Recherche Coopérative sur Programme ${ }^{0} 25$

C. Becchi

A. Rouet

R. Stora

Renormalization of Gauge Theories

Les rencontres physiciens-mathématiciens de Strasbourg - RCP25, 1975, tome 22 «Exposés de : H. Araki, H.J. Borchers, J.P. Ferrier, P. Krée, J.F. Pommaret, D. Ruelle, R. Stora et A. Voros », , exp. no 10, p. 1-57
http://www.numdam.org/item?id=RCP25_1975__22_A10_0
© Université Louis Pasteur (Strasbourg), 1975, tous droits réservés.
L'accès aux archives de la série «Recherche Coopérative sur Programme n ${ }^{\circ} 25$ » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

by

C. Bec CNI ${ }^{+}$
A. mover ${ }^{*}$
R. stom?

II
Atstract : Gauge theories are tharacterized by the Slavnov identities which express their invariance under a farily of transformations of the supergauge type wich involve the Faddeer Popor ghosts. These identities are proved to all orders of renormalized perturtation theory, within the BPHZ framework, when the underlying lie algebra is semi-simple and the gauge function is chosen to be iinear in the fieldsin such a way that all fields are massive. An example, the Sus higgs xibole mosel is analyzed in detafl : the asymptotic theory is formulated in the perturtative sense, and shown to be reasonable, namely, the physical s operator is unitary and independent from the parameters which define the gauge function.

APRIL 1975
75/P.72:

* University of Genova
* Present *ei: Ess : Max Planck Institut fur Physit und Astrophysik, Minchen
${ }^{9}$ Centre de Physique intorique, CuRS, Marseilie
Postal Address: Centre de Physique Theorique . ORRS

31. cnemía Joseph Aiguier

F - i3274 MARSEILLE CEDCX 2 (France)

1-Introduction

In a previous article [1] devoted to the renomalization of the Abelian Higgs Xibble model, we have developed a number of technical tools which will be applied here to the renonalization of non abelian gauge models.

Our analysis relies on the Bogoliubov Parazick Hepp 2 immermann [2] version of renomalization theory. The extensive use of the renomalized quantum action principle of Lowenstein [3] and Lam [4] allows to push the analysis of the algebraic structure of gauge field models.

Very few properties of the perturbation series are actually used here, namely, nothing more than the general consequences of locality [5]. sharpened by the theory of power counting [5], which, through the fundamental theorem of renormalization theory $[5]$ insure the existence of a basis [2][6] of local operators of given dimension and of linear relationships [2] between local operators of different dimensions. More precisely, we shall never use the information contained in the detalled structure of the coefficients involved in such relations, thus forbidding ourselves to envisage no renormalization type theorens [7].

The algebraic structure of classical gauge theories $[8]$ is then deformed by quartiso corrections in a way which can be completely analyzed with the above mentioned economical means, through a systematic use of the implicit function theorem for formal power series [1], provided that it is rigid enough : in technical terws, if some of the cohomology groups [9] of the finite lie algebra which characterizes the gauge theory, vanish. The analysis can thus be successfully carried out when this lie algebra is semisimple - if the obstruction provided by the Adler Bardeen [10] anomaly is absent. We shall thus carry out esst of our analysis in the sem-simple case, and only make a few remarics concerning some of the thenamene which occur when abelian components are involved. For instance, we have noted that the fuifillment of discrete symetries allows favourable simplifications which in particuia lead to complete analyses of massive electrodynamics [11] in the Stueckelberc gauge and of the abelian Kiggs kibble model in cinarge conjugation odo jauges [1]. A complete analysis of abelian cases would recuire proving non renormalization theoreas $[\gamma]$, which would take us far beyond the technical level of the present wort.

Another conservative limitation, due to the present status of renormalization theory, is to discard the study of models in which massless fields are involved, which does not pose new algebraic problems [12] but would force us to rely on work in prosress $[13]$ and to go into analytic details which would obscure the main line of reasoning. In the same spirit, we have not included here the analysis needed to deal with non linear renormalizable gauge functions $[1]$, which would have made this article considerably longer without adding much to our understanding. Similarly, although the main subject of this paper has to do with algebraic properties, we have decided to include one important application which we have illustrated on a specific example.

The heart of the matter is to prove that one can fulfill to all orders of renormalized perturbation theory a set of identities, the so-called Slavnov identities, [1] [14], which express the invariance of the Faddeev Popov ($\Phi \Pi$) [15] Lagrangian under a set of non linear field transformations [1] which explicitly involve the Faddeev Popov Fermi scalar ghost fields. Furthermore the theory should be interpreted whenever possible as an operator theory within a Fock space with indefinite metric involving the $\Phi \boldsymbol{\Pi}$ ghost fields. When this interpretation is possible, the Slavnov identities allow to define a "physical" subspace of Fock space within which the norm is positive definite. The restriction of the S operator to this subspace is then both independent from the parameters which label the gauge function $[11]$, and unitary in the perturbative sense.

This article is divided into two main sections, and a number of appendices devoted to some technical details.

Section 2 covers the algebraic discussion of the Slavnov identities.
Section 3 deals with specific model (the SU2 Higgs Kibble model [16]) for which the operator theory is discussed.

Appendix A sumarizes a number of well known definitions and facts about the cohomology of Lie algebras [1].

Appendix B is devoted to the resolution of some trivial cohomologies encountered in Section 2 .

2-Slavnor Identities
A. The tree approximation
 be a matter field multiplet corresponding to a fully reduced unitary representation D of G, with the infinticeimal version :
(1) $\left.\left\{\omega_{\alpha}\right\} \rightarrow t^{\alpha} \omega_{\alpha},\left\{\omega_{\alpha}\right\} \in\right\}$
$\left\{C_{n}\right\}$ Let $\left\{\boldsymbol{a}_{\alpha y}\right\}$ be a gauge field associated with $\bigcap_{\text {a }}$,
$\left\{\bar{C}_{a}\right\},\left\{\overline{C_{m}}\right\}$, the corresponding Faddeev Poor ghost fields.
We start with a classical Lagrangian of the form :
(2)

$$
\begin{aligned}
\mathcal{L} & =\mathcal{L}\left(\left\{\varphi_{a}\right\},\left\{a_{\alpha \mu}\right\},\left\{c_{a}\right\},\left\{\vec{c}_{\alpha}\right\}\right) \\
& =\mathcal{L}_{\operatorname{lnv}}\left(\left\{\varphi_{a}\right\},\left\{a_{a k}\right\}\right)- \\
& -\frac{1}{k}\left[\frac{1}{2} G_{\alpha} c^{\alpha}-c_{\alpha}(M \bar{C})^{\alpha}\right]
\end{aligned}
$$

\mathcal{L} inv. is the most general dimension four local polynomial invariant under the local gauge transformation :

$$
\begin{align*}
& \delta_{\omega} \varphi_{a}(x)=\int\left[\delta_{\omega_{\mu}(y)} \varphi_{a}(x)\right] \omega_{\alpha}(y) d y \tag{3}\\
& \delta_{\omega} a_{\alpha \mu}(x)=\int\left[\delta_{\omega_{\beta}(y)} a_{\mu \alpha}(x)\right] \omega_{\beta}(y) d y
\end{align*}
$$

(4) $\quad \delta_{\omega_{a}(y)} \varphi_{a}(x)=\delta(x-y) t_{a b}^{\alpha}\left[\varphi(x)+F_{b}\right]$

$$
\begin{aligned}
\delta_{\omega_{p}(y)} a_{\alpha \mu}(x)= & \partial_{\mu}^{x} \delta(x-y) \delta_{\alpha}^{\beta}+ \\
& +g f_{\alpha}^{\beta \gamma} a_{\beta \mu}(x) \delta(x-y)
\end{aligned}
$$

where $\left\{f_{a}^{B Y}\right\}$ are the structure constants of $\hat{h},\left\{F_{b}\right\}$ sane field translation parameters. The gauge function $\left\{\mathscr{G}_{2}\right\}$ will se chosen to be
it near in the fields and their derivatives : :Anear in the fields and their derivatives:

$$
\begin{equation*}
g_{\alpha}=g_{\alpha}^{\beta} \partial^{\mu} a_{\beta \mu}+g_{\alpha}^{a} \varphi_{a} \tag{5}
\end{equation*}
$$

Indices of $f_{\text {are raised and lowered by means of an invariant non }}$ degenerate symmetric tensor. The role of the gauge term is to remove the degeneracy of the quadratic part of $\mathcal{L}_{\text {inv., which is cur nested with }}$ gauge invariance. The field dependent differential operator M involved in the fadseer Popar part of \mathcal{E} is defined through the kerne i
(6) $\quad m_{x y}^{\alpha \beta}=\delta_{\omega_{p}(y)} G^{\alpha}(x)$

The essential property of this Lagrangian is is invariance under the following infinitesimal transformations which we shall call the Slavnov transformatons:

$$
\delta \varphi_{a}(x)=\delta \lambda \quad \delta_{\omega_{\alpha}(y)} \varphi_{a}(x) \bar{C}_{\alpha}(y) \equiv \delta \lambda s \varphi_{a}(x)
$$

(7)

$$
\begin{aligned}
& \delta a_{\alpha k}(x)=\delta \lambda \delta_{\alpha_{p}(y)} a_{\alpha p}(x) \bar{C}_{\beta}(y) \equiv \delta \lambda s a_{\alpha \mu}(x) \\
& \delta C_{\alpha}(x)=\delta \lambda G_{\alpha}(x) \equiv \delta \lambda s C_{\alpha}(x) \\
& \delta \bar{C}_{\alpha}(x)=\frac{\delta \lambda}{2} f_{\alpha}^{\beta \gamma}\left(\bar{C}_{\beta} \bar{C}_{\gamma}\right)(x) \equiv \delta \lambda s \bar{C}_{\alpha}(x)
\end{aligned}
$$

75/R.723
where the summation over repeated indices and the integration over repeated space time variables are understood.

$$
\boldsymbol{\chi} \boldsymbol{\lambda} \text { is a space time independent infinitesimal parameter arian }
$$

 anticommute.

This invariance can be checked immediate fy, by is ing the coronsition law for gauge transformations
(8) $\left[\delta_{\omega_{\alpha}(x)}, \delta_{\omega_{\beta}(y)}\right]=f^{\alpha \beta} \gamma \delta(x-y) \delta_{\omega_{\chi}(y ;}$

Conversely, it is interesting to know whether $\mathcal{\mathcal { L }}$ is up to a divergence the most general Lagrangian leading to an action invariant yonder Slayncy transformations, and carrying no Faddeev Poor charge $Q^{\phi \pi}$:

$$
Q^{\phi \pi} C=C
$$

$$
\begin{align*}
& Q^{\phi \pi} \bar{C}=-\bar{C} \tag{9}\\
& Q^{\phi \pi} \varphi_{a}=Q^{\phi \pi} a_{\alpha k}=0
\end{align*}
$$

Let
(10) $\Psi=\left(\left\{\varphi_{a}\right\},\left\{a_{\alpha \mu}\right\},\left\{C_{\alpha}\right\},\left\{\bar{C}_{\alpha}\right\}\right)$
and given a functional $\mathcal{F}(\underline{\Psi})$. let us denote
(11)

$$
\delta \lambda s \mathcal{F}(\Psi)=\delta \Psi(x) \delta_{\Psi(x)} F(\Psi)
$$

75/P.723
where $\delta \Psi=\delta \lambda \leqslant \Psi$ is the variation of Ψ under the slavnov transformation of parameter $\boldsymbol{\delta} \boldsymbol{\lambda} \quad$ (f. Eq.7). A remarkable property of \boldsymbol{S} is:
(12) $s^{2} \mathscr{F}(\Psi)=(M \bar{C})_{\alpha}(x) \delta_{C_{x}(x)} \mathscr{F}_{\mathcal{F}}(\Psi)$

This property actually sumarizes the group law as follows:
tet

$$
\begin{aligned}
& \delta \varphi_{a}=\delta \lambda\left(\theta_{a b}^{\alpha} \varphi_{b}+q_{a}^{\alpha}\right) \bar{C}_{\alpha} \equiv \delta \lambda s \varphi_{a} \\
& \delta a_{\alpha \mu}=\delta \lambda\left(\theta_{\alpha}^{\beta \gamma} a_{\gamma \mu} \bar{c}_{\beta}+q_{\alpha}^{\beta} \partial_{\mu} \bar{c}_{\beta}\right) \equiv \delta \lambda s a_{\alpha \mu}
\end{aligned}
$$

(13)

$$
\begin{aligned}
& \delta \bar{C}_{\alpha}=\delta \lambda \frac{1}{2} \varepsilon_{\alpha}^{\beta \gamma} \bar{C}_{\beta} \bar{C}_{\gamma} \equiv \delta \lambda s \bar{C}_{\alpha} \\
& \delta C_{\alpha}=\delta \lambda G_{\alpha}(\underline{\varphi}, \underline{a}) \equiv \delta \lambda s C_{\alpha}
\end{aligned}
$$

Eq.(12) implies:
(14) $s^{2} \varphi_{a}=s^{2} a_{\alpha \alpha}=s^{2} \bar{C}_{\alpha}=0$
whidah in terns of Eq.(13) reads :
(a) $\varepsilon_{\alpha}^{\beta \lambda} \varepsilon_{\lambda}^{\gamma \delta}+\varepsilon_{\alpha}^{\gamma \lambda} \varepsilon_{\lambda}^{\delta \beta}+\varepsilon_{\alpha}^{\delta \lambda} \varepsilon_{\lambda}^{\beta \gamma}=0$
(15) (b) $\left[\theta^{\alpha}, \theta^{\beta}\right]_{a b}-\varepsilon_{\gamma}{ }^{\alpha \beta} \theta_{a b}^{\gamma}=0$
(c) $\left[\theta^{\alpha}, \theta^{\beta}\right]_{\delta \eta}-\varepsilon_{\gamma}{ }^{\alpha \beta} \theta_{\delta \eta}^{\gamma}=0$

75/P. 723
7
(d) $\left(\theta^{\alpha} q^{\beta}-\theta^{\beta} q^{\alpha}-\varepsilon_{\gamma}^{\alpha \beta} q^{\gamma}\right)_{a}=0$
(15)
(e) $\left(\theta^{\alpha} q^{\beta}-\varepsilon_{\gamma}^{\alpha \beta} q^{\gamma}\right)_{s}=0$

Eq:(15a) is the Jacobi identity. If we choose a solution corresponding to I. Eq.(15b) and Eq. (15c) assert that θ^{α} is a repromentation of \boldsymbol{h}.
If h is semi-simple, then all solutions (cf. Appendix A) of Eq. (15d are of the form

$$
\begin{equation*}
q_{a}^{\alpha}=\left(\theta^{\alpha} q\right)_{a} \tag{16}
\end{equation*}
$$

for some fixed $\left\{q_{a}\right\}$.
for some fixed $\left\{q_{a}\right\}$.
Finally Eq. (15e) states that q_{β}^{α} intertwines $\theta_{\beta \gamma \text { and }}^{\alpha} \varepsilon_{\beta \gamma}^{\alpha}$ (the adjoint representation of \mathcal{F}). In the semi-simple case $\theta_{\beta \gamma}^{\beta}$ is thus equivalent to the adjoint representation if $\left\{q_{\beta}^{\alpha}\right\}$ does not vanish identically, a requirement which belongs to the definition of $\{\mathbf{Q}\}$ as a gauge field. We may then choose in this case without any loss of generality Eq.(13) to be identical with Eq. $(3,4,7)$.

