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I.- INTRODUCTION, 

In this paper we prove several theorems about quantum mechanical 
entropy, in particular, that it is strongly subadditive (SSA). These 
theorems were announced in an earlier note*'', to which we refer the reader 
for a discussion of the physical significance of SSA and for a review of 
the historical background. We repeat here a bibliography of relevant 

2-9 
papers 

The setting for these theorems is this : 

a) Given a separable Hilbert space H and a positive, trace-class 
operator, p , on H (i.e. p ̂ 0 means ( % p Y ) ^ 0 for 
all Y in H) , the entropy of p is defined to be 

GO 
S(p) = -Tr p In p = - Z \. In X. , (1.1) 

i = 1 1 1 

where Tr means trace, the X„ are the eigenvalues of p , 

0 In 0 = 0 , and we permit the possibility S(p) = « . In physical 
applications one also requires that Tr p = 1 , in which case p 

is called a density matrix. 

b) If 5 3 H i ® H2 is the tensor product of two Hilbert spaces and 
p̂ 2 is a positive, trace-class operator on > w e c a n define 
a positive, trace-class operator, p̂  , on by the partial 
trace, i.e. 

h H T r 2 Pl2 (1.2) 
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by which we mean 

( cf,P xY ) - I (cp® e. , p 1 2 [Y <8> e ] ) (1.3) 
i = 1 

for all cp , ¥ in and [ei j ^ any orthonormal basis in 

H2 . We shall denote S(p^) by etc.. In like manner one 

can have = H^ ® H2 ® H3 ' a n d 1̂23 a Pos^ti-ve> trace-

class operator on ^ 2 3 5 a n c* define o n Hl2 H Hl ® H2 ' 
on , etc.. by partial traces. When no confusion arises, 

we shall frequently use the symbol to denote the operator 
pl & H 2 on H 1 2. 

Our main results are the following two theorems. 

Theorem 1 : Let H 1 2 = H 1 ® H 2 . Then the function 

Pl2« > S l " S 1 2 ( 1 ' 4 ) 

is convex on the set of positive, trace-class operators on H^2 

Theorem 2 - (Strong Subadditivity) : Let ^ 2 3 a n c * P̂ 23 b e d e ^ i n e d 

as in (b) above. Then 

(i) S 1 2 3 + S 2 - S 1 2 - S 2 3 * 0 ( 1 . 5 ) 

and 

(ii)' s x + s 3 - s 1 2 - s 2 3 < 0 (1.6) 
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In the next section we prove these theorems in the finite-dimensional 
case. In section III we elucidate the connection between these two theorems 
and give some related results. Section IV contains the proofs for the in
finite-dimensional case and is based on the appendix kindly contributed 
by B. Simon, to whom we are most grateful. 
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II.- PROOFS OF THEOREMS 1 AND 2 IN THE FINITE-DIMENSIONAL CASE 

Proof of Theorem 1 : The theorem states that 

( V S 1 2 } ( p12 } * ° ( S r S 1 2 } ( p12 } + (1"q') ( Sr S12 ) ( pl2 ) ( 2 a ) 

where p 1 2 = a p 2̂ + (l-a) p 2̂ , 0 ^ a ^ 1 , and p 2̂ and p 2̂ are 
any positive, trace-class operators on H^2 . We shall assume that both 
p 2̂ and p 2̂ are strictly positive and appeal to continuity of 

p f >S(p) in the semi-definite case. Letting 

A = a T r12 P12 (" l n P12 + l n Pl + l n P12 " l n pl } 

and 

r = (l-a) Tr 1 2 pj 2 (-in p^2 + ln pj + in p 1 2 - ln px ) , 

one sees that (2.1) is equivalent to A + T ̂  0 .We now use Klein's 
7,10 

inequality : 

Tr (-A ln A + A ln B) < Tr (B - A) . (2.2) 

(Alternatively, one could use the Peierls - Bogoliubov inequality in a 
2 

similar way ) . We first apply (2#2) to A with A = p 2̂ and 
B = exp [ln p̂  + ln p 2̂ - In p̂  1 and then similarly to T . Then 

L+ T < aTr12[exp(ln p̂  + ln - ln Pj) - 1 

+ (l-a) Tr 1 2 [exp(ln p£ + ln p 1 2 - In ) - p 2̂ 1 (2.3) 

< Tr 1 2 [exp (ln pL + ln p 1 2 - ln pL ) - p 1 2 ] = 0 . 
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The seccnd inequality in (2.3) follows from the concavity of 
C|—^Tr[exp (K 4- In C) ] for positive C applied to 
pj s a pj + (1-a) p£ with K •* In p l 2 - In p1 . Q.E.D. 

