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Inequalities in von Neumann algebras* 

Huzihiro ARAKI 

Research Institute for Mathematical Sciences 
Kyoto University, Kyoto, JAPAN 

Abstract Généralisation of inequalities invo]/ing trace of matrices 

to von Neumann algebras not having traces in gênerai is 

discussed. 

§1 · Introduction 

There are some well-known useful inequalities involving the 

trace of matrices: Let A* = A, Β* = Β, ρ j> 0, σ > 0 and χ 
be finite matrices. 

(i) Golden-Thompson inequality ( [ 1 5 ] , [22]): 

4. / A B N ^ . A+B / Λ ,, χ tr(e e ) > tr e . ( 1 . 1 ) 

(ii) Peierls-Bogolubov inequality ( [ 1 1 ] , [ 1 8 ] ) 

tr e A + B > (tr eA)exp{tr(eAB)/tr e A}. ( 1 . 2 ) 

(iii) Powers-St<j>rmer inequality ( [ 1 9 ] ) : 

Il Ρ - ο J t r > | p 1 / 2 - σ 1 / 2Ι 2_ S ! . (1.3) 

* An expanded version of the talk given at Vingtième Rencontre 
entre Physiciens Théoriciens et Mathématiciens at Strasbourg, 
May 22-24, 1975-
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Here || χ H t x . Ξ tr{(x*x) 1 / 2}, | x l H # s

 Ξ ίtr(x*x)} 1 / 2. 

(iv) Convexity of log tr e A in A ( [ 1 6 ] ) . 

(v) Lieb concavity ( [ 1 6 ] ) : tr exp(A+log p) is convex in ρ . 

(vi) Wigner-Yanase-Dyson-Lieb concavity ( [ 1 6 ] , [24]): Let 
0 £ s, 0 < r> r+s < 1 . Then tr(x*a sxp 1) is jointly concave in 
ρ and σ. 

(vii) Properties of relative entropy ( [ 1 7 ] , [ 2 3 ] ) : The 
relative entropy 

S(a/p) = tr(p log p)- tr(p log o) ( 1 . 4 ) 

satisfies the following properties (in addition to being lower 
semicontinuous in p and σ ): 

(α) Positivity: S(o/p) > 0 (S(a/p)=0 only if σ=ρ) 
if tr σ - tr p. 

(g) Convexity: S(o/p) is jointly convex in p and σ. 
(γ) Monotonicity: Let E N dénote the conditional 

expectation of matrices to a *-subalgebra Ν relative to the 
trace- Then 

S(E No/E Np) < S(o/p) (1.5) 

In this review, we describe how to rewrite thèse inequalities 

without using "trace" so that the resulting expressions are meaning-

ful for a gênerai von Neumann algebra and inequalities remains 

true. We also sketch proofs for rewritten inequalities (il), (v), 

(vi) and (vii). The proofs of (i), (ii) and (iv) are given for 

a gênerai von Neumann algebra in [3] and (iii) in Also see 

[ 2 0 ] . The proof of (vi) and (viii) for a gênerai von Neumann 
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algebra will appear in a forth coming paper ([7])· The proof of 
(vi), (vii) (a) and (β) has already been given in [9]· 

Just to give an indication of what are our gênerai idea, 
consider (i), (il), (iv) and (v). Let M be a * algebra of 

matrices to which A,Β and ρ belong. Any linear functional 
on M, which is positive in the sensé that γ(χ*χ) > 0 for 

ail xé M can be expressed in terms of a density matrix M 
as 

V>(x) = tr(px) , xfcM. (1.6) 

If we consider the case where p_ = e , then 

tr e A e B = </(eB), (1.7) 

tr e A = 9>(l), (1.8) 

tr e AB = ytB). (1.9) 

Hence, if we somehow manage to define a positive linear functional 
Β A cj> on M from given C/> with p^=e and from B=B* ζ M, so that 

c/>B(x) = tr ( e A + B x ) , (1.10) 

then (i) and (ii) can be rewritten as 

9>(eB) > y>B(l) > ç#l)exp{y(B)/9U)>. (1.11) 

(iv) is the convexity of log c^P(l) in Β and (v) is the 
concavity of c^ l o s P(l) in p. 

