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A Quantum Theoretical Characterization of

Uniformly Convex Spaces

A.R. Blass and C.V. Stanojevic

1. Introduction.

The classical approach to the foundations of gquantum theory,
pioneered by Birkhoff and von Neumann [1], sought axioms for
quantum logic all of whoserealizations could be represented by
orthogonal projection operators in suitable Hilbert spaces.

B. Mielnik [4] objected that this program would not fully justify
the use of Hilbert spaces in quantum theory, for that theory
deals not only with the yes-noc measurements considered in quantum
logic, but alsc with statistical predictions. Accordingly, he
introduced the following concept of probability space, and showed
that not all of its realizations could be obtained from Hilbert

spaces in the usual quantum-theoretic manner.

A probability space (S,p) consists of a nonempty set S to-

gether with a function p from SxS into the closed interval [0,1]

of the real line, satisfying the following three axioms.

(A) p(a,b) 1 if and only if a = b.

(B) p(a,b) = p(b,a).
To state the last axiom concisely, we first define two members

a and b of S to be orthogonal if p(a,b) = 0. A maximal set of
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Tallwise ortaogonal elemen called a besis o
exlscence of bases is an easy consequence ol Zora's lLemma.

(C) ©TFor any a € S and any ovasis 3 of S,

physical system, and p(a,b) as the probability that & sysvem is Jound

o be In state b after known (o be in state a. on the usual cguantun-

space (modulo identification of a vector a with all its scalar

.- ; . . . 2 ; :
mustiples da, Al = 1) and p(a,b) = l<a,b>!“. A basis for an S
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Vieinix [4] showed that, in any probability space (S,p), all dases
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nave the same cardinality, called the dimension of (S,p). Thuc,
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vne dimension of the provapility spaces used Iin quantum mechanics

-
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s the same as the dimension of the associated Hilbert space.
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There 1s another way to associate a probabllity space wich
any given inner product space N. Let S be the unit sphere oI

hat differ by a phase factor), and

ct

(without identifying vectors

oy - pla,p) = rlleto] 7,

Aithough onliy the norm of N, not the Inner product, appears ex-
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piicitly in the definition of (S,p), tne fact that the norm Iis

associated to an inner product is used in verifying that (S,p)
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satislies Mielnik's axiom (C) (the other two axioms being immedizte).
nceed, the only vector ortvaogonal to a in (S,p) is =-a, so {C) reads
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walcn To.lows Irom the parailelogram law. Notice that (S,p) has
Gimension 2; among these spaces are Mielnlk's examples of probea-

0llivy spaces not obtainable from Hilbert spaces in the usual

space sctructure on the unit sphere of a normed real linear space XN
if and only 17 N is an inner product space. In [6], this resuls
wes genera.ized to snhow that, if is the unit sphere of z normed
real linear space and if (S,p) is a probability space of dimension

N

2 in which p(a,b) is any reasonable function of !|a+b]|]|, then N s

suits, precisely, we introduce, as in [0, the class
3y Fo= {f]|£:00,2] » [0,1], f continuous and strictly increasing,

Tnen Theorem 3.1 of [6] asserts that a normed linear space N is
an inner product space 1f and only i1 its unit sphere S, eguippecd
with some p of the form pla,b) = £(lia+b|]|), £ € F, is a Mielnik
provability space (necessarily of dimension 2).

In this paper, we shall introduce the notion of a partia.s
srovability space and use it to obtain a characterilzation of
S

Tormly convex spaces analogous ©o the characterization ol

inner product spaces just quoted.



2. Pearcial wrobabllity spaces.

A vartial probability space is a pair (S,p), wnere S is &

nonempty set and p maps SxS8 into [0,1] in such a way that axioms

{(A) &né (B) for probabilit
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of axiom (C) hold.
(C¥) TFor any a € S ané any basis B of S,

] pla,b) < 1.
beB

Partiar proovanility spaces avound, for any nonempty subset of a
jepeleler-Yopnp

~

01.1vy space is a partial probability space. To see this,
bset is a subset ol &

r thne whole probabllity space. It 1s also easy to con-

sTruct partial probability spaces which are not subspaces of any
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condivions under which a par

LnL & prooapllity space.

(0]
ct
[
ot
}7
(@]
s
O
ty
Paly

Although there 1s no immediate physical interpr
iv 1s relatved ¢o the behavior of quantum-mechanical transition
provasci.ities between states of an unstable system. if we Let S
consist 0o the states of such a system, say a neutron, and 17 we
Lev o(a,;

& adv a ce
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tain time is found ©to be In state b tTen minutes later,
trern axiom (C) 1s not satisfied but axiom (C¥) is, because there

18 a non-zero probability that the neutron will, during the ten

FJ

minuve interval, decay into a proton, an electron, and an anvi-
neuvrint. Notice the relation vetween this observation and 4tne

remarks in the preceding paragraphn: Axiom (C) would hold if we

nG the following weakened for:

robavlilty space. We shall consicer later the problem ol Tiading

l1al probability space can De emseddec

) be the probability that a neutron known to be in state



ziued To S alli the states of the systvems into which the neutron
can decay. Novice also that our (S,p) fails to be a partial
B N B R e -~ P e : o e A Da " aa
srodability space because the "il" part of axiom (A) Is false
(and axiom (3) expresses tne rather strong assumption of time-
reversal invariance). It would perhaps be reasonable to weakern

L

AT I 3 e aty / A ~ ~
ng the "IV part ol (4, anc

Ze.nik's axioms further by omittin

0Q

D0551ibly also omitting (B). This would make no difference in
our m&in result, the characterizatvion of uniformly convex spaces
oeLow, since the additional hypotheses used there are sulliclent

0 imply the omitted axioms.