Let us now come back to the Lagrangian \mathcal{L}.
if \mathcal{L} is slavnov invariant namely such that

$$
\begin{equation*}
s \int \mathscr{L}(x) d x=0 \tag{17}
\end{equation*}
$$

a fortiori
(18)

$$
s^{2} \int f(x) d x=0
$$

Now, \mathcal{L} is of the form
(19)

$$
\begin{aligned}
& \mathscr{L}=\mathscr{L}_{\text {inv. }}\left(\left\{\varphi_{a}\right\},\left\{a_{\alpha \mu}\right\}\right)+C_{\alpha}(x) K_{x y}^{\alpha \beta} \bar{C}_{\beta}(y) \\
& +\Delta \mathscr{L}\left(\left\{\varphi_{a}\right\},\left\{a_{\alpha \mu}\right\}\right)+L^{\alpha \beta \gamma \delta}\left(c_{\alpha} C_{\beta} \bar{C}_{\gamma} \bar{C}_{\delta}\right)(x)
\end{aligned}
$$

75/P 723
mere $\mathscr{L}_{\text {inv. }}$, invariant under gauge transformations, is by itself a solustimon of Eq.(17). By Eq.(12) it is obvious from Eq.(18) that
(20)

$$
L^{\alpha \beta \gamma \delta}=0
$$

and the:

$$
\int(m \bar{C})_{\alpha, x}(k \bar{C})_{x}^{\alpha} d x=0
$$

sent-staple
(22)

were $\boldsymbol{H}^{\prime \prime}$ is m merical symetrical matrix. If \mathcal{C} has an abelian invariant part \mathcal{A} this is not the general solution, the $\Phi \Pi$ mass term selling left undetermined.
coiling beck to Eq. $\{11,19$) yields in the semi-simple case :
(23) $\mathcal{L}^{p}=\mathcal{P}_{\text {iou. }}\left(\left\{\varphi_{a}\right\},\left\{a_{a p}\right\}\right)+$

$$
+C_{\alpha} \Gamma_{\alpha^{\prime}}\left(m^{\alpha^{\prime} \rho} \bar{C}_{\beta}\right)-\frac{1}{2} G_{\alpha} \Gamma^{\alpha \alpha^{\prime}} G_{\alpha^{\prime}}
$$

Which is identical with Eq.(2) modulo a redefinition of $\mathcal{G}_{\boldsymbol{\alpha}}$ and C_{d} In the abelian case, there may arise an ambiguity unless the gauge function G. ($\alpha \in \mathcal{A}$) contains besides the $\sum^{+A}, \boldsymbol{f}$, terms a part which is invariant under of

For instance in quantum electrodyrialics in the Stleckelberg gauge
[11], there cay arise the slavnov invariant photon- $\Phi \Pi$ mass term :

$$
\begin{equation*}
\frac{a_{\mu} a^{\mu}}{2}+c \bar{C} \tag{24}
\end{equation*}
$$

This is however not the case in the throft-veltmar [18] gauge winch contains an $a_{\mu} a^{\mu}$ term.
4 simp ar phenomenon, which occurs in tie a de' an riggs int: anode?
produces quite spectacular complications $\sum_{i}^{i} \int_{j}$ one makes a comparison with its SU2 analog (cf. Section 3) !

make it unstable under deformations.

that El is semi-simple (and compact: :
B. Perturbation theory: the Slavnov identities.

The problem is to find a renomaiizable effective Lagrangian
whose lowest order term in \hbar is given by Eq.(2), assuming that all the parameters in Eq. (2) have been chosen in such a way that all mass parameters are strictly positive, and which is furthermore invariant in the renomalized sense [l] under the Slavnov transformation

$$
\delta \phi_{i}=\delta \lambda N_{2}\left[\left(T_{i j}^{\alpha} \phi_{j}+Q_{i}^{\alpha}\right) \bar{C}_{\alpha}\right] \equiv \delta \lambda P_{i}
$$

(26)

$$
\delta \bar{C}_{\alpha}=\delta \lambda \frac{1}{2} N_{2}\left[F_{\alpha}^{\beta \breve{C}} \bar{C}_{\beta} \bar{C}_{\gamma}\right] \equiv \delta_{\lambda} \lambda P_{\alpha}
$$

$$
\delta C_{\alpha}=\delta \lambda G_{\alpha} \equiv \delta \lambda G_{\alpha}^{i} \Phi_{i}
$$

where

75/P.323
(27)

$$
\begin{aligned}
& \left\{\phi_{i}\right\}=\left\{\left\{\varphi_{a}\right\},\left\{a_{\alpha \mu}\right\}\right\} \\
& Q_{\beta \mu}^{\alpha}=Q_{\beta}^{\alpha} \partial_{\mu}, \quad G_{\alpha}^{\beta+}=G_{\alpha}^{\beta} \partial^{\mu}
\end{aligned}
$$

and $\mathcal{G}_{i}^{i}, F_{\infty} P Y, T_{i j}^{a}, Q_{i}^{\alpha}$ are to be found as formal power series in $\hbar^{[1]}$ whose lowest order terms are the corresponding tree parameters, namely

$$
P_{i}=\stackrel{\circ}{P}_{i}+O(\hbar)
$$

(23)

$$
\begin{aligned}
& P_{\alpha}=\stackrel{\circ}{P}_{\alpha}+O(\hbar) \\
& g_{\alpha}^{i}=\stackrel{\circ}{g}_{\alpha}^{i}+O(\hbar)
\end{aligned}
$$

with

$$
\dot{P}_{i}=\delta \Phi_{i}
$$

(29)

$$
\begin{aligned}
& \stackrel{P}{P}_{\alpha}=s \bar{C}_{\alpha} \\
& \stackrel{\rightharpoonup}{G}_{\alpha}^{i}=g_{\alpha}^{i}
\end{aligned}
$$

cf. ES $(4,5,7)$.
In order to deal with radiative corrections, let us add to \mathbb{P} ff the external field and source terms [19].
(30) $\gamma^{i} P_{i}+\zeta^{\alpha} P_{\alpha}+J^{i} \Phi_{i}+\bar{\xi}^{\alpha} C_{\alpha}+\xi^{\alpha} \bar{C}_{\alpha}$
were γ^{i} is assigned dimension two, $\Phi \mathbf{T}$ charge +1 , Fermi statistics, is assigned dimension two, $\Phi \Pi$ charge +2 , Bose statistics ; J^{+}, $\xi^{4} \xi^{4}$. ξ^{d} are sources of the basic fields: \boldsymbol{J}^{i} of the Bose type, ξ^{a}. of the Fermi type.
Performing the Slavnov transformation Eq.(26), and using the
quantum action principle yield in tents of the Green functional [1] $Z_{6}(\mathcal{O}, \eta)$:
7517. 723

$$
\mathcal{S} Z_{c}(\eta, \eta) \equiv \int d x\left(J^{i} \delta_{y^{i}}-\xi^{\alpha} \delta_{y^{\alpha}}-\xi^{\alpha} g_{\alpha}^{i} \delta_{j}\right)(x)
$$

(31) $. Z_{c}(\eta, \eta)=\int d x \Delta(x) Z_{c}(\eta, \eta)$

(32)

$$
\begin{aligned}
& \hat{N}=\left\{T^{i}, 5^{\alpha}, \frac{T}{3}\right\} \\
& H=\left\{x^{i}, 5^{\alpha}\right\}
\end{aligned}
$$

${ }^{(33)} \int d x \Delta(x)=\int d x N_{5}\left[-s^{2}\left(\mathcal{S}_{\text {eff }}+\gamma^{i} P_{i}+\xi^{\alpha} P_{\alpha}\right)+\hbar 0\right](x)$
where $\mathcal{S}^{\mathcal{P}}$ is the naive transformation EG. '11; corresponding to Ea.\{26): and $\mathcal{K} \mathbb{Q}$ lumps together all radiative corrections.

Making explicit the external field dependence, we shall write
(34)

$$
\begin{aligned}
& \Delta=\Delta_{0}+\gamma^{i} \Delta_{i}+\zeta^{\alpha} \Delta_{\alpha} \\
& Q=Q_{0}+\gamma^{i} Q_{i}+\zeta^{\alpha} Q_{\alpha}
\end{aligned}
$$

Introducing a new classical field β carrying $\$ T$ charge $~ I ~$ and ; nearly compiled to Δ. the lagrangian becomes

$$
\begin{align*}
p_{e f f}^{(n, \beta)} & =\alpha_{e f f}+y^{i} P_{i}+s^{\alpha} P_{k}+\beta \alpha \tag{35}\\
& =\mathcal{L}_{e f f}^{(\eta)}+\beta \Delta
\end{align*}
$$

Performing now the quantum variation of the ie ads

$$
\delta \phi_{i}(x)=\delta \lambda N_{2}\left[\delta_{\gamma^{i}} \int \mathcal{Q}_{e f f}^{(\eta, \beta)}(y) d y\right](x)
$$

35, $\quad \delta \bar{C}_{\alpha}(x)=\delta \lambda N_{2}\left[\delta_{y^{\alpha}} \int \mathscr{L}_{\text {eff }}^{(\eta, \beta)}(y) d y\right](x)$

$$
\delta C_{\alpha}(x)=\delta \lambda\left(G_{\alpha}^{i} \Phi_{i}\right)(x)
$$

$$
\begin{aligned}
& \quad \mathcal{Z} Z_{c}(J, \eta, \beta)=\int a x \delta_{\beta(x)} Z_{c}(J, \eta, \beta)+ \\
& +\int d x\left[\beta\left\{s^{\Delta}\left(\mathcal{Q}_{e f f}+\gamma^{i} \dot{P}_{i}+\xi^{\alpha} \dot{P}_{\alpha}\right)+s \Delta\right\}+O(\hbar \Delta, \beta)\right](x) \\
& \cdots Z_{c}(J, \eta, \beta)
\end{aligned}
$$

 arresters: :2

$$
\delta \phi_{i}=\delta \lambda N_{2}\left(-s P_{i}+\hbar Q_{i}\right)
$$

(33) $\delta \bar{C}_{\alpha}=\delta \lambda N_{2}\left(\Delta P_{\alpha}-\hbar Q_{\alpha}\right)$

$$
\delta C_{\alpha}=0
$$

.sc $Z_{c}(y, \eta, \beta)$ is the Green functional corresponding to $\mathcal{L}_{\text {eff }}^{(\eta \beta)}$
Thus, :man sing

$$
J^{2} Z_{c}(J, \eta)=-\int d x\left[\bar{\xi}^{\alpha} G_{\alpha}^{i} \delta_{\gamma^{i}}\right](x) Z_{c}(\eta, \eta)
$$

where we have used the arereviation

$$
Z_{c}(\eta, \eta)=Z_{c}(y, \eta, 0)
$$

we get

$$
\begin{aligned}
& -\int d x\left[\bar{\xi}^{\alpha} g_{\alpha}^{i} \delta_{y^{i}}\right](x) Z_{c}(y, \eta)= \\
& { }_{400}=\left.J \int d x \delta_{\beta(x)} Z_{c}(y, \eta, \beta)\right|_{\beta=0} \\
& =-\int d x\left[J^{\Delta}\left(2_{e f f}^{0}+\gamma^{i} P_{i}^{0}+5^{*} \dot{f}_{\alpha}\right)+s \Delta+C(t \Delta)\right](x) \ldots \\
& \ldots Z_{c}(y, \eta)
\end{aligned}
$$

since
(41) $\int d x d y \delta_{\beta(x)} \delta_{\beta(y)} \mathcal{L}_{c}(\gamma, \eta, \beta)=0$

In terms of the vertex functional $T(\Psi, \eta)=\Gamma\left(\phi_{c}, c_{a}, \bar{C}_{a}, \eta\right)$ which is the Legendre transform of $\mathcal{Z}(\mathbb{Z}, 2)$ with respect to $\%$.
Eq. (40) rods:
Eq. (40) roods:

$$
\begin{aligned}
& \int d_{x}\left[\delta_{c_{i}} T g_{x}^{i} \delta_{i} T\right](x)= \\
& =\int d x\left[s^{0}\left(x_{\text {eff }}+\gamma^{i} p_{i}+f^{4} P_{l}\right)+s \Delta+o(\Delta \Delta)\right](x) \\
& =\int d x A^{\prime}(x)+O(+\Delta)
\end{aligned}
$$