2 
Proof of Theorem 2 : It has already been pointed out that (1.5) 

and (1.6) are equivalent ; however, we shall prove each statement separa
tely. 

(i) Proof of (1.5) : We use Klein1s inequality, (2.2), with 

A = £±23 a n d B = e xp["l n P2
 + * n + l n P233 • 0 n e finds 

F (Pl23 } = S123 + S2 " S12 " S23 * Tr123 [ e X p ( l n hi'1" ^ 2 + l n ^ " P m 3 ' 

We now apply a generalization^ of the Golden-Thompson inequality, i.e. 

Tr[exp(ln B -In C + In D) ] s Tr / B ( C + x l ) " 1 D(C+xH)_1 dx. (2.4) 

Thus 

F(p 1 2 3)s Tr 1 2 3[ J p 1 2 (p 2 p 2 3 (p 2 +xTl) - 1 dx -
0 

= T r 2 / h <P 2

+ X l l >~ 1 P 2(p 2+ xH)"1dx - Tr 1 2 3 p 1 2 3 

= Tr2 p2 - Tr 1 2 3 p 1 2 3 = 0 . Q.E.D. 
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(ii) Proof of (1.6) : Call the left side of (1.6) G (p 1 23 ) * 
Note that - i s convex in by Theorem 1 ; since is 

linear in P\2?, > s ^ " * s c o n v e x ^ n P̂ 23 * Thus, ^(pj^) i S 

convex in P̂ 23 * * n t^ie c o n v e x c o n e °f positive matrices, the extremal 
rays consist of matrices of the form p = a P where a ^ 0 and P is 
a one-dimensional projection. If P\22 i s e x t r e m a l > then (see Ref.2, 
lemma 3) = and = S^2 , so that G ^ P \ 2 ^ = 0 * Every positive 
matrix Q\23 c a n ^ e w r i t t e n a s a convex combination of extremal matrices ; 
it then follows from the convexity of G that G(p 1 9^) < 0 . Q.E.D. 
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III.- REMARKS AND RELATED RESULTS. 

We have already noted in the proof of (1.6) that Theorem 1 implies 
Theorem 2. We now note that the converse is also true and give several al
ternate proofs of Theoremsl and 2 , We then show that F P̂]̂ 23̂  i s n 0 t 

convex and give a corollary to Theorem 1. 

A) To show Theorem 2 implies Theorem 1 it suffices to note that 
( apart from the trivial interchange of the subscripts 1 and 2 in (2.1) ) 

(1.5) is identical to (2.1) for a special choice of P^£35 * # e' 

1̂23 = a^i2 ® E3 + ^ " °̂  1̂2 ® F3 w' i e r e H3 i s c n ° s e n t o be two-dimensional 
and E^ and are orthogonal, one-dimensional projections on 

B) Uhlmann has shown that (1.5) follows from the concavity of 
Ci »Tr exp(K 4- In C) . This has been shown to be true by Lieb^ , and 

12 
an alternate proof was later found by Epstein . Therefore, Uhlmann's 
remark gives an alternate proof of, (1.5) . 

C) The proof of (1.6) shows that Theorem 1 implies Theorem 2 . 
13 

However, (1.6) is not equivalent to (1.5) in other contexts . (In fact, 
(1.6) is false in the classical continuous case ) . Therefore, it is ins
tructive to note that one can show that Theorem 1 implies (1.5) directly 

3 5 
without using (1.6). Baumann and Jost 5 have shown that a special choice 

(" -1 -1 
of p | 2 and p£ 2 in (2.1) implies that Tr JQ A*(C+xIL) A(C+xH) dx 
is jointly convex in (A,C) where A and C are matrices with C > 0 
Lieb has then shown^ that this implies Ci—>Tr exp(K+ln C) is concave 
in C . The last statement was used to prove^ (2.4) which, as we have 
already seen, implies (1.5), Alternatively, we have already noted in (B) 
above that concavity of Ci—»Tr exp[K+ In C ] implies (1.5). 
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D) We have already shown that the left side of (1.6), G^P;^) > i s 

convex. One might wonder, therefore, if the left side of (1.5), ^(pj^j) 

is also convex. In fact, it is not. If it were, one could choose H 2 to 
be one-dimensional so that 

F (Pl23 ) = S13 " S l " S3 " E ( Pl3 } ' 

would have to be a convex function of 
two-dimensional and choose p^3 and 
one-dimensional projections : 

P 1 3 . Take Hĵ  and H 3 to be 
pi' to be the following orthogonal, 

13 ( il' H ; h9 : i3 ) = * 6 ( il> i 3 ) 6 (jl> ^ 

and 

where 6 is the Kronecker delta. Then » p£ = % = = f H 

and E(p^3) + E(p]L'3) - 2 E(| p^3 + \ pj| ) = - 2 In 2 < 0 , which is a 
contradiction. 

