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Modified Mielnik's Axioms and Reflexivity 
C.V. Stanojevic* 

1. Introduction* Mielnik's [1] geometric approach to the founda
tion of general quantum mechanics revived the interest in charac
terization of inner product spaces. A natural form of the generalized 
parallelogram law [2] came out of studying geometric properties of 
the concrete representation space of Mielnik's quantum states. This 
generalized parallelogram law was related to that of D.A. Senechalle 
[3], through the functional equation f + f o g = 1, where 

f c F = {f|f e C[0,2], f+, f(0) = 0, f(2) = 1} 
g e G = {g|g e C[0,2], g+, g(0) = 2, g(2) » 0}. 

The generalized parallelogram law 

f(||x + y||) + f(||x - y | I ) = 1 

where f e F, and ||x|| = | |y| | = 1 turned out to be a concrete 
form of the well-known condition of E..R. Lorch, [4] . 
Before we show how by modifying Mielnik' s axioms we can get other 
geometric properties of the concrete representation space, we 
shall give a brief account of the results mentioned above. 

2. Mielnik's probability spaces and characterization of inner  
product-spaces. 

Let S be a non-empty set and p a real-valued function defined 
on S x S such that 

(A) 0 < p(a,b) < 1 and a = b p(a,b) = 1 
(B) p(a,b) =» p(b fa) , 
for all a,b e S. 
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Definition 2.1. Two elements a and b in S are orthogonal if 
p(a,b) = 0. A subset R of S is an orthogonal system if any two 
distinct elements of R are orthogonal. 

It is easy to show that there exists a maximal orthogonal system. 
Definition 2.2* A maximal orthogonal system is called a basis B 
in S. Let F B be the class of all finite subsets F of B, then 

p(a,F) « I p(a,b) 
beF 

is defined for all a e S, and all F e F . 
JD 

The following property of B is postulated. 
(C) For each basis B and for each a £ S 

sup p(a,F) = 1 
FeF B 

Definition 2.3. Any pair (S,p) satisfying axiom (A), (B) and (C) 
is called a probability space. 
Theorem 2.1. Let B^ and B2 be two basis, then B^ and B2 have the 
same cardinal number. 
Definition 2.4. The common cardinal number of all basis is called 
the dimension of (S,p) 

Theorem 2.2. Let f e F. Then there exists a g e G such that 

(2.1) f + f o g = 1 

Let g e G. Then (2.1) has a solution f e F if and only if g is 

an involution, i.e. g = g ^. 

Example 2.1» Let h e G. If 

g(t) = h~ 1(2 - lg[e 2 - e
2 ~ h ( x ) + 1]) 

then 
2-h(t)-l 

f (t) = £ — 5 
e - 1 
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is a solution of (2.1). 
Example 2.2. For 

h(t) = -lg[\(l - e~ 2) + e" 2] 
we have 

f(t) = . 

Theorem 2.3. Let N be normed real linear space and S = {x|||x|[ = 1}. 
Then N is an inner product space if and only if 

(2.2) f(||x + y||) + f(||x - y||) - 1 

for some f e F and all x,y e S. 
Example 2.3. Refering to Example 2.1 we have that a necessary 
and sufficient condition for N to be an inner product space is that 

e-h(||x+y||) + f(||x-y||) = 1 

for some h e G and all x,y e S. 

Example 2.4. Let h be as in Example 2.2. Then (2.2) becomes the 
well-known condition of M.M. Day [5]. 
Theorem 2.4. Let N be a normed real linear space, S = {x|||x|| = 1}, 
and let p(x,y) = f(||x+yj \ ) , where f e F. Then N is an inner product 
space if and only if for some f e F, (S,p) is a probability space 
of dimension 2. 
Example 2.5. Let h be as in Example 2.1. Then N is an inner product 
space if and only if 

2-h(||x+y||) _ 
( s , S ±) 

ez - 1 
is a probability space of dimension 2, for some h e G. 
Example 2.6. For 

2 
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h(t) = -lg[^(l-e~ 2) + e~ 2] 

we have result given in [6]• 

3. Modified Mielnik's axioms and geometry of representation spaces. 
First we shall change axiom (A) as follows 

(A*) 0 < p*(a,b) < 1 p*(a,b) = 1 ^ a = b 

and keep (B) and (C) as in the Mielnik system of axioms. A pair 
(S,p*) satisfying axioms (A*), (B) and (C) we shall call ^-probability 
space. As before S is the unit sphere of a normed real linear 
space N. 