Eq. (42) leads to a consistency condition for A. Indeed fa. (42) is perturbed version of the equation
(33) $\int d x\left[\delta_{C_{x}} \Gamma g_{\alpha}^{i} \delta_{\delta_{i}} \Gamma\right](x)=0$

we $\int d x\left[\delta_{C_{\alpha}}\left\{\int d y \alpha_{\text {eff }}^{(n)}(y)\right\} G_{\alpha}^{i} C_{\gamma_{i}}\left\{\int d z \mathscr{L}_{\text {eff }}^{(q)}(z)\right\}\right](x)=0$
since for any field C
(45) $\quad \delta_{\omega(x)} \Gamma(\Psi, \eta)=\delta_{\omega(x)} \int d y \alpha_{\text {eff }}^{(\eta)}(y)+O(\lambda)$

We are seen in the previous section that Eq. (44) : as an equation for ,
possesses the general solution
(4) $\delta_{c_{k}} \int \sum_{\text {eff }}^{(\eta)} d x=\Gamma^{\alpha \alpha^{\prime}} \mathcal{g}_{\alpha^{\prime}}^{i} \delta_{\gamma^{i}} \int \mathscr{L}_{e f f}^{(\eta)}(x) d x$
where $I_{\text {is a numerical symateical matrix. }}$
intis provides solution to $\mathrm{E}_{\mathrm{q}}^{\mathrm{q}}$. (Ai)
(47) $\quad \delta_{c_{\alpha}} \Gamma=\Gamma^{\alpha \alpha^{\prime}} G_{i}^{\alpha^{\prime}} \delta_{\gamma_{i}} \Gamma$

Anis is the general solution of Eq. Aatiecause zq.i43j ic a quantum perturbation of Eq. (44).
Hence the general solution of Eq. (42) is given by

when, toking into account the structure of the X^{0} couplings can be written in the form

where $R^{\left(\Delta^{\prime}\right)}$ is 0^{*} the order of Δ^{\prime}.
Substituting Eq.(49; into Eq. (42) leads to

$$
=\int d x \Delta^{\prime}(x)+O(\hbar \Delta)
$$

Recalling Eqs. (28) (29) one has
(51) $\quad g_{\alpha}^{i} P_{i}=g_{\alpha}^{i} P_{i}+O(\hbar)$

Hence, using Eq.(26),

$$
g_{\alpha}^{i} \delta_{\gamma^{i}(x)} \int d y \alpha_{e f f}^{(\eta)}(y)=s g_{\alpha}^{i} \phi_{i}+O(t)
$$

(52)

$$
=J^{2} C_{\alpha}+O(\hbar)
$$

We have thus obtained the consistency condition:

$$
\begin{aligned}
& \quad \iint^{\Delta} d x\left(\mathscr{L}_{0 \mu}+\gamma^{i} \stackrel{\circ}{P}_{i}+\xi^{\star} \stackrel{\circ}{P}_{\alpha}\right)(x)+J \int d x \Delta(x) \\
& =-J^{2} \int R_{(x) d x}^{\left(\Delta^{\prime}\right)} O(\hbar \Delta)
\end{aligned}
$$

Now, the most general form of \triangle is

75/P. 723

$$
\begin{aligned}
\Delta \alpha \alpha^{\prime}= & \left(\Delta^{\alpha} \bar{C}_{\alpha}\right)(x)+\left(C_{\alpha} \Delta_{\partial \beta}^{\alpha \beta \gamma} \bar{C}_{\gamma}(\gamma) \bar{C}_{\gamma}(x)\right)(x)+ \\
& +\left(C_{\alpha} C_{\beta} \bar{C}_{\gamma} \bar{C}_{\delta} \bar{C}_{\eta}\right)(x) \Delta^{\alpha \beta, j \delta \gamma}
\end{aligned}
$$

(50) $+\left(\gamma^{i} \Delta_{i}+\xi^{\alpha} \Delta_{\alpha}\right)(x)$
where dimensions and quantion numbers are taken intc eccount by
(55) $\Delta_{i}(x)=\frac{1}{2}\left[\Theta_{i j}^{\alpha \beta} \phi_{j} \bar{c}_{\alpha} \bar{c}_{\beta}+\bar{C}_{\alpha} \Sigma_{i}^{\alpha \beta} \bar{C}_{\beta}\right](x)$
with
(56) $\quad \sum_{\gamma \mu}^{\alpha \beta}=\sum_{\gamma}^{\alpha \beta} \partial_{\mu}$
(57) $\Delta_{\alpha}(x)=-\frac{1}{6} \Gamma_{\alpha}{ }^{\beta \gamma \delta}\left(\bar{c}_{\beta} \bar{c}_{\gamma} \bar{C}_{\delta}\right)(x)$
 $\left(\gamma^{2}, \xi^{\alpha}\right)$, tre exicimal tield depenentent part of the left hand side of Eq. (53) . $_{\text {ast De }} O(\hbar \Delta)$. nomily.

$$
\text { (58) } J^{\Delta} \int d x\left(\gamma^{i} \stackrel{\circ}{P}_{i}+\xi^{\alpha} \stackrel{\circ}{P}_{\alpha}\right)(x+s] d x \Delta(x)=0(\hbar \Delta)
$$

It is shom in Appendix 8 , by cohomological metrods, that, as a result, the externa: field dependent part of Δ is of the fira

$$
\begin{aligned}
& \text { (59) } \int\left(\gamma^{i} \Delta_{i}+\xi^{2} \Delta_{i}\right)(x) d x=-J^{\dot{p}_{+}+\pi} \int\left[\gamma^{i}\left(\dot{p}_{+} \pi\right)_{i}+\xi^{*}(\dot{P}+\pi)\right]\left(x_{i}\right) d x \\
& +0(\hbar \Delta) \\
& \text { 75R. } 233
\end{aligned}
$$

(60)

$$
\begin{aligned}
& \Pi_{i}=\widehat{\Theta}_{i j}^{\alpha} \phi_{j} \bar{C}_{\alpha}+\hat{\Sigma}_{i}^{\alpha} \bar{C}_{\alpha} \\
& \Pi_{\alpha}=\hat{\Gamma}_{\alpha}^{\beta \gamma} \bar{C}_{\beta} \bar{C}_{\gamma}
\end{aligned}
$$

with

$$
\begin{equation*}
\hat{\Sigma}_{\beta, \mu}^{\alpha}=\hat{\Sigma}_{\beta}^{\alpha} \partial_{\mu} \tag{61}
\end{equation*}
$$

 chosen to be linear in Θ, \sum, as shown in Appendix 8 .

Now, we know from the quantum action principle that the external field dependent part of $\boldsymbol{\Delta}$ is of the form (cf. Eqs. (33), 34):

$$
\begin{aligned}
\int_{(62)} d x\left(\gamma^{i} \Delta_{i}+\xi^{\alpha} \Delta_{\alpha}\right)(x) & =-J^{P}\left(d x\left(\gamma^{i} P_{i}+\xi^{\alpha} P_{\alpha}\right)(x)+\right. \\
& +\hbar\left(\left(\gamma^{i} Q_{i}+\xi^{\alpha} Q_{\alpha}\right)(x) d x\right.
\end{aligned}
$$

where O_{0} are formal power series in $\frac{\hbar}{\boldsymbol{L}}$ and in the coefficients of Leafing . From the previous observation that \prod_{i}, \prod_{a} are linear in Δ_{i}. Δ_{α}, it follows that Π_{i}, \prod_{α} are formal power series of the same typo as Q_{i}. Sa.

Finally the system
(63) $\quad \prod_{i} \therefore \prod_{\alpha}=0$
which insures that (cf. Eq. (59)
(64) $\int d x\left(y^{i} \Delta_{i}+S^{\alpha} \Delta_{\alpha}\right)(x)=O(A \Delta)$

75/P.723
as format! power series in $\hbar, P_{i}-\mathscr{P}_{i}, P_{\alpha}-\stackrel{\circ}{P}_{\alpha}$, ind comp,
With (52) we see that. to liver
(65)

$$
\begin{aligned}
& T_{i} \simeq P_{i}-\stackrel{\circ}{P}_{i} \\
& \Pi_{\alpha} \simeq P_{\alpha}-\stackrel{\leftrightarrow}{P}_{\alpha}
\end{aligned}
$$

Hence system; 65 assures the form

$$
P_{i}{\stackrel{\circ}{P_{i}}}_{i}=\Theta_{i}\left(\hbar, P_{-} \dot{P}\right)
$$

(06)

$$
P_{\alpha-} \stackrel{\circ}{P}_{\alpha}=\Theta_{\alpha}\left(\hbar, P_{-} \stackrel{\hbar}{\Gamma}\right)
$$

bet is now look at the external field independent terms in Ω, which is $O(K \Delta)$ in the external? fields. The consistency condition now reads
(67) $J^{2} \int R_{(\Delta)}^{\left(\Delta^{\prime}\right)} d x=-J \int d x \Delta_{0}(x)+O(\hbar \Delta)$
ie.
(68) $\left.\quad \iint d x(\lrcorner R^{\left(\Delta^{\prime}\right)}+\Delta_{0}\right)(x)=O(\hbar \Delta)$
(69) $\quad \Delta_{0}=\left.\Delta\right|_{\gamma=5}=0$
if we can prove int $\int \Delta_{0}(x) d x$ is of the arm
(70) $\int d x \Delta(x)=\iint \hat{\Delta}_{a}(x)+0(+\Delta)$

75/P.:23
${ }_{5}^{8}$
comparing with Eq.(33)(34) which can ie :... ito it a torn
(11) $\Delta_{0}=-\Delta \mathcal{L}_{\text {eff }}+\hbar{\underset{\sim}{0}}_{\infty}^{\left(\hbar, \alpha_{i f}^{i n t}\right)}$
where $\hbar \tilde{Q}_{0}=\hbar Q_{0}+\left(f-\delta \tilde{S}^{P} f_{\boldsymbol{f}}\right.$ is a som power sis w he notated arguments, it follows that $\widetilde{\mathbb{Q}}_{\mathbf{o}} \boldsymbol{\pi}$ is in the ami

Since the equation
(73) $\hat{L}_{\text {eff }} x^{t}-\hat{Q}_{0}\left(\hbar, x_{e f f}^{n t}\right)=0$
is soluble for

$$
\begin{equation*}
\mathscr{L e f f}-\mathcal{L}=O(\hbar) \tag{74}
\end{equation*}
$$

its solution leaves us with

$$
\begin{equation*}
\Delta_{0}=O(\hbar \Delta) \tag{75}
\end{equation*}
$$

Recalling that also (cf.Eq.(64))
(76) $\quad \Delta_{i}=O(\hbar \Delta), \quad \Delta_{a i}=O(\hbar \Delta)$
we conclude : : :
(77) $\quad \Delta=O(\hbar \Delta)$
hence
70

$$
\Delta=0
$$

20
which we want to achieve.
Now the consistency condition shows that
(79) $\int d x \Delta_{0}^{05}=-J \int R_{(0) d x}^{(\Delta)}+\Delta_{4}+O(\hbar \Delta)$
mere
(80) $\quad \rightarrow \Delta_{4}=0$

Thus, there remains to prove that any $\boldsymbol{\Delta}_{4}$ can be put in the form
(81)

$$
\Delta_{4}=J \hat{\Delta}_{4}^{7}
$$

using for Δ_{8} the expansion (cf.Eq.(54))
(82)

$$
\begin{aligned}
\Delta_{4}(x) & =\Delta_{4}^{\alpha}(x) \bar{C}_{\beta}(x)+C_{\alpha}(x) \Delta_{4 x y x}^{\alpha \beta \gamma} \bar{C}_{\beta}(y) \bar{C}_{\gamma}(x)+ \\
& +C_{x}(x) C_{\beta}(x) \bar{C}_{\gamma}(x) \bar{C}_{g}(x) \bar{C}_{y}(x) \Delta_{G}^{\alpha \beta, \gamma \delta \gamma}
\end{aligned}
$$

since (80) implies
(83)

$$
s^{2} \Delta_{h}=0
$$

- discussion similar to that found at the end of section A (cf.Eqs.(17),(18))
shows that
(84) $\Delta_{4}^{\alpha \beta, \gamma \delta \gamma}=0$
where the musical tensor $\Gamma^{\alpha \delta} y$ is symmetric in α and δ. Using now

$$
1 \Delta_{4}=0
$$

$$
21
$$

15/P. 723
yields
(85) $\prod^{\hat{\alpha \xi} \gamma}=0$
and
(86) $\delta_{\alpha(x)} \Delta_{G}^{\beta}(y)-\delta_{\omega_{1}(y)} \Delta_{4}^{\alpha}(x)-f^{\alpha \beta} \delta(x-y) \Delta_{\gamma}^{\gamma}(y)=0$

One can show [20] that the general solution of $E 9 .(86)$, the first cohomology condition for the gauge Lie algebra, which is nothing else than the Hess Zumino [9] consistency condition, is
(87) $\Delta_{G}^{\alpha}(x)=\delta_{C_{\alpha}(x)} \hat{\Delta}_{G}+g_{\alpha}(x)$
where $g_{\alpha}(x)$, the Bardeen [10] anomaly has the form
${ }_{(88)} g^{\alpha}(x)=\partial^{\beta} \epsilon_{\mu \nu \rho \sigma}\left[D^{\alpha \beta \gamma} \partial{ }^{\nu} a_{\beta}^{\rho} a_{\gamma}^{\sigma}+F^{\alpha \beta \gamma \delta} a_{\beta}^{\nu} a_{\gamma}^{\rho} a_{\delta}^{\sigma}\right]$
where $D^{\alpha \beta \gamma}$ is a totally symmetric invariant tensor with indices in the adjoint representation of \mathcal{Z} and
(89) $F^{\alpha \beta \gamma \delta}=\frac{1}{12}\left[D^{\alpha \beta \lambda} f_{\lambda}^{\gamma \delta}+D^{\alpha \gamma \lambda} f_{\lambda}^{\delta \beta}+D^{\alpha \delta \lambda} f_{\lambda}^{\beta \gamma}\right]$

Such an anomaly can only arise if the tree Lagrangian contains $\mathcal{E}_{\mu v p}$ or X_{5} symbols and if there is a non trivial D tensor. In the absence of such
an amy. one has:

$$
(90) \bar{C}_{\alpha}(x) \Lambda_{4}^{\alpha}(x)=\bar{C}_{\alpha}(x) \delta_{c_{4}(x)} \hat{\Delta}_{4}=6 \hat{\Delta}_{4}
$$

which completes the proof of the slavnov identity in such cases.