E) It was pointed out in Ref. 11 that if f(A) is a convex func
tion from the set of positive matrices into ]R , and if it is also 
homogenous (i.e. f(XA) = X f(A) for all X > 0) , then 

• f f(A+xB) = lim x"1 [ f (A + x B) - f (A) ] < f (B) , (3.1) 
d X x=0 x i 0 
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whenever A,B are positive matrices and the above limit exists. The 
function (S1 - S 1 2) (p 1 2^ h a s t h e s e properties. To apply (3.1) we 
compute : 

^ S(p + x y) = " Tr[(p + x Y) In (p + x Y)l 

Tr y In (p 4- x Y) - Tr Y 

Using this in (3.1) we conclude : 

Corollary : Let y^^ a n c * P̂ 2 ^ e P o s^ t^ v e» trace-class matrices 
H 1 2 . Then 

on 

Tr 12 Y12 l n Pi2 " T r l Y l l n Pi ~ Tr12 Y12 l n Y12 " T r l Y l l n Yl ' ( 3 # 2 ) 

i.e. for each fixed y^ , the left side of (3.2) achieves its maximum 

when p 1 2 = Y 1 2 
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IV.- EXTENSION TO INFINITE-DIMENSIONS. 

We can use Theorem A.3 to extend Theorems 1 and 2 to infinite -
dimensions. For simplicity, we confine our discussion to Theorem 1 where 
**12 = **1 ® H 2 ' e x t e n s i ° n of Theorem 2 is similar and we point out 
the necessary changes at the end of this section. 

Let E^n ( i = 1 , 2 and n - 1 , 2 , . . . ) be sequences of increasing, 
finite-dimensional projections on , converging strongly to the iden
tity, and define 

E n = E x
n ® E 2

n 

n _n _n -
p 1 2 • E p 1 2

 E » a n d 

P i " = T r 2 P12" = E l " ( T r 2 V Pl2 E 2 0 ) E i n • ( 4 ' 1 } 

Since the spaces E^ are finite dimensional, Theorem 1 is satisfied 
by P j^ 1 1 o n E^ n ® H 2 for each n . Thus, it suffices to show 
that the sequences of matrices {p^ Sn-i a n c* iP̂  Sn-\ satisfy the 
hypotheses of Theorem A.3 so that, e.g. lim SCp̂ **) = ^ ^ 1 2 ^ = ^12 

n-* 0 0 

To show that ^ P ^ ^ n r l satisfies Theorem A .3, we first note that 
n s 1A s s E ^ >H^ 2 . If the sequences A r >A and >B , 
then A n —-—> AB . Consequently, p^1 1 converges to p 2̂ strongly, 
and therefore weakly. It follows from the Ritz principle (see Proposition 
A . l ) that p 1 2

n =* E n p 1 2 E n <J[ E n + 1 p u E n + 1<^ p^ , with <{ as 
defined in the Appendix. Therefore, the hypotheses of Theorem A.3 are 
satisfied and 
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lim SCp^11) = S 1 2 (4.2) 

To show that {p^}*^ also satisfies Theorem A.3, define 
p 1

n - Tr2 E 2
n p 1 2 E 2

n . Then p^ = p^ E ^ . To show that p^ 

converges to p̂  weakly, it suffices to show that p^n converges to 
p^n strongly. (In fact, it converges uniformly). To do this we can 
assume, without loss of generality, that E 2

n projects on the space 
spanned by e, ....e^ where {ê  : i = 1 . . .»} is an orthonormal basis 

in H 2 . Then 

(Y, a n Y) - £ (Y ® e, , p-? Y <8> e. ) 
i = l 1 1 1 1 

for all Y in , and it follows that 

~ n ~ n+1 , ,, „s £ pj_ and (4.3) 

lim (Y , (p, -p,n) Y) = lim £ (Y ® e. , p, 9 Y ® e. ) = 0 . (4.4) 
n-»« 1 1 n+1 i 