For gênerai van Neumann algebra M, ĉ> is taken to be normal 
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faithful positive linear functional. Here "normal" refers to 
a continuity of c^(x) in x£M relative to the σ-weak (or σ-
strong) topology in M. Faithfulness refers to the property that 
<^(x*x) = 0 occurs only if x=0. This property is équivalent to 
P̂ >>0 for the case of ( 1 . 6 ) and is automatically satisfied for 
p^=e . The only part which requires more sophiscated tool is 
the définition of ^ a perturbed functional. The theory 
of modular operators [ 2 1 ] is used in an essential manner for 
this purpose. 

§2· Modular operators 

Let Ψ and Φ bë cyclic and séparâting vector of a von 
Neumann algebra M on a Hilbert space 1^ . (Ψ cyclic if ΜΨ 
is dense in ̂  ; separating if χ £ M and χΨ = 0 imply x=0 or 
equivalently Μ !Ψ is dense.) Let S $ ψ be an antilinear operator 
defined on ΜΨ by 

= x**> xe-M. ( 2 . 1 ) 

Then S $ ψ has a closure S $ ψ , whose SLbsolute square defines 
the relative modular operator: 

ΔΦ,Ψ = < S

# , f > * 3Φ,Ψ · (2· 2) 

The spécial case Δ ψ ψ is denoted by Δ ψ and called the modular  
operator. For given Ψ, Δφ ψ dépends only on the normal faithful 
positive linear functional 

<f(x) = ( Φ , χΦ), x£M ( 2 . 3 ) 
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and not on its représentative vector Φ. 
One of the main ingrédients of Tomita-Takesaki theory ([21], 

also see [12]) is that x£M implies 

° t ( x ) Ξ ( Δ Φ , Ψ ) η χ ( Δ Φ , Ψ Γ " 6 M { 2 Λ ) 

for ail real t. is a continuous one-parameter group of 
automorphisms of M, called modular automorphisms. dépends 
only on and not on Ψ nor on the choice of the représentative 
vector Φ of y. 

The polar décomposition 

δ ψ ) ψ = < Τ ψ ( Δ ψ ) 1 / 2 (2.5) 

defines an antiunitary involution Jy. (Namely (Jyf, Jyg,) = 
p 

( g ^ ) , (̂ ψ) = 1·) The other main ingrédient of Tomita-Takesaki 
theory is that xÇM implies 

j y(x) = JyXJy e M f. (2.6) 

1/4 

The closure of the set of vectors* (Δ ψ) χΨ where χ runs 
over ail positive éléments of M is called natural positive cone 
and denoted by ν ψ ([*!], [ 8 ] , [ 1 3 ] ) · It is a pointed closed 
convex cone, which is selfdual (i.e. (f,g) >, 0 for ail g é ν ψ 
if and only if f € V y ) . For any Φ 6 ν ψ and x£M, χ,]ψ(χ)φ £ν ψ  

and the set of χ3ψ(χ)Ψ for ail x^M is dense in ν ψ. Any 
vector Φ 6 is cyclic if and only if it is separating. For 
such Φ in ν ψ, J $ = and V $ = ν ψ (the universality). For a 
gênerai cyclic and separating Φ, there exists a unitary u f in 
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M' such that ν φ = ιι·νψ, J $ = u'J^u')* and 

δΦ,ψ = u ' W f ) 1 7 2 - ( 2 · 7 ) 

In our disscussion, we can use a fixed natural positive 

cone and hence we drop the suffix Ψ from J^, ν ψ and in 

the following. 

Any normal positive linear functional (ψ of M has a 

unique représentative vector ξ(^ρ) in V: 

= (Ç(<f), χξ(^>))· (2 .8 ) 

The mapping ξ is a concave monotone increasing (relative to the 
positive cônes M* and V) homeomorphism, homogeneous of degree 
1/2y satisfying 

Il + W 2 > l l l l c c ^ ) - ξ ( ? 2 ) | Ι 

> Il 9>x - cp 2 l l > | | ξ ( ^ ) - 2 . ( 2 . 9 ) 

For faithful <f of ( 2 · 3 ), ξ (<f ) is given by 

ï(<f) - (Δ φ^ ψ) 1 / 2Ψ. ( 2 . 1 0 ) 

(For gênerai <Lf> with a support projection e, ξ(^) is obtained 

by the same formula in the subspace ej(e)^. with Ψ replaced 

by ejCe)*? and with Δ defined relative to eMe. ) 

To understand ail formulas above, we go back to the simple 

case of M being a matrix algebra and see what newly defined 

quantities look like. 