It will be of interest in the ti an ing to write down the fodder
Popov ghost equation of motion ir terms $\%$ r ye j? avow identity. it follows
from Eq. $\{2$) that once the Slavrou identic: his open proved,
(9) $\int\left[\delta_{C_{4}} \Gamma g_{i}^{\alpha} \delta_{\gamma_{i}} \Gamma\right](x) d x=0$
and we know that the general solution of this equation is

where ${ }^{\text {a }}$ is ty metrical matrix. Taking the legendre transform of Eq.(92) yields
(93) T" $T^{\prime \prime} G_{i}^{\prime} \delta_{\gamma_{i}(x)} z_{c}(\partial, \eta)=\bar{E}^{\alpha}(x)$
whit h is therefore the $\Phi \boldsymbol{\Pi}$ equation of motion. One should also note that T. $\}$ is invertible in the tree approximation and therefore to all orders so thatEq.(93) may be written in the form

$$
\begin{equation*}
\text { G}_{i}^{\alpha} \delta_{\gamma_{i}(x)} Z_{c}(\eta, \eta)=\left(T^{-1}\right)^{\alpha} \bar{E}^{\alpha^{\prime}}(x) \tag{90}
\end{equation*}
$$

3 - Physical Interpretation An Example [16]
Given a gauge theory which has been remurmaltacd in such 3 way that a slavnoy identity molds, there remains to show that one can interpret it in physical terms, which is not obvious since many ghost fields are involved © Da, C. $\overline{\mathbf{C}} \ldots$. First one should specify the connection between the parameters left arbitrary in the Lagrangian, and physical parameters, (masses, coupling constants; through the fulfillment of suitable normalization conditions. , hen, once the theory has been set up within the framework of a fixed Pock space, one has to specify a physical subspace within which the theory is reasonable, e.g. the S operator is unitary and independent from unphysical parameters among which the \mathcal{G}^{i} cf.Eq.(26).

In order to make this program explicit we shall treat in some details the SU2 Highs Kibble model [16] in a way which parallels our treatment of the abelian Highs Kibble model [1].
A. The Classical Theory.

The basic fields are $\underline{\Psi}=\left\{\sigma, \pi_{\infty}, a_{\propto \mu}, C_{\infty}, \bar{C}_{\alpha}\right\}, \alpha=4,2,3$ At the classical level, the Lagrangian is invariant under the slavnov transformmation :

$$
\begin{aligned}
& \delta \pi_{\alpha}=\delta \lambda\left[-\frac{e}{2} \varepsilon_{\alpha}^{\beta \gamma} \pi_{\beta} \bar{c}_{\gamma}+\frac{e}{2}(\sigma+F) \bar{c}_{\alpha}\right] \equiv \delta \lambda \mathscr{R}_{\alpha} \\
& \delta \sigma=\delta \lambda\left[-\frac{e}{2} \pi^{\alpha} \bar{c}_{\alpha}\right] \equiv \delta \lambda \mathscr{Z}_{0}
\end{aligned}
$$

(95)

$$
\begin{aligned}
& \delta a_{\alpha \mu}=\delta \lambda\left[\partial_{\mu} \bar{C}_{\alpha} e \varepsilon_{\alpha} \beta a_{\beta \mu} \bar{C}_{\gamma}\right]-\delta \lambda \bar{C}_{\alpha \mu} \\
& \delta \bar{C}_{\alpha}=\delta \lambda\left[\frac{e}{2} \varepsilon_{\alpha} \beta \gamma \bar{C}_{\beta} \bar{C}_{\gamma}\right] \equiv \delta \lambda \bar{C}_{\alpha} \\
& \delta C_{\alpha}=\delta \lambda\left[\partial^{\mu} a_{\alpha \mu}+\delta \pi_{\alpha}\right]=\delta \lambda \mathcal{G}_{\alpha}
\end{aligned}
$$

7572.72
mere $\mathcal{E}^{\alpha \beta j}$ are the $\operatorname{SU(2)}$ structure constants, e plays the role cf a conpllag constant, and F is the σ field translation parameter.
This particular choice of transformation laws iaclies the invariance under
 leaving $\boldsymbol{0}^{\boldsymbol{0}}$ invariant. Even if this symmetry is to be preserved En.(95) is mot the most general transformation law fulfilling the compatibility condiLions Es. 74.15 \} , ~ w h i c h ~ s p e n d s ~ o n ~ f o u r ~ p a r a m e t e r s ~ b e s i d e s ~ t h o s e ~ w h i c h ~ labe? the gauge function : e, F, and wave function renormalization for the σ and \bar{C} fields. Given these parameters and introducing external:
fields $\{\eta\}=\left\{y^{\infty} \gamma^{0}, \gamma^{\infty}\right\}$ coupled $\operatorname{to}\left\{\mathscr{R}_{\}}=\left\{\mathscr{R}_{\infty}, Q_{0}, Q_{\infty}, \bar{R}_{A}\right\}\right.$,
 the Slarnor identity reads:

$$
\left.-\xi(x) \delta_{\mathcal{F}_{(x)}}-\xi_{(x)}\left(\partial^{\mu} \delta_{J,(x)}+p \delta_{J(=1)}\right)\right] z_{c}(f \cdot h)=
$$

$$
=0
$$

ide have seen that the most genersi action compatible with Eq. (96) is of the form

$$
\begin{align*}
\mathscr{L}_{\text {ing. }} & =-\frac{Z_{a} G_{\mu \nu}^{\alpha} G_{\mu \nu}^{\mu \nu}+Z_{1} D_{\mu} \Phi D^{\mu} \Phi}{2} \\
& +\frac{\mu^{2}}{2} \Phi \cdot \Phi-\frac{\lambda^{2}}{4!}(\underline{\Phi} \Phi \Phi)^{2}-\left[\frac{\mu^{2}}{2} F^{2}-\frac{x^{2}}{4!} F^{4}\right] \tag{98}
\end{align*}
$$

there

75/P. 723

$$
\begin{aligned}
& \left.+\gamma(x) \mathscr{R}^{(}(x)+\gamma^{(}(x) \mathscr{R}_{0}(x)+\gamma(x) \mathscr{X}_{a p}(x)+\xi^{\alpha}(x) \overline{\mathscr{P}}_{\alpha}(x)\right\} \\
& \text { with }
\end{aligned}
$$

$$
\begin{aligned}
& G_{\alpha \mu \nu}=\partial_{\mu} a_{\alpha \nu}-\partial_{\nu} a_{\alpha \mu}-e \varepsilon_{\alpha}^{\beta \gamma} a_{\beta \mu} a_{\gamma \nu} \\
& \underline{\Phi}=\binom{\left\{\pi_{\alpha}\right\}}{\sigma_{+} F}=\binom{\vec{\pi}}{\sigma+F} ; \underline{\dot{j}} \underline{\underline{\Phi}}=\vec{\pi}^{2}+(\sigma+F)^{2} \\
& D_{\mu}=\partial_{\mu} \mathbb{1}-\frac{e}{2}\left(\begin{array}{c:c}
\vec{\varepsilon} \cdot \vec{a}_{\mu} & \vec{a}_{\mu} \\
\hdashline-a_{\mu} & o
\end{array}\right) \\
& \left(\vec{\varepsilon} \cdot \vec{a}_{\mu}\right)_{\alpha}^{\beta}=-\varepsilon_{\alpha}{ }^{\dot{+} \gamma^{\prime}} a_{\gamma \mu} \\
& \operatorname{Ni}_{x y}^{x \beta}=\partial^{\mu}\left(\partial_{\mu}^{x} \delta(x-y) \delta^{\alpha \beta} e \varepsilon^{\alpha \beta \gamma^{\alpha}} Q_{\gamma \mu}(x) \delta(x-y)\right) \\
& +\frac{\rho e}{2}\left(\varepsilon^{\alpha \beta \gamma} \pi_{\gamma}(x)+\delta^{\alpha \beta}(\sigma(x) \phi F)\right) \delta(x-y)
\end{aligned}
$$

and where the coefficients are so adjusted that the coefficient of the term linear in σ vanishes:

$$
\begin{equation*}
\mu^{2}-\frac{F^{2} \lambda^{2}}{3!}=0 \tag{100}
\end{equation*}
$$

The theory thus depends on ten parameters, four specifying the transformation law, one related with the field vacuum expectation value, five specifying the external field independent part of the Lagrangian, constrained by condition (14) , (15). One can alternatively specify the following physical parameters : $m_{d}, M,{ }^{m} \Phi \pi$, which give the positions of the poles in the transverse photon, σ, C, \bar{c} propagators respectively:
(0) $\quad \Gamma_{a^{r} a^{r}}\left(m_{i}^{2}\right)=0$
(101)
(b) $\quad T_{\sigma \sigma}\left(M^{2}\right)=0$
(c) $\quad \Gamma_{c E}\left(m_{\phi \pi}^{2}\right)=0$
the residues of these poles :
(102)
(a) $\quad \Gamma_{a^{\top} a^{\top}}^{\prime}\left(m_{a}^{2}\right)=Z_{a}$
(b) $\quad \Gamma_{\sigma \sigma}^{\prime}\left(M^{2}\right)=Z_{1}$
75.10 979

$$
26
$$

$$
\text { (c; } \quad \Gamma_{c Z}^{\prime}\left(m_{\$ \pi}^{2}\right)=\frac{1}{k}
$$

the value of the coupling constant

$$
\begin{equation*}
\Gamma_{a^{\top} a^{\top} \sigma}\left(m_{a,}^{2}, m_{a}^{2}, M^{2}\right)=\varepsilon \tag{103}
\end{equation*}
$$

These normalization conditions together with $\mathbf{E q}$. (200) which is equivalent to

$$
\begin{equation*}
\langle\sigma\rangle=0 \tag{104}
\end{equation*}
$$

fix the values of $z_{a}, z_{1}, H^{2}, \lambda^{2}, \mathcal{K}, f, E, F$, leaving free two parameters in the definition of the transformation laws. For simplicity we shall of course choose
(105)

$$
Z_{a}=Z_{4}=1
$$

These normalization conditions together with the Slavnov symmetry actually imply that the masses associated with the $\overrightarrow{2} \vec{a}, \vec{\pi}$ channel are palrwise degenerate with those of the \mathbb{C} channel. Thus, in view of the residual $5 U Z$ symectry, all the ghost musses are degenerate.

Within the Fock space defined by the quadratic part of the Lagrangtan, we shall define the bare physical subspace generated by application on the vacuu of the asymptotic fields $a_{\mu}^{r_{n}}, \sigma^{\left(i_{n}\right.}$ which explains that c. $\boldsymbol{C} .2 \overrightarrow{\mathbb{a}}$. $\overrightarrow{\boldsymbol{K}}$ are considered as "ghosts".

According to this definition, it is easy to see $[21]$ that the matrix efements of the S oprator betmeen bare physical states do not depend on the gange parameters $\mathcal{K}, M_{\text {. }}$.
2. Radiative Correctiore - Slavnov Identities, Mormalipation Conditinns.

Mow. according to the analysis of section 2 . it is possible to
find an effective Lagrangian such that the Slavnov identity (96) holds to all orders (where now ρ is to be determined as a formal power series in \hbar). We also know that the Faddeev Popor equation of motion is : (cf. Eq.(94))
(106) $\left[\partial^{\mu} \delta_{\gamma^{\prime}(x)}+\rho \delta_{\gamma(x)}\right] Z_{c}(y, \eta)=\bar{k} \bar{\xi}_{a}(x)$
where $\overline{\mathcal{K}}$ is some formal power series in \hbar.
The theory depends on ten formal power series whose lowest order terms specify the tree approximation Lagrangian. Eight of them can be fixed by imposing the normalization conditions (101, 102, 103, 104). These normaligation conditions are enough to interpret the theory in the initial rock space, because, as a consequence of the Slavnov identity, the ghost mass degeneracy still holds :
Expressing the Slavnov identity in terms of the vertex functional Γ yields:

$$
\begin{aligned}
& \int_{(107)} d x\left\{\delta_{\pi_{\mu}(x)} \Gamma \delta_{\gamma^{\alpha}(x)} \Gamma+\delta_{\sigma(x)} \Gamma \delta_{\gamma^{0}(x)} \Gamma+\delta_{a_{\alpha \mu}(x)} \Gamma \delta_{\gamma_{(\alpha)}^{\alpha(z)}} \Gamma+\right. \\
& \left.+\delta_{C_{\mu}(x)} \Gamma \delta_{g_{(x)}} \Gamma+\delta_{C_{\alpha}(x)} \Gamma\left[\partial^{\mu} a_{\alpha \mu}(x)+\rho \pi_{\alpha x}(x)\right]\right\}=C
\end{aligned}
$$

In particular, one gets the following information on the two point functions :

$$
\tilde{T}_{\pi^{2}}\left(p^{2}\right) \tilde{\Gamma_{\gamma}}\left(p^{2}\right)+\tilde{\tilde{L}_{\pi a_{L}}}\left(p^{2}\right) \tilde{\Gamma}_{\gamma L}\left(p^{2}\right)+\rho \tilde{\Gamma}_{\bar{C}}\left(p^{2}\right)=0
$$

(108)

$$
\tilde{\Gamma}_{\pi a_{L}}\left(p^{2}\right) \tilde{\Gamma}_{\gamma}\left(p^{2}\right)+\tilde{\Gamma}_{\left(a_{L}\right)^{2}}\left(p^{2}\right) \tilde{\Gamma}_{\gamma L}\left(p^{2}\right)-p^{2} \tilde{\Gamma}_{c}\left(p^{2}\right)=0
$$

where

$$
\widetilde{\Gamma}_{\pi^{\prime}}\left(p^{2}\right)=\widetilde{\Gamma}_{\pi_{\pi} \pi^{*}}\left(p^{2}\right)
$$

(100) $\quad \tilde{\Gamma}_{\pi a_{i}}\left(p_{i}^{2}\right)=i p_{\mu} \tilde{\Gamma}_{\pi \times a_{\mu \mu}}(p)$

$$
\begin{aligned}
& \tilde{\Gamma}_{\left(a_{\nu}\right)^{2}}\left(p^{2}\right)=-p_{\mu} p_{\nu} \tilde{\Gamma}_{a_{\mu \mu} a_{\nu}^{\alpha}}(p) \\
& \tilde{\Gamma}_{\tilde{\gamma}}\left(p^{2}\right)=\tilde{\Gamma}_{\bar{c}_{\alpha} \gamma^{a}}(p) \\
& \text { 75/P.723 } \tilde{\Gamma}_{\gamma L}\left(P^{3}\right)=-\frac{i p^{\mu}}{p^{2}} \tilde{\Gamma}_{\tilde{\zeta}_{2} \gamma \mu \mu}(P)
\end{aligned}
$$

(110) $\quad \rho \tilde{\Gamma}_{r}\left(p^{2}\right)-p^{2} \tilde{\Gamma}_{r}(p)=\chi \tilde{\Gamma}_{\tilde{c}_{c}}\left(p^{2}\right)$

It follows that:

which shows that this determinant mas a double zero at

$$
p^{2}=m_{\phi \pi}^{2}
$$

: - erica: \leq Jpe-ator: Gage invariance.
According to the LSZ asymptotic theory, the physical S operator is given in the perturbative sense $\boldsymbol{r l}$ terms of the Green's functional $z=\exp \frac{i}{t} Z_{c}$. by :
(112)

$$
S_{m=0}=\left.S_{m}(y)\right|_{y=0}
$$

cere
(113)

$$
\begin{aligned}
& S_{\mu_{p}}(\gamma)=: \exp \int d x\left\{\sigma^{-\eta^{\prime}(x)} K_{x y}^{\sigma} \delta_{\sigma+(y)}+\right. \\
& \left.+a_{\alpha y}^{T i m}(x) K_{x y}^{\alpha \mu \nu \nu} \delta_{J \gamma(y)}\right\}:\left.Z(\tilde{0}, \eta)\right|_{\eta=0} \\
& \text { Dar. } \sum_{\text {phys }} Z(y, \eta)
\end{aligned}
$$

75/7.723

In the above formula, $\sigma^{i n}, K^{\sigma}: Q_{\alpha \mu,}^{r i n} K^{\alpha \mu \beta \nu}$ are the canorically quantized asymptotic fields and differential operators involved in their equations of motion, derived from the asymptotic Lagrangian determined by Γ, which in the present case, can be read off from the tree approximation.
We want to prove :

$$
\begin{equation*}
\frac{\partial S_{\text {phys }}}{\partial m_{\Phi \pi}^{2}}=\frac{\partial S_{p h y s}}{\partial K}=0 \tag{114}
\end{equation*}
$$

Owing to Lowenstein's action: :-inciple, [3] , one has

$$
\begin{equation*}
\frac{\hbar}{i} \partial_{\lambda} Z(J, \eta)=\Delta_{\lambda} Z(y, \eta) \tag{115}
\end{equation*}
$$

where λ is one of the parameters $\mathcal{\chi}, m_{\phi \pi}^{2}$ and Δ_{λ} is a dimension four insertion obtained by differenciating $\int d \times \mathcal{X}_{\text {eff }}(x)$ with respect to λ. Using the Slaynov identity, we are going to show that Δ_{λ} can be written as : (116) $\Delta_{\lambda}=\sum_{i=1}^{S} C_{\lambda}^{0, i} \Delta_{i}^{0}+\sum_{i=1}^{s} C_{\lambda}^{s, i} \Delta_{i}^{s}$
where the Δ_{i}^{0} 's are such that

$$
\begin{equation*}
\sum_{\text {phys }} \Delta_{i}^{0} Z(z, \eta)=0, i=1, \ldots 5 \tag{117}
\end{equation*}
$$

and therefore leave unaltered the physical normalization confections (101a,b, $102 \mathrm{a}, \mathrm{b}, 103$). In the following those insertions will be eel? ed non physical. On the other hand the \hat{U}_{l}^{3} 's are symmetric insertions, name 'y

$$
\begin{equation*}
于 \Delta_{i}^{s} Z(y, \eta)=0 \quad i=1, \ldots .5 \tag{118}
\end{equation*}
$$

Thus applying $5: s .(1 i 6,157)$ to the onysical normalization conditions
$\{101$ at , 10c a. . 10 , yields a linear homogeneous system of equations of the form
(119) $\sum_{i=1}^{5} C_{2}^{5, i} \Delta_{i}^{5, j}=0 \quad j=1, \ldots .5$
for which we are going to see that $[11,1]$
(120) $\operatorname{det}\left\|\Delta_{i}^{s i d}\right\| \neq 0$
since this will prove to be true in the treapprosimation. Hence it follows that
(121) $\quad C_{\lambda}^{s, i}=0 \quad i=1, \ldots .5$
and the gauge invariance of the S operator follows from Eqs. $(112,113,115$, 116, 117).

The decomposition of $\Delta_{\boldsymbol{\lambda}}$ given in Eq.(116)follows first from the Slavnor identity:
(122) $\quad O=\partial_{\lambda} \rho Z=\left(\partial_{\lambda} \rho\right) Z+\frac{i}{\hbar} \rho \Delta_{\lambda} Z$

Hence
(123)

$$
\begin{aligned}
\left(\partial_{\lambda}-\rho\right) Z & \equiv-\frac{\partial p}{\partial \lambda} \int \bar{\xi}^{\alpha}(x) \delta_{\gamma^{\alpha}(x)} d x \bar{Z} \\
& =\frac{i}{\hbar}\left[\Delta_{\lambda}, \rho\right] Z
\end{aligned}
$$

Noticing that
(124) $\int d x \bar{\xi}_{(x)}^{\alpha} \delta_{J^{\alpha}(x)}=-\left[\int d x\left(J^{\alpha}(x) \delta_{J^{(x}(x)}+\gamma^{\alpha}(x) \delta_{\gamma_{(x)}^{(x)}}\right), \rho\right]$
we define Δ_{A}^{0} by
(125) $\Delta^{0} Z^{Z}=\frac{\hbar}{i} \int d x\left[J^{\alpha}(x) \delta_{J(x)}+\gamma^{\alpha}(x) \delta_{\gamma^{\alpha}(x)}\right] Z$
which is a dimension four insertion as follows from Lowenstetris action principle [3].
Hence
(126) $\left[\Delta_{\lambda}-\frac{\partial \rho}{\partial \lambda} \Delta_{-1}^{0}, S\right]=0$
thus
(127) $\Delta_{\lambda}=\frac{\partial \rho}{\partial \lambda} \Delta_{1}^{0}+\Delta_{\lambda}^{s}$
where Δ_{λ}^{S} is a dimension four symmetric insertion. We are thus left with finding a basis of symmetrical insertions. Since we know that, given the Slavnov identity \mathscr{L}_{e} ff depends on nine parameters, namely four to specify the couplings with the external fields and five to specify the remaining part of the Lagrangian, there are nine independent symmetrical insertions.

We shall first construct the four missing unphysical insertions.
The method consists in constructing insertions which are realized by differentrial operators as a consequence of the action principle, and study their commutators with \mathcal{P}.

First consider [11], [1]

$$
\begin{align*}
& Q_{\pi}^{\varepsilon}=\frac{\hbar^{2} \rho}{\hbar} \int d x \delta_{\xi_{(x+\varepsilon)}^{\alpha}} \delta_{J_{\alpha}(x)} \tag{128}\\
& Q_{Q_{L}}^{\varepsilon}=\frac{\hbar^{2}}{\bar{k}} \int d x \delta_{\bar{\xi}^{\alpha}(x+\varepsilon)} \partial_{\mu} \delta_{J_{\alpha \mu}(x)}
\end{align*}
$$

$$
\text { and define } \Delta_{i}^{E}, i=\left(\pi, a_{L}\right), \text { by }
$$

75/P.ひ..
(129) $\quad \Delta_{i}^{\varepsilon} Z=: \mathcal{Q} Q_{i}^{\varepsilon}: Z$
where as usual the dots indicate the substraction of the disconnected part. ire has:
(m) $\left[\Delta_{i}^{t}, f\right] z=-f^{2} Q_{i}^{t} z=-\left[f_{i}^{2} \ell_{i}^{f}\right] z$

$$
= \begin{cases}p \int d x \bar{\xi}^{\alpha}(x+\varepsilon) \delta_{J}^{\alpha}(a) \\ z & i=\pi \\ \int d x \bar{\xi}(x+\varepsilon) \partial^{\mu} \delta_{J /(x)} & i=a_{c}\end{cases}
$$

These commutators have obviously finite limits as $\varepsilon \rightarrow 0$. Consequently the infinite part of Δ_{i}^{e} is symmetric. Substracting the infinite parts, we get in the limit $E \rightarrow 0$ some Δ_{i} 's $\left(i=\pi, Q_{L}\right)$ such that

$$
\text { (131) }\left[\Delta_{i}, f\right] z= \begin{cases}\rho \int \hat{F}^{\alpha}(x) \delta_{J^{\alpha}(x)} z & i=\pi \\ \int d x \bar{\xi}_{(x)}^{\alpha} \partial^{\mu} \delta_{J_{(\alpha)}^{\alpha \mu}} \bar{z} & \therefore=a_{L}\end{cases}
$$

Furthermore
(132)

$$
\left.\sum_{\mu_{\mu s}} \Delta_{i}^{\varepsilon} z\right|_{j=0} \sum_{p h p}: S Q_{i}^{\varepsilon}:\left.z\right|_{y=0}
$$

$$
\begin{aligned}
& =\left.\sum_{\mu_{y s}} \int d x\left[J^{0}(x) \delta_{\gamma^{2}(J)} J^{\alpha(x)} \delta_{\gamma_{(x)}^{(\alpha)}}\right] Q_{i}^{\varepsilon} Z\right|_{y=0}
\end{aligned}
$$

where

$$
\begin{align*}
& \tilde{T}_{0, i}^{\varepsilon}\left(p^{2}\right)=\left.\delta_{\tilde{\sigma}_{(p)}} \delta_{\tilde{\gamma}_{0}(-p)} Q_{i}^{\varepsilon} \Gamma\right|_{\Psi=\eta=0} \tag{133}\\
& \tilde{\Gamma}_{a_{i} i}^{\varepsilon}\left(p^{2}\right)=\left.\frac{1}{3}\left(g^{\mu \nu}-\frac{p^{\mu} p^{\nu}}{p^{2}}\right) \delta_{\tilde{a}_{\alpha}^{\mu}(p)} \delta_{\tilde{\gamma}_{(-p)}^{\alpha \nu}} \underbrace{\varepsilon}_{i} \Gamma\right|_{\Psi=\eta=0}
\end{align*}
$$

Let now
(134) $\Delta_{i}^{o \varepsilon}=\Delta_{i}^{\varepsilon}-\tilde{T}_{o i}^{\varepsilon}\left(M^{2}\right) \Delta_{\sigma}^{\varepsilon}-\tilde{\Gamma}_{a i}^{\varepsilon}\left(m_{a}^{2}\right) \Delta_{a}^{s}$
where the symmetrical insertions

$$
\Delta_{\sigma}^{S}=\int d x\left[J^{0}(x) \delta_{J^{0}(x)}+\gamma^{0}(x) \delta_{\gamma^{0}(x)}\right]
$$

(135)

$$
\begin{gathered}
\Delta_{a}^{s}=\int d x\left[J_{(x)}^{\alpha \mu} \delta_{J^{\alpha}((x)}+\gamma^{\alpha \mu}(x) \delta_{\gamma^{\alpha \mu}(x)}+\xi^{\alpha}(x) \delta_{\left.\xi_{(x)}^{\alpha}\right)}+\right. \\
\\
\left.+J^{\alpha}(x) \delta_{J^{\alpha}(x)}+\gamma^{\alpha}(x) \delta_{\gamma^{\prime \prime}(x)}\right]
\end{gathered}
$$

respectively coincide with $\int d x J_{(\alpha)}^{0} \delta_{\left.J \eta_{x}\right)}$ and $\int d x J_{(\alpha)}^{\alpha \mu} \delta_{J^{\alpha}(x)}$ under appl1cation of $\sum_{\text {phys. }}$ and restriction at $\mathcal{J}=0$.
After what was seen before the finite part Δ_{i}^{0} of $\Delta_{i}^{0 E}$ is non physical and satisfies Eq. (131). From these commutation relations one can check that
(136)

$$
\begin{aligned}
& \Delta_{1}^{0,5}=\int d x\left[\bar{\xi}^{*}(x) \delta_{\bar{\xi}_{(x)}^{\alpha}}\right]-\Delta_{\pi}^{0}-\Delta_{Q}^{0} \\
& \Delta_{2}^{0,5}=\int d x\left[\gamma^{\alpha}(x) \delta_{\gamma^{\alpha}(x)}+J^{\alpha}(x) \delta_{J^{\alpha}(x)}\right]+\Delta_{\pi}^{0}
\end{aligned}
$$

are symuretrical, (and obvious !y non physical).
In the same way one can check that

75/P.725
(137)

$$
\Delta_{3}^{05}=\int d x\left[\xi^{\alpha}(x) \delta_{\xi(x)}+\xi^{\alpha}(x) \delta_{f^{\alpha}(x)}\right]
$$

Is symmetrical (obviou sly non physical). Finally $\Delta_{4}^{0 s}$ defined by

$$
\begin{equation*}
\Delta_{4}^{0.5} Z=\int d x J^{0}(x) Z \tag{138}
\end{equation*}
$$

which can be realized by performing a σ field translation, is certainly symmetrical and non physical.
These four symmetrical non physical insertions are independent as can be checked in the tree approximation $\left(\Delta_{4}^{05}\right.$ has a σ^{3} term which the others $0, s$ do not have ; Δ_{2}^{03} has a π^{4} teri, not contained in the others $; \Delta_{4}^{0, s}$

To complete the basis of symmetrical insertions there remains to find five others which are independent on the physical normalization points. According to the general argument ie. the implicit function theorem for formal power series [1], we know that there are four of them whose tree approximations are the four terms of $\mathcal{L}_{i m p}$ (98). A fifth one is Δ_{a}^{δ}. Their independence on the normalization points, i.e. Eq.(120) can be decided at the tree level and can indeed be verified. This completes the proof.

D. Radiative Corrections: Unitarity of the Physical S Operator.

Usually, the unitarity of the S operator follows from the relationship between time ordered and antitime ordered products, luge tUner with the her-- iticity of the Lagrangian. Here we are investigating the unitarity of the physical S operator so that we have to show the cancellation of ghosts in intermediate states. Furthermore the Lagrangian is not hermitian. We shall however show that the unitarity of the S operator can be derived from the usual relation between time ordered and anti-time ordered products, thanks to an additional symetry property of the Lagrangian, and the Slavnov identity. Together w th

$$
\begin{equation*}
Z(y)=\left\langle T \exp \left\{\frac{i}{\hbar} \int d x\left[\mathcal{P}_{\mathrm{eff}}^{\text {int }}(x)+\mathcal{Z}(x) \Psi(x)\right]\right\}\right. \tag{139}
\end{equation*}
$$

we introduce
(140) $\bar{Z}(\mathcal{y})=\left\langle\bar{T} \exp \left\{-\frac{i}{\hbar} \int d x\left[\sum_{\text {eff }}^{i n t}(x)+y(x) \psi(x)\right]\right\}\right\rangle$
where T and \bar{T} respectively denote time ordered and anti-time ordered products.
We first define the 5 operator in the full rock space (including the ghosts) through the LSZ formula :
(141) $\quad S=\left.\sum Z(y)\right|_{y=0}$
where $\quad \sum=\exp \int d x d y \Psi_{i}^{i n}(x) K_{x y}^{i j} \delta_{y j}$:
which is the straightforward extension of $S_{\text {phys. }}$.
One has :
(142) $\Sigma Z(y): \Sigma \bar{Z}(y)=\mathbb{1}$
and if the Lagrangian is hermitian,
(ss) $\quad \sum \bar{z}(y)=\left(\sum z(y)\right)^{\dagger}$
Let now E_{0} be the projector on the bare physical subspace. By application of Wick's theorem one obtains :
(144) $\sum_{\text {phys }} Z(J) \exp \mathcal{A} \sum_{\text {phys }} \bar{Z}(J)=E_{0}$
where
(145) $A=i \hbar \int d x\left[\delta_{y g}^{*} K^{g} S_{+}^{g} * K^{g} \delta_{y g}\right](x)$
the index g indicating that the summation is restricted to the ghost fields,
and $i \hbar S_{4}^{\mathcal{J}}$ being the positive frequency part of the asymptotic ghost field commutators.

> Le are now first going to see that
(146)

$$
[z(y)]^{t}=\widetilde{G} \bar{Z}(J)
$$

were \mathcal{J}^{i+} is the coefficient of Ψ_{i}^{+}in $\underline{\mathcal{J}} \underline{\Psi}$.

$$
\begin{aligned}
& \tilde{e} \bar{\xi}=\xi \\
& \tilde{\xi} \xi=-\tilde{\xi} \\
& \tilde{\mathscr{C}} \tilde{\xi}=y^{\dagger}
\end{aligned}
$$

This is a consequence of the corresponding property at the Lagrangian level:
(148)

$$
\mathscr{L}_{\text {eff }}^{+}=\mathscr{L} \mathscr{L}_{\text {eff }}
$$

where

$$
8 c=\varepsilon
$$

Bc .-c
(149)

$$
\begin{aligned}
& C \eta=\eta^{\dagger} \quad \text { (all classical fields) } \\
& C \Psi=\Psi^{\dagger} \quad \text { otherwise. }
\end{aligned}
$$

This property is dee to the fact that the ${ }^{6}$ operation and the mercian conjugation transform the slavnov identity in the same way, leave the normalization conditions unchanged (the \mathfrak{b} and + operations are def fined in a natural way on Γ). and that the theory is uniquely defined by the noresilization conditions and che Slavnov identity. (101, 102, 103,104, 105, 96).

Hus $\sum_{\text {phys }}$ is hermitian since the asymptotic Lagrangian is hermitian, which follows from (146), hence (142) con be rewritten
(150) $\sum_{\mu \operatorname{las}^{2}} Z(J)\left[\exp A^{e}\right]\left[\Sigma_{\text {phys }} Z(J)\right]^{\dagger}=E_{0}$
where
(151) $\quad \mathcal{A}^{c}=i \hbar \int d x\left[{\underset{j^{g}}{ }}_{\leftarrow}^{\left.K^{g} S_{+}^{g} * \vec{K}^{g} \delta_{\tilde{j^{g}}}\right](x)}\right.$
with

$$
\begin{equation*}
\tilde{y}^{g}=\tilde{\zeta} y^{g} \tag{152}
\end{equation*}
$$

Let us consider

$$
\begin{equation*}
U(\lambda)=\exp \lambda \mathcal{t}^{8} \tag{153}
\end{equation*}
$$

Then
(154) $\left.\partial_{2} S_{\text {phys }}(J) \cup(\lambda) S_{\text {phys }}^{+}(J)\right|_{y=0}=$

$$
=\left.S_{\text {phys }}(J) A^{c} U(\lambda) S_{\text {phys }}^{+}(J)\right|_{y=0}
$$

(155) $\quad \bar{G}_{\alpha}=\frac{\rho \pi_{\alpha}-\partial^{\mu} a_{\alpha \mu}}{2 \rho \Gamma_{\gamma}\left(m_{\phi \pi}^{2}\right)}$
whose variation under a Slavnov transformation reduces on mass shell to $\epsilon_{\text {, }}$, and using the restricted 't Hoof gauge [22] defined by
(156) $\Gamma_{a_{L \pi}}\left(m_{\Phi \pi}^{2}\right)=0$
in which the ghost propagators have only simple poles [23] , allows to rewrite

$$
\begin{aligned}
& \mathcal{E}^{\varphi}=i \hbar \int d x\left[\delta_{\zeta}\left(\stackrel{K}{K} S_{+} * \vec{K}\right)_{\bar{G} G} \vec{\delta}_{g}+\right. \\
& \text { (157) }+\dot{\delta}_{G}\left(\mathbb{K} S_{+} * \vec{K}\right)_{G \bar{g}} \overrightarrow{\delta_{\zeta}}+\overrightarrow{\delta_{G}}\left(\vec{K} S_{+} * \vec{K}\right)_{G G} \overrightarrow{\delta_{G}}+ \\
& \left.+\stackrel{\rightharpoonup}{\delta_{\bar{F}}}\left(\stackrel{\rightharpoonup}{K} S_{+} * \vec{K}\right)_{C \bar{c}} \vec{J}_{F}+\delta_{\xi}\left(\vec{K} S_{+} * \vec{K}\right)_{\bar{C} C} \delta_{\vec{F}}\right](x)
\end{aligned}
$$

75/P. 723

Mow making use of the Slavnor identity on the ghost mass shell and of the vanishing source restriction allows $[1]$ to reduce $(154,157)$ to

$$
\begin{aligned}
& \left.\partial_{\lambda} S_{\text {phys }}(J) U(\lambda) S_{p h y s}^{+}(J)\right|_{y=0}= \\
= & \left.S_{\phi \text { hays }}(J) i \hbar \int d x\left\{\bar{\delta}_{\zeta}\left(\bar{K} S_{+} * \vec{K}\right)_{g} J_{\mathcal{G}}\right\}(x)\right]\left.U(\lambda) S_{p h y s}^{+}(J)\right|_{y=c}
\end{aligned}
$$

which upon integration with respect to $\boldsymbol{\lambda}$ leads to:

$$
\left.S_{\text {phys }}(J) u(1) S_{\text {phys }}^{\dagger}(J)\right|_{j_{0}=}=
$$

(159)

Since the expectation value between physical states of the time ordered product of an arbitrary number of gauge operators is disconnected [21]
(160)

$$
S_{\text {phys }} S_{\text {php }}^{\dagger}=E_{0}
$$

1.e.
(161) $E_{0} S E_{0} S^{\dagger} E_{0}=E_{0}$

Similarly, one can prove that :
(162) $E_{0} S+E_{0} S E_{0}=E_{0}$
which shows that the physical S operator $E_{0} S E_{0}$ obeys perturbative unitarity.

Conclusion

Gauge theories can be characterized by the fulfillment of Slavnov identities when the underlying lie algeora is semi-simple, i.e. is sufficiently rigid against perturbations. Then, simple power counting arguments are sufficient to prove that, indeed Slavnov identities can be fulfilled, in the absence of Adler Bardeen anoralies.

In particular, we have shown, on the SU2 Higgs Kibble model whose particle interpretation can be completely analyzed that the gauge Independence and unitarity of the physical 5 -operator follow.

It is believed that both the lack of rigidity of the underlying Lie algebra and the possible occurrence of Adler Bardeen anomalies can only be mastered by more sophisticated tools based on a closer analysis of the consistency conditions involving the behaviour of the theory under dilatations [7]. [20].

The analysis of gauge independent local operators, although not touched upon here [1] should also be tractable in terms of the methods used here.

Arknowindgments
Two of us C.B., A.R., wish to thank CNRS for the kind hospitality extended to them at the eenten de Physigue Thenerique. Marsetilie, where this work was started. A.R. Wishes to thank C.E.A. for financial support and Prof. W. 2 Inmenmann for the tind hospltality extended to him at the Max Planck Institut für Physik und Astrophysik, in Munich. Two of us, A.R., R.S., wish to acknowledge the collaboration of E. Tirapegui. L. Quaranta at a very early stage of this work. We wish to thank the Service de Phystque theorique, CEN Saclay where some results quoted here were obtained. One of us, R.S. wishes to thank G.'t Hooft, B.U. See, C. K. Llewellynn Smith, K. Veltman, J. Zinn Justin for informative discussions on gauge theorles.

We wish to thank J.H. Lowenstein and M. Limermann, M. Bergère and Y.N.P. Lam, F. Jegerlehner and B. Schroer, B. Zuber and H. Stern for keeping us currently informed on their work, prior to publication, as well as H. Epstein, V. Glaser, K. Symanzik, and J. Iliopoulos for his find interest in this work.

APPENOIX A : Cohonology of Lie Algebras

This appendix is a brief summary of definitions and results needed here which are not easily found in classical text books [24].

Definition : Let η be a Lie algebra with structure constants $f^{\alpha \beta} \gamma$, which is the sum of a semi-simple algebra $\&$ and an abelian algebra \mathscr{A}. A cochain of order n with value in a representation space v on which $\{$ acts through a completely reduced representation :

$$
h \ni h^{\alpha} \rightarrow t^{\alpha}
$$

are elements of V. The set of such cochains is called $C^{n}(V)$. We define the coboundary operator d^{n} :
(AI)

$$
C^{n}(v) \xrightarrow{d^{n}} C^{n+1}(v)
$$

by:

$$
\left(d^{n} \Gamma\right)^{\alpha_{1} \ldots \alpha_{n+1}} \sum_{k=1}^{n+1}(-)^{k-1} t^{\alpha_{k}} \prod^{\alpha_{1} \ldots \hat{\alpha}_{k} \ldots \alpha_{n+1}}+
$$

($A 2$)

$$
+\sum_{k<i=1}^{n+1}(-)^{k+l} f^{\alpha_{k} \alpha_{l}} \prod_{\lambda} \lambda \alpha_{1} \ldots \alpha_{k} \ldots \alpha_{2} \ldots \alpha_{n+1}
$$

In which capped Indices are to be omitted.
The fundamental property is :

$$
\begin{equation*}
d^{n+1} 0 d^{n}=0 \tag{A3}
\end{equation*}
$$

- consequence of lie e commutation relations
(A)

$$
\left[t^{\alpha} t^{\beta}\right]=f^{\alpha \beta} \gamma t^{\gamma}
$$

and the Jacobi identities.

$$
\text { An element } I \text { of } C^{n}(V) \text { is called a cocycle if }
$$

(AS)

$$
d^{n} \Gamma=0
$$

The set of cocycies is denoted $Z^{n}(V)$. An element T of $C^{n}(V)$ is called a coboundary if $I=d^{n-4} \hat{I}$
for some $\hat{I} \in C^{n-4}(V)$
Obvious in every coboundary is a cocycle (cf. Eq.(A3)).
The converse is not always true.
However in the present case where the representation is fully
reduced, the parametrisation of all cobouriarics can be found as follows
We first spit Γ into an invariant and a non invariant part:
(A)

$$
I=\Gamma_{a}+\Gamma_{b}
$$

such that

$$
t^{2} I_{4}=0, t^{2} T_{b} \neq 0
$$

Here we have defined
(AB)

$$
t^{2}=t^{*} t_{\alpha}
$$

where indices are raised and lowered by mans of a non degonorato invariant symmetrical tensor.

The restriction of $E_{q}(A 5)$ to I_{b} yields through multiplication by $t_{\alpha_{d}}$ and summation over α_{1} :
(A9) $T_{b}=d^{n-1} \bar{T}^{1}$
where
(ADD) $(\hat{I})^{\alpha_{1} \ldots \alpha_{n-1}}=\frac{t_{\alpha} I_{0}^{\alpha \alpha_{1}} \ldots \alpha_{n-1}}{t^{\alpha}}$
(Use has been made of the commutation: wo neon the to
Next we look at T_{4}. The roc in e concision reduces \%
(A11) $\sum_{k<l=1}^{n+1}(-)^{k+k} f^{\alpha_{k} \alpha_{l}} \prod_{n} \operatorname{L}_{n} \alpha_{n} \ldots \hat{\alpha}_{k} \ldots \hat{\alpha}_{k} \ldots \alpha_{n+1}=0$

We define the two operations

$$
(\mathrm{A}: 2)
$$

and

$$
\theta^{n}: \quad C^{n}(V) \rightarrow C^{n}(V)
$$

(D^{\prime} transforms I according to the sum of R adjoint representations of in and t^{f} ?

$$
\begin{aligned}
& { }^{n} L \rho: C^{n}(V) \rightarrow \operatorname{con}^{n-4}(V): \\
& \left(n^{n} \rho I\right)^{\alpha_{1} \ldots \alpha_{n+1}}=\operatorname{Lin}^{\rho \alpha_{4} \ldots \alpha_{n+1}}
\end{aligned}
$$

One can check that
(A14) $I^{m i} 0 d^{n}+C^{n-1} 0 i^{n-p}$
and furthermore

$$
d^{n} 0 \theta^{\rho}=\theta^{n} o d^{n}
$$

Thus if $d^{n} T_{a}=0$
(A16) $\theta^{n} \prod_{a}^{n}=a^{n-4} \quad I^{n} T_{4}^{n}$
nance
(AIT) $(n)^{2} T_{4}=a^{n-1} 0 \theta_{\rho}^{n-4} I^{n} T_{4}^{\rho}$

Reducing the antisymetrized product of n adjoint representations according to
(A18) $T_{4}=\prod_{4}^{4}+\prod_{4}^{6}$
with

$$
\left({ }^{n} \theta\right)^{2} \prod_{4}^{4}=0,(\theta)^{n} \prod_{4}^{p} \neq 0
$$

we find that
(19) $\left.\prod_{a}^{b}=\frac{1}{(m-1}\right)^{2} d^{i-1}{ }^{n} \theta_{p}{ }^{n} T^{\rho} \prod_{4}^{b}$
and \prod_{4}^{4} is arbitrary.
To sum up, in the case of a completely reduced representation
and a Lie algebra which s the : of a semi-simale and an abetting a pera, every cocycle is a coboundary \because tc totally invariant cochains. when in is 75/P.723
semi-simple however there is no such cochain for $r=2,2$. ir tis last case, the invariance which imolies the cocycie condition and the rol degeneracy of the killing fom :hold the rosul:

APPEmoIX B

$$
(B 1)
$$

Froe this result it follows that Eq. (59) which is a perturbation of order $\mathcal{K} \Delta$ of Eq. (B2) is a consequence of the consistency condition Eq.(58) which is a perturbation of the same order of Eq. (BI).
Let us recall the notations
(83)

$$
\stackrel{o}{P}_{i}(x)=t_{i j}^{\alpha}\left[\Phi_{i} \bar{C}_{\alpha}\right](x)+q_{i}^{\alpha} \bar{C}_{x}(x)
$$

where :

$$
q_{a}^{\alpha}=t_{a b}^{\alpha} F_{b}
$$

$$
\begin{equation*}
q_{\beta, \beta}^{\alpha}=q_{\beta}^{\alpha} \partial_{\mu} \tag{B4}
\end{equation*}
$$

since q_{β}^{d} is an invariant tensor it can always be chosen of the form:

$$
\begin{aligned}
& \text { We want to show here that the equation } \\
& \Delta^{\Delta}\left(\gamma^{i}(x) \mathcal{P}_{i}(x)+S^{a}(x) P_{x}(x)\right)+\delta\left(\gamma^{i}(x) \Delta_{i}(x)+S^{(x}(x) \Delta_{a}(x)\right) \equiv \\
& \equiv \gamma^{i}(x)\left[\left(\Delta_{j}(y) \delta_{\phi_{j}(y)}-\Delta_{d}(y) \delta_{C_{m}(y)}\right) \stackrel{0}{P}_{P_{i}}(x)-\right. \\
& \left.-\left(\dot{P}_{j}(y) \delta_{\phi_{j}(y)}+\stackrel{0}{P}_{\alpha}(y) \delta_{C_{\alpha}(y)}\right) \Delta_{i}(x)\right]+ \\
& +\mathcal{S}^{\alpha}(x)\left[-\Delta_{\beta}(y) \delta_{\bar{C}_{\beta}(y)} \dot{P}_{\alpha}(x)+\dot{P}_{\beta}(y) \delta_{\bar{C}_{\beta}(y)} \Delta_{\alpha}(x ;)\right]=0 \\
& \gamma^{\prime}(x) \Delta_{i}(x)+\xi^{(x}(x) \Delta_{\alpha}(x)=-\left[J^{T}\left(\gamma \dot{(x)} \dot{P}_{i}(x)+\mathcal{S}^{\alpha}(x) \dot{P}_{x}^{P_{x}}(x)\right)+\right. \\
& \left.+\downharpoonleft\left(\gamma^{i}(x) \Pi_{i}(x)+\xi^{\alpha}(x) \Pi_{\alpha}(x)\right)\right] \equiv
\end{aligned}
$$

$$
\begin{aligned}
& -S^{\alpha}(x)\left(\prod_{\beta}(y) \delta_{\bar{C}_{\beta}(y)} \stackrel{\rho}{P}_{\alpha}(x)+\stackrel{o}{P}_{\beta}(y) \dot{\delta}_{\dot{C}_{\beta}(y)} \prod_{\alpha}(x)\right)
\end{aligned}
$$

(85)

$$
q_{\beta}^{\alpha}=q \delta_{\beta}^{\alpha}
$$

Also :
(86) $\quad \stackrel{\circ}{P}_{\alpha}(x)=\frac{1}{2} f_{\alpha}^{\beta \gamma}\left(\bar{c}_{\beta} \bar{c}_{\gamma}\right)(x)$
$\Delta_{i}, \Delta_{\alpha}, \Pi_{i}, \Pi_{\alpha}$ are given by:

$$
\begin{aligned}
& \Delta_{i}(x)=\frac{1}{2}\left[\Theta_{i j}^{\alpha \beta} \Phi_{j} \bar{C}_{\alpha} \bar{C}_{\beta}+\bar{C}_{\alpha} \Sigma_{i}^{\alpha \beta} \bar{C}_{\beta}\right](x) \\
& \Delta_{\alpha}(x)=-\frac{1}{6} \Gamma_{\alpha}^{\beta \gamma \delta}\left(\bar{C}_{\beta} \bar{C}_{\gamma} \bar{C}_{\delta}\right)(x)
\end{aligned}
$$

(BT)

$$
\begin{aligned}
& \prod_{i}(x)=\left[\widehat{\widehat{ }}_{i j}^{\alpha} \Phi_{j} \bar{C}_{\alpha}+\hat{\sum}_{i}^{\alpha} \bar{C}_{\alpha}\right](x) \\
& T_{\alpha}(x)=\frac{1}{2} \hat{\Gamma}_{\alpha}^{\beta \gamma}\left(\bar{C}_{\beta} \bar{C}_{\gamma}\right)(x)
\end{aligned}
$$

with
(88)

$$
\sum_{\gamma, \mu}^{\alpha \beta}=\sum^{\alpha, \beta} \gamma \partial_{\mu}
$$

$$
\sum_{\gamma, \mu=}^{\alpha}=\sum_{\gamma}^{\alpha} \partial_{\mu}
$$

Following these definitions, we shall reduce (B1) and (B2) to c numbers. First, substituting Eqs.(B3), (B6), and Eq.(B7) into Eq.(B1) yields:

$$
\begin{aligned}
& \frac{1}{2} \gamma^{i}(x)\left[t_{i k}^{\alpha} \Theta_{k j}^{\beta \gamma}-\Theta_{i k}^{\alpha \beta} E_{k j}^{\gamma}+\frac{1}{3} \Gamma_{\lambda}^{\alpha \beta \gamma} E_{i j}^{\lambda}-f_{\lambda}^{\alpha \beta} \Theta_{i j}^{\lambda \gamma}\right]\left(\phi_{j} \bar{c}_{\alpha} \bar{c}_{\beta} \bar{c}_{\gamma}\right)(x ; \\
+ & \frac{1}{2} \gamma^{a}(x)\left[t_{a b}^{\alpha} \sum_{b}^{\beta \gamma}-\Theta_{a b}^{\alpha \beta} q_{b}^{\gamma}+\frac{1}{3} \Gamma_{\lambda}^{\alpha \beta \gamma} q_{a}^{\lambda}-f_{\lambda}^{\alpha \beta} \sum_{a}^{\lambda \gamma}\right]\left(\bar{c}_{\alpha} \bar{c}_{\beta} \bar{c}_{\gamma}\right)(x)
\end{aligned}
$$

(By)

$$
\begin{aligned}
& +\frac{1}{2}\left(\gamma^{2 \mu \alpha} \bar{c}_{\alpha} \bar{c}_{\beta}\right)\left(x_{\alpha}\right)\left[\epsilon_{\eta s}^{\alpha} \Sigma_{s}^{\beta, \gamma}-\Theta_{\eta \xi}^{\alpha \beta} q_{y}^{\gamma}+\Gamma_{\lambda}^{\alpha \beta \gamma_{\lambda} \lambda}-\right. \\
& \left.-\frac{1}{2} f_{\lambda}^{\alpha \beta} \sum_{2}^{\lambda, \gamma}+\sum_{\eta}^{\lambda_{1}, \gamma} f_{\lambda}^{\beta \gamma}\right] \partial_{\mu} \bar{c}_{\gamma}(x) \\
& +\xi^{(x)}\left[-\frac{1}{6} \Gamma_{\lambda}^{\alpha \beta \gamma} f_{\eta}{ }^{\lambda \delta}+\frac{1}{4} f_{\lambda}^{\alpha \rho} \Gamma_{2}{ }^{\lambda \gamma \delta}\right]\left(\bar{c}_{\alpha} \bar{c}_{\beta} \bar{c}_{\gamma} \bar{c}_{\delta}\right)(x)=0
\end{aligned}
$$

which in terms of the coefficients writes:

$$
\begin{aligned}
& \left.+\Gamma_{\lambda}^{\alpha \alpha_{2} \alpha_{3}} t_{i j}^{\lambda}\right]=0
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\sum_{i=1}^{3}(-)^{i+1} \Theta_{a b}^{\alpha_{i} \alpha_{i}} \alpha_{2} t_{b c}^{\alpha_{i}} F_{c}+\Gamma_{\lambda}^{\alpha_{1} \alpha_{2} \alpha_{3}} t_{a b}^{\lambda} F_{b}\right]_{0}
\end{aligned}
$$

α_{1} mere. tor convenience, we have replaced $\alpha, \beta, \gamma, \delta$ or 44 (89) by α_{1}, α_{2}. finely:

$$
\begin{aligned}
& \frac{1}{4}\left[\left(\zeta^{\alpha} \Sigma^{\beta}\right)_{2}^{\gamma}-\left(\zeta^{\beta} \Sigma^{\alpha}\right)_{2}^{\gamma}-f_{\lambda}^{\alpha \beta} \sum_{\eta}^{\lambda_{1} \gamma}-\right. \\
& \left.-2 \Theta_{\eta 5}^{\alpha \beta} q_{5}^{\gamma}+2 \Gamma_{\lambda}^{\alpha \beta \gamma} q_{\eta}^{\lambda}\right]=0
\end{aligned}
$$

mere \mathcal{Z}^{α} is defied by:
75/P. .23

$$
\text { (B14) }\left(\sigma^{\alpha} \sum^{\beta}\right)_{\eta}^{\gamma}=t_{\eta \xi}^{\alpha} \sum_{\xi}^{\beta, \gamma}+f_{\lambda}^{\gamma \alpha} \sum_{\eta}^{\beta, \lambda}
$$

In Eqs.(B10), (B11), (B12) we have followed the conventions introduced in Appendix A. Thus, taking into account the definition of the cocycle condition given in Appendix A and putting :
(815)

$$
\begin{aligned}
& \left(t^{\rho} \Gamma^{\alpha \beta \gamma}\right)_{\lambda}=f_{\lambda}^{\rho 5} \Gamma_{f}^{\alpha \beta \gamma} \\
& \left(t^{\rho} \Theta^{\alpha \beta}\right)_{i j}=\left[t^{\rho}, \Theta^{\alpha \beta}\right]_{i j} \\
& \left(t^{\rho} \Sigma^{\alpha \beta}\right)_{a}=t_{a b}^{\rho} \sum_{b}^{\alpha \beta} \\
& \left(t^{\rho} \Sigma^{\alpha}\right)_{\eta}^{\gamma}=\left(\sigma^{\rho} \Sigma^{\alpha}\right)_{2}^{\gamma}
\end{aligned}
$$

we see that Eq.(B10), (811), (D12) can be written as:
(B16) $\quad\left(d^{3} \Gamma\right)_{2}^{\alpha_{1} \ldots \alpha_{4}}=0$
(B17) $\quad\left(d^{2} \Theta\right)_{i j}^{\alpha_{1} \alpha_{2} \alpha_{3}}+\Gamma_{\lambda}^{\alpha_{1} \alpha_{2} \alpha_{3}} t_{i j}^{\lambda}=0$
(818) $\left(d^{2} \sum\right)_{a}^{\alpha_{1} \alpha_{2} \alpha_{3}} \sum_{i=1}^{3}(-)^{i+1} \Theta_{a b}^{\alpha_{1} . \hat{\alpha}_{i} \cdot \alpha_{3}} E_{b c}^{\alpha_{i}} F_{c}+\Gamma_{\lambda}^{\alpha_{1} \alpha_{2} \alpha_{8}} E_{a b}^{\lambda} F_{b}=0$

Comparing the coboundary operators which operate on $\Theta_{a b}^{\alpha \beta}$ and $\sum_{a}^{\alpha \beta}$
we see that :
we see that :

$$
(819)\left(d^{2} \Theta\right)_{a b}^{\alpha_{1} \alpha_{1} \alpha_{3}} F_{b}=\left[d^{2}(\Theta F)\right]^{\alpha_{1} \alpha_{2} \alpha_{3}} \sum_{i=1}^{3}(-)^{i+1} \Theta_{a b}^{\alpha_{1} \ldots \hat{\alpha}_{i} \ldots \alpha_{3}} L_{b c}^{\alpha_{i}} F_{c}
$$

75/P. 723

Hence, taking into account Eq.(B17), Eq.(818) assumes the for :
(B20)

$$
\left[d^{2}(\Sigma-\Theta F)\right]_{a}^{\alpha+\alpha \alpha_{2}}=0
$$

Finally Eq-(B13) writes

$$
\begin{equation*}
\left(d^{4} \Sigma\right)_{\eta}^{\alpha \beta, \gamma}-2 q\left(\mathbb{C}_{\eta}^{\alpha \beta, \gamma}-\Gamma_{\eta}^{\alpha \beta \gamma}\right)=0 \tag{821}
\end{equation*}
$$

In much the same may as for Eq.(11) expressing Eq.(12) in terns of its coefficients yields:
(眖) $\Gamma_{2}^{\alpha_{1} \alpha_{2} \alpha_{3}}=-\left(d^{2} \hat{\Gamma}\right)_{q}^{\alpha_{1} \alpha_{2} d_{3}}$
(m) $\Theta_{i j}^{\alpha+\alpha}=-\left[\left(d^{\alpha} \hat{\Theta}\right)_{i j}^{\alpha \alpha}-\hat{\Gamma}_{\lambda}^{\alpha \alpha \alpha} t_{i j}^{\lambda}\right]$

$$
\sum_{a}^{\alpha_{1} \alpha_{2}}=-\left[\left(d^{4}\{\hat{\Sigma}-\hat{\Theta} F\}\right)_{a}^{\alpha_{1} \alpha_{2}}+\left(d^{4} \Theta\right)_{a b}^{\alpha_{b} d_{2}} F_{b}-\hat{\Gamma}_{2}^{\alpha_{1} \alpha_{2}} E_{a b}^{\lambda} F_{b}\right]
$$

(824)

$$
=-\left[\left(d^{4}\{\hat{\Sigma}-\hat{\Theta} F\}\right)_{a}^{\alpha^{\alpha} \alpha_{2}}-\Theta_{a b}^{\alpha_{4} \alpha_{2}} F_{b}\right]
$$

(205) $\sum_{\eta}^{\alpha, \beta}=-2\left[\left(\hat{\sigma}^{\alpha} \hat{\Sigma}\right)_{\eta}^{\beta}+q\left(\hat{\Theta}_{\eta}^{\alpha, \beta}-\hat{\Gamma}_{\eta}^{\alpha \beta}\right)\right]$

We are now going to show that Eqs. (B22), (823), (B24), (B25) are consequences of the results of Appendix A, and that consequently $\widehat{\Gamma}, \widehat{Q}, \widehat{\Sigma}$ cai de chosen linear in $\Gamma, \Theta_{,} \Sigma$.
First. Eq. (822) is indeed a consequence of Eq. (B16) since the cochin Γ
takes values in the adjoint representation of \bar{G} mich is seat-simple so that Γ_{4}. Then, arias to the relation:
${ }^{(026)}\left[d^{2}\left(\hat{\Gamma}_{\lambda} t^{\lambda}\right)\right]_{i j}^{\alpha_{1} \alpha_{2} \alpha_{3}} \equiv\left(d^{2} \hat{\Gamma}\right)_{\lambda}^{\alpha_{1} \alpha_{2} \alpha_{3}} t_{i j}^{\lambda}=-\Gamma_{\lambda}^{\alpha_{\alpha} \alpha_{2} \alpha_{2}} t_{i j}^{\lambda}$
Eq.(817) becomes :
(827) $\left[d^{2}\left(\Theta-\hat{\Gamma}_{\lambda} E^{\lambda}\right)\right]_{l j}^{\alpha_{1} \alpha_{2} \alpha_{3}}=0$
since no antisymmetric invariant tensor of rank two on \mathcal{F} exists if \mathcal{F} seai-simple we see that Eq.(B27) and Eq.(B2O) imply Eq .(B23) and Eq.(B24) respectively.
Finally substituting Eq. (B23) into Eq.(B21) we get :
(B28) $\left(d^{1} \sum\right)_{\eta}^{\alpha \beta, \gamma}+2 q\left(d^{1} \hat{\Theta}\right)_{\eta}^{\alpha \beta, \gamma}+2 q\left(\Gamma_{\eta}^{\alpha \beta \gamma}-\hat{\Gamma}_{\lambda}^{\alpha \beta} f_{\eta}^{\lambda \gamma}\right)=0$
Now considering $\hat{\Gamma}_{\eta}^{\alpha} \gamma$ as a cochain of order one with values in the tensor product of the adjoint representation with itself and applying the coboundary operator d we get :

$$
\text { (829) }\left(d^{1} \hat{\Gamma}\right)_{\eta}^{\alpha \beta, \gamma}=f_{\eta}^{\alpha \lambda} \hat{\Gamma}_{\lambda}^{\beta \gamma}-f_{\eta}^{\beta \lambda} \hat{\Gamma}_{\lambda}^{\alpha \gamma}+f_{\lambda}^{\gamma \alpha} \hat{\Gamma}_{\eta}^{\beta \lambda}-f_{\lambda}^{\gamma \beta} \hat{\Gamma}_{\eta}^{\alpha \lambda}-f_{\lambda}^{\alpha \beta \hat{\Gamma}}{ }_{\eta}^{\lambda \gamma}
$$

Comparing with Eq.(822):

$$
\begin{aligned}
&(830)-\Gamma_{\eta}^{\alpha \beta \gamma}=f_{\eta}^{\alpha \lambda} \hat{\Gamma}_{\lambda}^{\beta \gamma}+f_{\eta}^{\beta \lambda} \hat{\Gamma}_{\lambda}^{\gamma \alpha}+f_{\eta}^{\gamma \lambda} \hat{\Gamma}_{\lambda}^{\alpha \beta}-f_{\lambda}^{\alpha \beta} \hat{\Gamma}_{\eta}^{\lambda \gamma}-f_{\lambda}^{\beta \gamma} \hat{\Gamma}_{\eta}^{\lambda \alpha}- \\
&-\Gamma_{\lambda}^{\gamma \mu} \tilde{\Gamma}_{\eta}^{\beta \gamma}
\end{aligned}
$$

we see that Eq. (B28) has the form:
(831) $\left[d^{4}(\Sigma+2 q\{\hat{\Theta}-\hat{\Gamma}\})\right]_{\eta}^{\alpha \beta, \gamma}=0$
since no invariant tensor of rant one on Z exist: if Z is inmisimple, Eq.(B31) can be solved according to
${ }_{(832)} \sum_{\eta}^{\alpha, \beta}=-2\left(\tau^{\alpha} \sum_{\eta}^{\beta}\right)_{\eta}^{\beta}-2 q\left(\hat{\aleph}_{\eta}^{\alpha, \beta}-\hat{\Gamma}_{\eta}^{\alpha \beta}\right)$

The possibility of choosing $\widehat{T}, \widehat{\Sigma}, \widehat{\Theta}$ inear in $\Gamma, \widehat{\Theta}, \sum$
stems from the explicit construction given in Appendix A.
[1] C. BECCHI, A. ROUET, R. STORA
The Abelian Higgs Kibble Model, Unitarity of the 5 Operator Phys.Lett. 528, 344 (1974).

Renormalization of the Abelian Higgs Xibble Model Commun.math. Phys., to be published.
[2] W. Zimmepmann
Ann.Phys. 77 , 536 (1973)
Ann. Phys. 77 . 570 (1973)
[3] s.4 whtseem
Comaun.aath. Phys. 24 , 1 (1971)
[1] Y.M.P. LAM
Phys.Rev. 06.2145 (1972)
Phys.Rev. 07 , 2943 (1973)
M. BERGERE, Y.M.P. LNM
to be published
[5] h. epstein, v. glaser
: Ann.inst.Henri Poincare, Xix , $\mathrm{n}^{\circ} 3$, p. 211 (1973)
: in Statistical Mechanics and Quantio Field Theory, Les Houches Summer School of Theoretical Physics. 1970. Gordon and Breach New York 19/1, C. te Witl, R. Stora Ed.
: Colloquium on Renormalization Theory, CMRS, Centre de Physique Theorique, Mars rilic Juno 1971. CERM TH 1344, June 1971
[6] M. comes. J.h. Lomensteim
Phys.Rev. 07 , 550 (1973)
[7] J.h. LOWENSTEIN. B. SChMoER
Phys.Rev. 07 , 1929 (1973)
C. BECCH I

Coman.anth.Phys. 33-97 (1973)

75/P.723
[8] A complete bibliography about the theory of gauge fields can be found for in-tancr in :
E.S. ABERS, B.V. LEE

Phys.Reports 96, $\mathrm{n}^{\circ} 1$ (Nov. 1973)
M. VELTMAN

Invited talk presented at the International Symposium on Electron and Photon Interactions at Migh Energies, Bonn 2/-31, August 1973.
The algebraic structure referred to here is however along the lines of [1]
The results of the present paper have been announced oy C. Becchi, A. Rovet, R. Stora, CNRS Centre de Physique Théorique, Marseille, Colloquium on Recent Progress in Lagrangian Field Theory, June 1974 and sumearized in
J. ILIOPOUROS

Progress in gauge theories, Rapporteur's talk, 17 th International Conference on High Energy Physics, London 1974.
The symetry property described in [1] is applied to traditional renormalization procedures in :
J. ZIM JUSTIM

Lectures given at the International Sumer Institute for Theoretical Physics, Bom 1974.
[s] L.C. BIEDEMHARN
in Colloquin on Group Theoretical Methods in Physics, CNRS
Marseille June 5-9 (1972) (where however the implications of renornallzablifty thanks to whiti all algeturalc problems reduce to essentially finite dimensional ones, have not been investigated).
C.M. LLITHILYNN SMITH

Phys.Lett. 468,233 (1973) and private discussions
J. Wrss, B. TIMim

Phys.Lett. 378 , 95 (1971)
[10] S.L. ADLER
Phys. Rev. 177,2426 (1969). Lectures on Elementury Particies and Guantum Firid Theory, 1970 Brandeis University Summer Institute of Theoretical Physics, S. Deser, M. Grisary, K. Pendleton Ed., M.I.T. Press, Cmbridge, Mass. 1970

W. BAROEEM

Phys.Rev. 184 . 1848 (2969)
[11] J.h. LOWENSTEIN, B. SChROER
Phys.Rev. 06 , 1553 (1972)
[12] J.H. LOWCNSTEIN, to be published
C. BECCHI , to be published
T. CLARK, A. ROUET, to be published
[13] J.h. LOWENSTEIN, W. ZImbrmann, to be published
Ph. blanchard, r. Seneor
: CERN/TH 1420 preprint, Nov. 1971
CNRS Centre de Physique Theorique Marseille, Colloqutum on Renormalization Theory, June 1971, and to be published in Ann.Inst. Henri Poincare
[14] A.A. SLAVNOY
TM@10. 153 (1972)
[15] L.D. FADDEEV, V.N. POPOV
Phys.Lett. 25B , 29 (1967)
[16] 6. 't HOOFT
Huclear Physics 835 , 167 (1971)
6. 't inioft, ri. VEltman

CNRS Marseille, Colloquium on Yang mills fields, June 1972
CERN/TH 1571
[17] Seminaire Sophus Lie, Ecole Normale Superieure Parts 1954: Theorie des Algebres de Lie. in [9] . the relevance of cohomology theory in the present conrext con be detected.
[18] G. 't hooft, M. VELTMAn
CERN Yellow keport iH/73/9 "Diagrammar" (1973) ; Nuclear Physics 850, 318 ,(1972).
[19] The treatment of non linear gauges would require the introduction of two more multiplets of external fields, one coupled to the renomalized gauge function, one coupled to the renormalized Slavnov variation of the gauge funtatin, with appropriate dimensions and quantum numbers. cf.Ref[1].
[20] C. BECCHI, A. ROUET, R. STORA
Lectures given at the International School of Elementary Particle Physics, Basko Polje. Yugoslavia 14-29 Sept. 1974 and to be published
[21] Using the LSZ formula, it is enough to compute $\partial Z_{c}(y) / \partial \lambda$,
 to show that the matrix elements of the gauge function between physical states vanish, as a consequence of the Slavnov identity. More generally, one can check that physical matrix elements of time ordered products of gauge functions are disconnected.
[22] G. 't HOOFT
Nuclear Physics, 835 , 167 (1971)
[23] The treatment of double poles given in [1] can easily be adapted modulo the modifications due to the non hermiticity of the Lagrangian described here.
[24] The main reference is: "Séminaire Sophus Lie 1. 1954/1955, "Theorie des Aigèbres de Lie", Ecole Normale Supérieure, Secrétariat Mathématique, 11, rue Pierre Curie, Paris 5 e.
A sumsary can be found in N. Bourbaki, Groupes et Algebres de Lie, Ch. 1, §3, Problem $n^{\circ} 12$, Hermann Paris (1960).