Since p^11 is a monotone sequence of positive operators, (4.4) implies 
that p^n —f—^ and therefore p^n S > p̂  . Further, it follows 
from (4.3), i.e. the monotonicity of p^n , that 

n > _ n+1 ~ n „ n+1 
h 4 Ei pi Ei 

. _ n+1 ~ n+1 _ n+1 n+1 > 

Thus, Theorem A.3 implies lim S(p1
n) = S(p^) = S 

n-4 00 
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Theanalysis for Theorem 2 is similar. One defines 

E n = E l
n * E 2

n ® E 3
n , 

n _n _n , 
p123 = E Pl23 E 9 a n d 

pj2 - Tr3 pj 2 3 , etc... 
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APPENDIX : CONVERGENCE THEOREMS FOR ENTROPY. 
by B. Simon , Princeton University. 

We discuss a variety of convergence theorems which are useful in 
extending entropy inequalities from finite dimensional matrices to infinite 
dimensional operators on a Hilbert space. 

Definition : Let A be a positive compact operator. (A) denotes 
the k th largest eigenvalue of A counting multiplicity. 

Definition : Let s(x) be the function on [0,») given by 

x In x 
s(x) = 

if x £ 0 
if x = 0 

If A is positive and compact, we set 

S(A) = E s(|i. (A)) 
k= 1 R 

the value infinity being allowed. 

Definition : Let A and B be positive, compact operators. We write 
A<^B if and only if \±k (A) <: U k (B) for all k . 

Definition : Let and A be positive, compact operators. We write 
A —^—x A if and only if a, (A ) ^ u , (A) for each fixed k 
n K. n ' k 

Remarks : 1) The topology defined by (jrconvergence is, of course, non-

Hausdorff. 

*) A. Sloan Fellow 
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2) The order is useful because of the following consequence 
of the Ritz principle: 

Proposition A.l : Let A be a positive,compact operator and let P be 
a projection. Then PAP<J A . In particular, if P and Q are projections 
and P <. Q , then PAP <̂  QAQ 

The above is false if <̂  is replaced by £ . 

Theorem A,2 : (Basic Convergence Theorem). Let B be a positive, compact 
operator with S(B) < » . Suppose [k^} and A are given positive, 
compact operators with 

(1) A JL+A n 

(2) A, <[ for each 

Then lim S(A ) = S(A) . . ̂  n n-> 0 0 

Proof : The proof is based on the fact that s is monotone in [o,e"^] . 

Since B is compact^ JĴ  —*° • Suppose (B) £ e ̂  .By (1) and 

the continuity of s, s(JJI^^A
n^ ) * s ^ k ^ ^ 5 each k ; and by (2) and 

the monotonicity of s in [0,e , s^lJLk ̂ An^ ~ S ^ k ^ o r ^ ̂  N ' 
each n . Thus by the dominated convergence theorem for sums, 

E s(|i (A )) —J—> T, s(ii (A)) . Since E s (n (A )) certainly 
k^N k n k^N K k*N-l R n 

converges , the theorem is proven . Q.E.D. 

For applications of theorem A.2, it is convenient to have statements 

expressed in a more usual form than -̂convergence. 
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Theorem A,3 : Let {A } and A be positive, compact operators. If 

(1) w-lim A = A and 
n-*00 n 

(2) A n <J A for all n 

then lim S(A ) = S(A) . 

Proof : We first prove that —t—» A . Fix k and e . By weak 
convergence and the min-max principle, it is easy to find a k-dimensional 
space, V , and an N such that 

( Y , A n Y) * (n k (A) - e) ||Y1|2 

if Y € V and n ^ N , But then p k (A ) £ (A) - e if n £ N . 

Since p k (A) £ (ik (A F T) by (2) , this means |pk (A) - p k (A ) | < e 
if n ^ N and hence A^ hL~$> A . If S(A) < « , the theorem then follows 
from Theorem A. 2 .If S(A) = « , for any l£ we can find an L such that 
L 
I s(p, (A)) > M . However, for L sufficiently large, S(A ) 
k=l k 

L ^ £ s(|j (A ) ) and, since p, (A ) » p, (A) , the latter sum 
, - R n K n K 
k=l 

can be made arbitrarily close to M . Thus S(A R) . Q.E.D. 
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Theorem A.4 : (Dominated Convergence Theorem for Entropy) : Let 
{A) , A and B be positive, compact operators and suppose that 

(1) S(B) < « 

(2) w-lim A = A 
n 

N -4 OO 

(3) Â  <. B (operator inequality!). 