Let the Hubert space Ίβ* be M itself with inner product 
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<n(x), n(y)> = tr x*y ( 2 . 1 1 ) 

where we have used the notation n(x) for an élément In to 
dlstinguish it from the operator x ζΜ, which is faithfully re
présentée! by the left multiplication: 

ir(x)n(y) Ξ n(xy). ( 2 . 1 2 ) 

The left multiplication 

π·(x)n(y) Ξ n(y X) ( 2 . 1 3 ) 

defines operators ir'(x) which générâtes π(Μ)'. ττ(Μ) which is 
isomorphic to M will take place of M in our gênerai discussion. 

Let Ρψ and be density matrices defined in ( 1 . 6 ) . Let 
Ψ be η(ρ ' ). Then for xfcM 

Δ φ } ψη(χ) = η(ρ^χρ ψ
_ 1), (2 .1H) 

Jn(x) = n(x«), ( 2 . 1 5 ) 

V = n(M +), ( 2 . 1 6 ) 

ξ (?) = n ( p f
1 / 2 ) , ( 2 . 1 7 ) 

oJ(ir(x)) = TTtp^xpy" 1). ( 2 . 1 8 ) 

It is now possible to rewrite inequalities (iii), (vi) and 

(vii) as follows. First note that 
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- ξ(? 2)« 2 = Î P ^ 2 - p ^ 2 f S . s . > 

|χ|<1 

= sup |tr(p -Ρ )x| = |p - H t r -
||x|<i η y2 η Ύ2 t r 

Hence the second inequality of (2.9) is the generalization of 
the Powers-stszirmer inequality (iii). 

Next note that 

which implies 

||(Δ φ ) ψ) 3 / 2χΨ| 2 = tr(x*p^xpj-s). (2.19) 

Hence the concavity of (2.19) generalizes the concavity in (vi) 
for r + s = 1. (The case r + s £ 1 in (vi) follows from the 
case r + s = 1 and the operator concavity of ρ + p p for 0 £ 

Ρ < 1.) 
Finally 

SCy/φ) = -(Ψ, (1ο δΔ φ ψ)Ψ) (2.20) 

coïncides with (1.4) with σ = and ρ = p^. Hence the positivity 
for <f(l) = Ψ(1), convexity and monotonicity of (2.20) generalize 
(vii), where the conditional expectation E N in (1.5) is to be 
replaced by the restriction of a functional to von Neumann sub-
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algebra Ν of M, because of the following circumstances: E^(p) 
is defined as the unique élément in Ν satisfying 

tr px = tr EN(p)x 

for ail χ èN. For ρ = p^, it coïncides with the définition of 
the density matrix for the functional 

y N(x) = tr px = $*(x), χ 6N, 

whcih is the restriction of y to N. 

We note that the concavity and monotonicity of ξ correspond 
1/2 

to the operator concavity and monotonicity of ρ •+ ρ . 

§3· Perturbation of functionals-

ο 

To generalize the perturbed functional <f given by (1.10) 
to a gênerai von Neumann algebra M, we define a vector <î>(h)eV 

for given Φ iV and h = h*éM so that 

yh(x) = (Φ(ίι), χΦ(ϊι)), xéM (3.1) 

is the desired perturbed functional. The formula (2.14) and (1.10) 
suggest 

l o g ΔΦ^),Φ " l o g ΔΦ = h ( 3 " 2 ) 
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which implies, due to ( 2 . 1 0 ) , 

<Kh) = exp {(log Δ φ+ h ) / 2 H . (3 -3) 

An alternative expression can be found by using the expansion 

. t τ 
(A+B)t -tA ν f f ^ ~f /Ί^̂  ~¥ 

e = I dt ... dt σ (Β)...σ (Β), 
n=0 J 0 ' 0 η 1 

$0/DS itA_ -itA o t(B) = e Be , 

4. v u v / (A+B)/2 -A/2s A /2 
to the représentative vector (e e )e , where 

- tr(e x). The resulting expression, written in terms of 
A /2 

the modular operator Δ φ of Φ = e is 
œ

 fl/2 rtn-l t t -t t -t. 
*(h) = T dt,... dt A,nhA,n 1 "h.-.A.1 ^h*. (3.4) 