U



I- 238
. Uniform convexity.
L rAPrmald man ] l"v\ o "\': 1 Yy P Lsell ro2 T DA
A rnormed real linear space N 1s uxiformly convex 27 fox
every positive € there is & positive ¢ such that, for x,y € N,
[ - Pxr i i - P N T N 2 ;':—/.,\‘» -2
DIXGL S A, 1ViL 24, and g ix-y, 2z e imply [Fixty)|, S --¢.
An equivalent condition is that, for sequences {x_}, {y_} of
?.1 -
vectors in N of norm <1, if lim]]%{xn+yn){{ = 1, then
rire
iimilx_~y_ Il = 0., In the paper [2] in which he introduced the
:“-—)m ad X3
concept of uniform convexity, Clarkson showed that the classical
banach spaces L. (1 < p < =) are uniformly convex. For p > 2,
trhe proofl is based on the inequality
I 1P I ta w1 P - q -
7,0 a'll'b}‘ , o ia=0; | At Ilp PO T O
& | ] — 0 ; < = ‘'al: + =i D
v T2l T TE o SR T v
where tne norm is the Lp—norm. When a and b are on the unit sphere,
the right side of (4) reduces to 1, and we obtain axiom (C¥) Zor
R e
. . v LaTros . : - ) RN
cne provability function || 2”;1 , a function for which axioms (.,
P P
ané (B) are easily seen to holé as well. Thus, Clarkson's Irnegueali-
t7 (4) implies that the unit sphere of LO is a partial probvabilicy
space with the above probapility function. Note that, when p = Z,
we obtain again the probability function (1) of Section 1. For
otner values of p, this partilal probebllity space 1s not a proova-
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o221ty space because Lp is not dllbers
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To relate uniform convexity of

space.

vy space structures on its unit sphere S, we need the following
characterization of uniformly convex spaces.
Lemma. A normed real linear space N i1s uniformly convex 17

and only if, for all sequences {ar}, {o,}

of unit vectors,

space N to partial probabili-



lim||a_+b = 2 implies lim||a_-b = 0,
Lin] |2, +o, || Lin| |2, -0, |

Theorem. Let N be a normed real linear space, and let S be
its unit sphere. N is uniformly convex if and only if, for some
f e F, the probability function p(a,b) = £(||a+b||) makes S a

partial probability space.

Lemma. Suppose g maps [0,2] into [0,1], is monotone non-
decreasing, takes the value 0 at 0 and nowhere else, maps 2 to 1,
and is continuous at 2. Then there 1is a g, € F such that

g,(t) < g(t) for all t e [0,2].



4, Additional Remarks.

The comments we made after the proof of the "if" part of our
theorem show that the theorem remains true if the class F is re-

placed by either

Fl = {f]f:[0,2]+[0,1], f strictly increasing, continuous at
2, £(0) = 0, f£(2) = 1}
or
Fy = {r|f:[0,2]+[0,1], £ continuous, f(2) = 1, and f(t) = 0

iff ¢t = 0}.

Furthermore, the theorem remains true if axioms (A) and (B) are
omitted from the definition of partial probability spaces. Al-
though this observation permits us to redefine partial probability
spaces so as to include examples like the one discussed in the
last paragraph of Section 2 (where the "if" part of (A) was false
and (B) not immediately clear), the added generality would be ir-
relevant in our theorem as both the "if" part of (A) and (B) hold
for any p of the assumed form f(||a+b||), £ ¢ F (or Fi or F,).
Notice, however, that the theorem remains true if we put the in-
equality p(a,b) > f£(]|la+b||) in place of equality, and then (B)
no longer follows.

We close this paper with a brief and incomplete discussion
of conditions under which a partial probability space (S,p) is a
Subspace of a probability space. We define orthogonality and
bases exactly as 1n probability spaces. It is no longer true,
in general, that all bases have the same cardinality. Note,

however, that in the spaces (S,p) occurring in the theorem of



Section 3, all bases have cardinality 2, for a and b are orthogo-
nal iff a = -b. If a € S and.Esg;S, we define
p(a,B) = p(B,a) = | pla,b),
beB
and if ¢ € S also,
p(B,C) = ] p(b,€) = ] p(Bye) = ] [ p(b,c).
beB ceC beB ceC
Thus, for example, (S,p) 1s a probability space iff p(a,B) = 1 for
all a ¢ S and all bases B of S. For orthogonal systems (i.e. sets
of pairwise orthogonal elements) B and C, we write B < C to mean
that p(b,C) = 1 for all b e B. Axiom (A) guarantees that < is
reflexive; transitivity of < follows immediately from the follow-
ing condition (D) which holds in some, but by no means all, partial

probability spaces:

(D) If B < C (where B and C are orthogonal systems) then,

for all a ¢ S, p(a,B) < p(a,C).

Proposition 1. If the partial probability space (S,p) is a

subspace of a probability space (S,p), then (S,p) satisfies
condition (D).

Condition (D), which we have just shown to be necessary for
embeddability into a probability space, 1n some circumstances is
also sufficient. We probe here just one result of this sort; the
additional hypothesis about the bases 1s unnecessarily restrictive,

but it holds in the spaces (S,p) considered in Section 3.
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Proposition 2. If condition (D) holds in a partial proba-

bility space (S,p) all of whose bases have the same finite
cardinality n, then (3S,p) is a subspace of a probability space

(of dimension 2n).

Proofs and detalls will appear in the Proceedings of AMS.
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