Then, lim S(An) = S (A) 
n-*00 n 

Proof : Since B is compact, for any e >0 we can find a finite-
dimensional subspace K C H such that (u, B u) = \\ B u || < e ||u|| 
for u € L , where L is the orthogonal complement of K . Since 
A n £ B , ||A ̂  u|| = ( u, A n u) <: ( u, B u ) ^ e ||u|| for all u in 
L . Since A n ~—>A , A <: B and ||Â u|| ^ € ||u|| for all u 
in L also. We now show A^ —>A uniformly. Recall that 
||AN - A1,! = sup £ 1 Ccp , ( A N - A) Y) I : cp, Y 6 H, ||cf|| = =1} . Now 
write cp=f + u, Y = g + v where f, g are in K and u, v in L . 
Then 

(qp, (An - A) Y) = ( (f + u), ( A N - A) (g + v) ) 

£ (f, (An - A)g).+ |'An* «H* №n*v||* 

+ i iA* f i i * i iA n*«n* i M s i i * 

+ | | à « » f | | A * g | | * + | | A n * u f i lA^vll* 

+ ||à*u||* |là* v ||4 , 
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which can be arbritrarily small since —*A uniformly on K , 
A ̂  and A^ are bounded on K , U ^ u U < e , ||A^u|| < e , 
etc..., and \\f\\ <. (|cp|| etc... Thus |(cp , (A r - A) Y) \ can be made 
arbitrarily small independent of cp , Y ( for all cp , Y with 
||cp|| = ||Y|| = 1) and thus ||A - AJJ *0 . By the min-max principle, 
lu, (A ) - u, (A) 1 < llA - All . Thus A tL* A , and (1) implies 
1 K n K 1 , rn M n 
that Theorem A.2 is applicable. Q.E.D. 

Example : Let {AnJ , A and B be the following operators on H , 

where {cp } is an orthonormal basis for H : T n 

A Cp̂  0 , each k 

A cpt = 6 , e * cp n^k nk TI 

B = Ax 

Then A <t B , A >A strongly,but S(A ) does not converge to 
n r n n 

S(A) . This example shows that £ and not <̂  is needed in Theorem 
A.4. 



III - 54 -

REFERENCES. 

[1] E.H. Lieb and M.B. Ruskai, Phys, Rev. Letters 30 , 434 (1973). 

[2] H. Araki and E.H. Lieb, Commun. Math. Phys. 18, 160 (1970). 

[3 ] F. Bauman and R. Jost, in Problems of Theoretical Physics ; 
Essays Dedicated to N.N. Bogoliubov, 285, Moscow, Nauka (1969). 

[4] R. Jost, in "Quanta11 -Essays in Theoretical Physics Dedicated 
to Gregor Wentzel, P.G.O. Freund, C.J. Goebel and Y, Nambu eds., 
13, University of Chicago Press, Chicago (1970). 

[5] F. Baumann, Helv. Phys. Acta 44, 95 (1971). 

[6] D.W. Robinson and D. Ruelle, Commun. Math. Phys. j> , 288 (1967). 

[7] 0. Lanford III and D.W. Robinson, J. Math. Phys. 9, 1120 (1968). 

[8] E.P. Wigner and M.M. Yanase, Proc. Nat. Acad. Sei. 49, 910 (1963); 

Canad. J. Math. 16, 397 (1964). 

[9] A. Uhlmann, "Endlich Dimensionale Dichtematrizen, II". Wiss. Z. 
Karl-Marx-Univ, Leipzig, Math-Naturwiss. R., to appear. 

[10] D. Ruelle, Statistical Mechanics : Rigorous Results. Benjamin, 
New York (1969), Theorem 2.5.2. 



III - 55 -

[11] E.H. Lieb, "Convex Trace Functions and Proof of the Wigner-

Yanase - Dyson Conjecture". To appear in Advances in Mathematics. 

[12] H. Epstein, "Remark on Two Theorems of E. Lieb", Preprint 

[13] M.B. Ruskai, "A Generalization of the Entropy Using Traces on 

von Neumann Algebras". Preprint. 

[14] 0. Lanford III, in Statistical Mechanics and Quantum Field Theory, 

C. De Witt and R. Stora eds., 174, Gordon and Breach, New York 

(1971). 

I.H.E.S./P/73/046. 