N=0 Jo 1 -Ό η Φ Φ Φ 

We adopt (3. M as the définition of $(h) and ( 3 . 1 ) as the 

définition of $f for a gênerai von Neumann algebra M. The 

absolute convergence of ( 3 · Ό > uniform over h € ( M ) k (the bail 
of radius k in M ) , follows from the following Lemma ( [ 2 ] , 

Theorem 3 · 1) : 

Lemma 1 (1 ) A cyclic and séparâting vector Φ is in the 
domain of the operator 

Q(z) = ά Ζ

φ \ ζ \ ... Δ φ
ηζ> η ( 3 . 5 ) 

for any integer n, any Qjé M (j=l,...,n) and any complex number 
z. (j=l,...,n) in the tube domain 
J 
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Ι^' Ξ {z=(zr . . . ,z n); Re Z l>0,.,.,Re z n>0, 

l/2>Re(z1+..·ζη)}. (3.6) 

(2) The vector-valued function (3(ζ)Φ of ζ = (z-^,...,ζ ) 
—1/2 

is strongly continuous on I ' , holomorphic in the interior 
I ^ / 2 of ï ^ / 2 and uniformly bounded by |Φ| | Q j . . . |Q n |. 

*st 
(3) Let (M) k be the bail of radius k in M, equipped 

with *-strong operator topology. The vector Q(z)<ï> is strongly 

continuous as a function of 

( Q r . . Q n ) € ( M ) *
s t x . . . x ( M ) * S t , 

the continuity being uniform in z i ' e , z

n

 o v e r a n Y compact subset 

—1/2 

of the tube I . (k>0 is arbitrary.) 

(For the proof of (3)* see Remark at the end of the section.) 

The perturbed vector <ï>(h) is automatically a cyclic and 

separating vector in the same natural cone as Φ and satisfies 
(3-2), (3-3) and the following properties ([2]): 

Φ ^ ) = <Kh 2) if and only if h1 = hg. (3-7) 

^ ( h ^ K h g ) = Φ(^ 1+1η 2). (3.8) 

[Φ(ΪΙ)](-1Ί) = Φ. (3-9) 

[ Φ ( λ 1 ) ] - βλ/2Φ. (3.10) 

log Δ φ ( ϊ ι ) = log Δ φ + h - j(h). (3.11) 

ot (χ) = ufca^(x)ut , (3.12) 
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- t a \it A-it 

= I dt ... d t a f (h)·. .οζ (h). ( 3 - 1 3 ) 
n=0 J0 1 J0 n η Z l 

(d/dt){cf (x) - af(x)} = i[h,x]. (3.14) 
z z t = 0 

(d/dt)u f c = u f ca£(h). (3-15) 

Prom Lemma 1(3) and the uniform bound of Lemma 1(2), it follows 
that Φ (h) 1s strongly continuous as a function of h é(H)^. 

For our application, it is important to find an analytic 
continuation in h. For example, the vector Φ (h) can be defined 
for arbitrary h £ M by (3.4). It is then seen from the uniform 
bound of Lemma 1(2) that Φ(1ι(ζ)) is holomorphic in ζ if h(z) 
is holomorphic in z. The following Lemma ([2], Theorem 3.2) yields 
such resuit for <p (1): 

Lemma 2 (1) For any Q.£M (j=1,...,n+l), the following 
J 

formula defines a single-valued function f(z) for z ^ ̂  (defined 
by (3-6) in which 1/2 is replaced by 1): 

fn-l ( z' » ( % J 2 « j « i . J + 1 ' - - i » n V l * • 

Z Z z 
V , 1 q j V , - 1 - - - ^ 1 q i * ) » ( 3 · 1 β ) 

where 
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Re(z +...+z. +z ) < 1/2, 

Re(z . 0+z . . + ...+z) .12 .1+1 n < 1/2. 

(2) The function f , n(z) so defined is continuous on I 1, 
n+1 n> 

holomorphic in the interior 1^ of 1^ , and uniformly bounded 

on ll by |«| |Qj...|Q n + 1|. 
(3) The values of ^n+i^z^ a t distinguished boundaries of 

1^ are given by n 

cn+l n 1 Ll 1 
(3-17) 

W 1 * ! " 1 ^ ' " ' ' ' " j " " + * * • ' i t n - i t n + l ) 

= ?>(a?(Q )...af (Qi>°r (3-18) 

where t..,...,t ... are real and j=l,...,n. 1 n+1 
c> fn+1(«) is a continuous function of 

€ ( M ) f x...x( M)f , 

the continuity being uniform in z over any compact subset of 
1^. (k>0 is arbitrary.) Here (M). is equipped with strong 
n xC 

operator topology. (For Bergman-Weil formula, see [i ], Corollary 

3.4 and Remark 3-5-) 

Remark (1) Lemma 2(4) can be proved as follows: To make 

dependence on Q = (Q^•..>Q n + 1) explicit, we write 
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2 2 
F(z;Q) = e ( z l + ' " + Z n ) f n + 1 ( z ) (3-19) 

where the Gaussian factor is introduced to raake F uniformly 

vanishing for infinité ζ in 1^+1' i s enough to show that 

for any ε>0, 

|F(z;Qf) - P(z;Q)| < ε 

st 
for Q f in a suitable strong neighbourhood of Q within ( Μ)^ 

st 
x . . . x ( M ) k , the neighbourhood being independent of ζ as long as 
ζ is in any given compact subset of Ι^+_· D u e t o the analyticity 
in ζ and vanishing at infinité ζ , |F(z;Qf) - F(z;Q)| is 
bounded by the supremum of its values on distinguished boundaries, 
which consists of the following n+1 planes: 

B Q = {z ; Re ζ « 0} , (3-20) 

Β. 8 (ζ ; Re ζ s 1 and Re z 0=0 for l / j} , (3-21) J j * 

where jsl,... . ,n. Since F(z;h) tends to 0 as z-*» from within 
In+1> uniformly in h s ( M ) k Χ . . . Χ ( Μ ) y it is enough to see that 
the supremum of |F(z;Q!) - F(z;Q)| over ζ in some compact subset 
of a distinguished boundary is bounded by a given ε. For this it 
is enough to see that F(z;Q) is a continuous function of (z,Q)é 
BjX(M) kx...x(M k) for j*0,...,n. The function f(z;Q) is given 
by Lemma 2(3) > which can be rewritten as the expectation value in 

i ( t n + l " t l ) 

Φ of a product of some of operators Q.5...,Q ,,,Δ, ± >. . ., 
1 ( t n " t n + l ) 1 ( t n + l - t l )  

Δ φ ,Δ φ in a certain order. Since a product of 
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operators is simultaneously strongly continuous as long as 
is 

operators are in a uniformly bounded set, and since Δ φ is strongly 
continuous in real variable s (with norm 1), we have the desired 
continuity of f(z;Q) in (z,Q) with ζ on distinguished 
boundaries. 

(2) Lemma 1 (3) can be proved as follows: Let 
2 2 zn+...+z 

<Kz;Q) - e 1 n Q(z)*. (3-22) 

We have to show that 

||Φ(ζ;<3') - Φ(ζ;<3)|| = sup |(Ψ,Φ(ζ;<3!) - Φ(ζ;ς))| < ε 

for Q f = ^ i # ' e Sî^ i n a s u i t a f c > l e strong neighbourhood of Q -
(Q 1--.Q n) within ( M ) * s t χ . . . χ ( M ) * s t , the neighbourhood being 
independent of ζ as long as ζ is in a given compact subset 
of 1^+1' A s above, the problem is reduced to the strong conti
nuity of Φ(ζ;(3) in (z,Q) for ζ in the distinguished bounda-
ries of Ix/* and Q in (M), χ. . · χ (M), . This follows again η le ic 

from the strong continuity of product of operators in a uniformly 
bounded set applied to the following expressions for real s = 

1 η 

is is 
• <is r..ie n;Q) = Δ φ Χ · . . Δ φ \ · , 

is is... i(s n+...+s.) 
#(i8 1...ie J+l/2...i8 n;Q) = Δ φ \ . . . Δ φ

 J + 1 Q J + ^ 1 J 

* ~^si * "~^so -is. - g 

«2 ΔