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A Quantum Theoretical Characterization of 
Uniformly Convex Spaces 

A.R. Blass and C.V. Stanojevic 

1. Introduction. 
The classical approach to the foundations of quantum theory, 

pioneered by Birkhoff and von Neumann [1], sought axioms for 
quantum logic all of whose realizations could be represented by 
orthogonal projection operators in suitable Hilbert spaces. 
B. Mielnik [4] objected that this program would not fully justify 
the use of Hilbert spaces in quantum theory, for that theory 
deals not only with the yes-no measurements considered in quantum 
logic, but also with statistical predictions. Accordingly, he 
introduced the following concept of probability space, and showed 
that not all of its realizations could be obtained from Hilbert 
spaces in the usual quantum-theoretic manner. 

A probability space (S,p) consists of a nonempty set S to­
gether with a function p from S*S into the closed interval [0,1] 
of the real line, satisfying the following three axioms. 

(A) p(a,b) = 1 if and only if a = b. 
(B) p(a,b) = p(b,a). 

To state the last axiom concisely, we first define two members 
a and b of S to be orthogonal if p(a,b) = 0 . A maximal set of 
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pairwise orthogonal elements of S is called a basis of S. The 

existence of bases is an easy consequence of Zorn!s lemma. 

(C) For any a e S and any basis 3 of S, 

I p(a,b) = 1, 
beB 

where the (possibly infinite) or even uncountable sum is inter­
preted, as usual, as the supremum of all its finite partial sums. 

The elements of S are to be viewed as possible states of a 
physical system, and p(a,b) as the probability that a system is found 
to be in state b after known to be in state a. In the usual quantum-
mechanical formalism, S is the set of unit vectors of a Hilbert 
space (modulo identification of a vector a with all its scalar 
multiples Xa, \ X \ = 1) and p(a,b) = |<a,b>| . A basis for an S 
of this sort is just an orthonormal basis for the Hilbert space. 
Xielnik [4] showed that, in any probability space (S,p), all bases 
have the same cardinality, called the dimension of (S,p). Thus, 
the dimension of the probability spaces used in quantum mechanics 
is the same as the dimension of the associated Kilbert space. 

There is another way to associate a probability space with 
any given inner product space N. Let S be the unit sphere of 
(without identifying vectors that differ by a phase factor), and 
let 

(I) . p(a,b)^ = jr! ja+bj ; 2. 

Although only the norm of N, not the inner product, appears ex­
plicitly in the definition of (S,p), the fact that the norm is 
associated to an inner product is used in verifying that (S,p) 
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satisfies Xielnik's axiom (C) (the other two axioms being immediate). 

Indeed, the only vector orthogonal to a in (S,p) is -a, so (C ) reacs 

<2) ir l ia+bM 2 4- f M a - b M 2 = I, 

v;hich follows from the parallelogram law. Notice that (S,p) has 
dimension 2; among these spaces are Mielnik's examples of proba­
bility spaces not obtainable from Kilbert spaces in the usual 
quantum-mechanical way. 

Î i [5], it was shown that the formula (1) defined a probability 
space structure on the unit sphere of a normed real linear space X 
if and only if N is an inner product space. In [6], this result: 
was generalized to show that, if S is the unit sphere of a normed 
real linear space and if (S,p) is a probability space of dimension 
2 in which p(a,b) is any reasonable function of \ ja+b||, then N is 
an inner product space. To state this result, and our later re­
sults, precisely, we introduce, as in [6], the class 

(2) F = (f|f:[0,2] [0,1], f continuous and strictly increasing, 
f(0) = C, f ( 2 ) = 

Then Theorem 3.1 of [6] asserts that a normed linear space N is 
an inner product space if and only if its unit sphere S, equipped 
with some p of the form p(a,b) = f(Ma+b||), f e F, is a Mielnik 
probability space (necessarily of dimension 2). 

In this paper, we shall introduce the notion of a partial 
probability space and use it to obtain a characterization of 
uniformly convex spaces analogous to the characterization of 
inner product spaces just quoted. 
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2. Partial probability spaces. 
A partial probability space is a pair (S,p), where S is a 

nonempty set and p maps S*S into [0,1] in such a way that axioms 
(A) and (3) for probability spaces and the following weakened form 
of axiom (C) hold. 

(C*) For any a e S and any basis 3 of S, 
I p(a,b) < 1. 

beB 
Partial probability spaces abound, for any nonempty subset of a 
probability space is a partial probability space. To see this, 
simply observe that a basis for such a subset is a subset of a 
basis for the whole probability space. It is also easy to con­
struct partial probability spaces which are not subspaces of any 
probability space. We shall consider later the problem of finding 
conditions under which a partial probability space can be embedded 
in a probability space. 

Although there is no immediate physical interpretation of (C*^> 
it is related to the behavior of quantum-mechanical transition 
probabilities between states of an unstable system. If we let S 
consist of the states of such a system, say a neutron, and if we 
let p(a,b) be the probability that a neutron known to be in state 
a at a certain time is found to be in state b ten minutes later, 
then axiom (C) is not satisfied but axiom (C*) is, because there 
is a non-zero probability that the neutron will, during the ten 
minute interval, decay into a proton, an electron, and an anti-
neutrino. Notice the relation between this observation and the 
remarks in the preceding paragraph: Axiom (C) would hold if we 
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acuea to S all the states of the systems into which the neutron 
car. decay. Notice also that our (S, p) fails to be a partial 
probability space because the "if" part of axiom (A) is false 
(and axiom (3) expresses the rather strong assumption of time-
reversal invariance). It would perhaps be reasonable to weaker. 
Xielnik's axioms further by omitting the "if" part of (A) and 
possibly also omitting (3). This would make no difference in 
our main result, the characterization of uniformly convex spaces 
below, since the additional hypotheses used there are sufficient 
to imply the omitted axioms. 
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3• Uniform convexity. 