Lemma 3.1« Let (S,p*) be a *-probability space. If 

(3.1) p*(x,y) > f(||x+y||), x,y e S, 

where f e F* = {f|feC[0,]; f (t)«^t=0, then (S,p*) is a probability space 
Proof. We have to show that x = y p*(x,y) = 1. 
From (3.1) we have 

p*(x,x) > f ( 2 ) » 1 

But p*(x,y) < 1, thus pK x,x) = 1. 
Lemma 3.2. If (S,p*) is a *-probability space of dimension 2 an.d 
(3.1) holds, then every basis is of the form {y,-y}/ Vy e S. 
Proof. By Lemma 3.1 (S,p*) is a probability space. Let x and y 
be any two orthogonal elements. Then 

0 - p*(x,y) > f (||x+y||) 

and 
f(||x+y||) = 0 

However f(t) « 0 3=$ t = 0. Therefore 
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I|x+y|| = 0 
or 

x + y = 0 
Finally y is orthogonal to -y, and since (S,p*) is of dimension 2, 
we have that every basis is of the form {y,-y} 
Corollary 3.1. If 

f(iix + yii) = i' x7i» 2 

and (S,p*) is a *-probability space of dimension 2 with (3.1), 
then N is an inner product space. 
Proof. By Lemma 3.2 every basis of the form {y,-y}. From the 
axiom (C) 

i = p*(x / y ) + P*(x,-y) > M x ; y i i 2 + l U s j d i i 

for all x,y e S. Applying a result of Schoenberg [7] we conclude 
that N is an inner product space. 
Now we shall modify axiom C to read: For every basis B and each 
a e S 
(C*) sup p(a,F) < 1 

F e F B 

A pair (S,p*) that satisfies (A*), (B), (C*) we shall call modi
fied probability space. Some of the above results may be reformu
lated for a modified probability space. 
Lemma 3.3. If for some f e F* = {f | feC[0,2] ; f(t) = 0 ^ t = 0 ; f(2) « 1} 

f(||x+y||) + f(||x-y||) < 1 

and all x,y e S, then N is uniformly convex. 

Proof. Let ^- s # W e have to show that 

l|x n + y n l l + 2 ||x n - y n|| - 0. 
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From 

f(||x n + yj|) + f(||xn - y n||) < 1 
we have 

f (llai| |x n + y n| |) + f (lim| |x n - y n| |) < 1 
or 

f (2) + f (lira| |x n " y n| |) < 1 
But f(2) = 1 , so 

f(lim||xn - yj|) < 0 
i.e. 

f(lim||xn - y n||) - 0 
For any f e F* we have that 

f (t) = 0^=^t = 0 
Thus 

lim||x - y || = 0 n ' 1 n n 1 1 

Example 3.1. The well-known Clarkson's inequality [8] states 

l l ^ l l p ' + l l ^ l l p ' <U l | f | l p

 + § I M I ^ . 

for 1 < p < 2, and for p > 2 

l l ^ l l p + I l u l l ' s * l l « l l p + * l l « l l p • 

The norm ||•|| is the standard Lp norm.(or lp), and p' = 1 - p. 
Let S be the unit sphere of Lp. Then 

||f+2.||P' + ||il£||P' < i, i < P < 2, 

and 

I I ^ H P • M ^ l P <l.P>2. 

It is easy to recognize two last inequality as special case of the 

inequality (3.1), by taking 
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f(t) = (|) p l or f(t) = (|)p . 

It follows that Lp (or lp) are uniformly convex. 

Lemma 3.3. says that every normed real linear space on whose unit 
sphere (3.1) (generalized Clarkson1s inequality) holds, is uniformly 
convex. 
Corollary 3.2. If N is a Banach space and (3.1) holds then N is 
reflexive. 
Proof. According to Milman's [9] (see also Dieudonne [10]) every 
uniformly convex Banach space is reflexive. 
Theorem 3.1. Let N be a normed real linear space and S its unit 
sphere i.e. S = {x|||x|| = 1}. If (S,p*) is a modified probability 
space of dimension 2, and 

P*(x,y) > f (| |x+y| |) 
where f e F* = {f|feC[0,2]; f(t)=0«»t=0; f(2)=l}, then N is uniformly 

convex 
Proof. By Lemma 3.2 every basis of (S,p*) is of the form {y,-y}. 
From the axiom (C*) we have 

P*(x,y) + p*(x,-y) < 1 
That implies 

f (| |x+y| |) + f(| |x-y| |) < 1. 

Applying Lemma 3.3 we get that N is uniformly convex. 
Corollary 3.3. In addition to the conditions of Theorem 3.1 assume 
that N is a Banach space. Then N is reflexive. 
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