagen, where part of this work was done.
. *Work partially supported by U. S. National Science Foundation Grant No. GP-31674 X.
†On leave from Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Mass. 02139. Work partially supported by a Guggenheim Memorial Foundation fellowshtp.
\dagger Presently, National Research Council Fellow at Department of phosirs, University of Atherth, Flmuiten 7. Altã., Canada.
${ }^{\prime}$ D. W. Robinson and D. Ruelle, Commun. Math. Phys. 5, 288 (1967)
${ }^{2}$ O. Lanford, III, and D. W. Robingon, J. Math. Phys. (N. Y.) 3, 1120 (1968)
${ }^{3}$ F. Baumann, Helv. Phys. Acta 44, 95 (1971).
${ }^{4}$ F. Bauman and R. Jost, in Prohlems of Theoretical Physics: Essays Dedicated to N. N. Bogoliubov (Nauka, Moscow, 1969), pp. 285-293.
${ }^{5}$ H. Araki and E. H. Lieb, Commun. Math. Phys. 18 160 (1970).
${ }^{6}$ E. P. Wigner and M. M. Yanase, Proc. Nat. Acad. Sci. U. S. 49, 910 (1963), and Can. J. Math. 16, 397 (1964).
"R. Jost, In 'Quanta" -Essays in Theoretical Phys ics Dedicated to Gregor Wentzel, edited by P. G. O Freund, C.J. Goebel, and Y. Nambu (Univ. of Chicago Press, Chicago, Il., 1970), pp. 13-19.
${ }^{8}$ E. H. Lieb, "Convex Trace Functions and Proof of the Wigner-Yanase-Dyson Conjecture" to be published)
${ }^{9}$ E. H. Lleb and M. B. Ruskai, "Proof of the Strong Subadditivity of Quantum Mechanical Entropy" to be published).
${ }^{10}$ S. Golden, Phys. Rev. B 137, 1127 (1965). ${ }^{11} \mathrm{C} . \mathrm{J} . \mathrm{T}$ bompson, J. Math Phys. (N. Y , 6, 1812 (1985).