A normed real linear space N is uniformly convex if for 

every positive z there is a positive 5 such that, for x,y e X, 

jjxjj < 1, j|y| J < I, and | |x-y•] > e imply i l f C x+y)]; < 1-c. 

An equivalent condition is that, for sequences {x^}, {y^} of 
XX XX 

vectors in N of norm <I, if lim j \ ^-(x^+y^) | j - I, then 
— d. x x x x 

n~*"°° 
lim |Jx^-y || = 0. In the paper [2] in which he introduced the 

X X XX n-*<*> 

concept of uniform convexity, Clarkson showed that the classical 

Banach spaces L (1 < p < 00} are uniformly convex. For o > 2, 

the proof is based on the inequality 

where the norm is the L -norm. When a and b are on the unit sphere, 

p 

the right side of (4) reduces to 1, and we obtain axiom (C*) for 

!a+b ! ; p 

the probability function j —p— \ j , a function for which axioms (A) 

and (3) are easily seen to hold as well. Thus, Clarkson!s inequali­

ty (¿0 implies that the unit sphere of L is a partial probability 
P 

space with the above probability function. Note that, when p = 2, 

we obtain again the probability function (1) of Section 1. For 

other values of p, this partial probability space is not a proba­

bility space because is not a Hilbert space. 

To relate uniform convexity of a space N to partial probabili­

ty space structures on its unit sphere S, we need the following 

characterization of uniformly convex spaces. 

Lemma. A normed real linear space N is uniformly convex if 

and only if, for all sequences {a^}, {b > of unit vectors, 
n ii 
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lim||an+b || = 2 implies lim||a -b || = 0. 

Theorem. Let N be a normed real linear space, and let S be 
its unit sphere. N is uniformly convex if and only if, for some 
f e F, the probability function p(a,b) = f(||a+b||) makes S a 
partial probability space. 

Lemma. Suppose g maps [0,2] into [0,1], is monotone non-
decreasing, takes the value 0 at 0 and nowhere else, maps 2 to 1, 
and is continuous at 2. Then there is a g^ e F such that 
g x(t) < g(t) for all t e [0,2]. 
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4. Additional Remarks. 
The comments we made after the proof of the "if" part of our 

theorem show that the theorem remains true if the class F is re­
placed by either 

F^ = {f | f: [0,2]->[0,l] , f strictly increasing, continuous at 
2, f(0) = 0, f(2) = 1} 

or 
F 2 = {f|f:[0,2>[0,1], f continuous, f(2) = 1, and f(t) = 0 

iff t = 0}. 
Furthermore, the theorem remains true if axioms (A) and (B) are 
omitted from the definition of partial probability spaces. Al­
though this observation permits us to redefine partial probability 
spaces so as to include examples like the one discussed in the 
last paragraph of Section 2 (where the "if" part of (A) was false 
and (B) not immediately clear), the added generality would be ir­
relevant in our theorem as both the "if" part of (A) and (B) hold 
for any p of the assumed form f(||a+b)|), f e F (or F^ or F 2 ) . 
Notice, however, that the theorem remains true if we put the in­
equality p(a,b) >_ f(||a+b||) in place of equality, and then (B) 
no longer follows. 

We close this paper with a brief and incomplete discussion 
of conditions under which a partial probability space (S,p) is a 
subspace of a probability space. We define orthogonality and 
bases exactly as in probability spaces. It is no longer true, 
in general, that all bases have the same cardinality. Note, 
however, that in the spaces (S,p) occurring in the theorem of 
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Section 3> all bases have cardinality 2, for a and b are orthogo­
nal iff a = -b. If a e S and B Cs, we define 

p(a,B) = p(B,a) = I p(a,b), 
beB 

and if C C S also, 

p(B,C) = I p(b,C) = I p(B,c) = I I p(b,c). 
beB ceC beB ceC 

Thus, for example, (S,p) Is a probability space iff p(a 3B) = 1 for 
all a e S and all bases B of S. For orthogonal systems (i.e. sets 
of pairwise orthogonal elements) B and C, we write B < C to mean 
that p(b,C) = 1 for all b e B . Axiom (A) guarantees that <_ is 
reflexive; transitivity of <_ follows immediately from the follow­
ing condition (D) which holds in some, but by no means all, partial 
probability spaces: 

(D) If B < C (where B and C are orthogonal systems) then, 
for all a e S, p(a,B) < p(a,C). 

Proposition 1. If the partial probability space (S,p) is a 
subspace of a probability space (S,p), then (S,p) satisfies 
condition (D). 

Condition (D), which we have just shown to be necessary for 
embeddability into a probability space, in some circumstances is 
also sufficient. We probe here just one result of this sort; the 
additional hypothesis about the bases is unnecessarily restrictive, 
but it holds in the spaces (S,p) considered in Section 3. 
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Proposition 2. If condition (D) holds in a partial proba­
bility space (S,p) all of whose bases have the same finite 
cardinality n 3 then (S,p) is a subspace of a probability space 
(of dimension 2n). 

Proofs and details will appear in the Proceedings of AMS. 
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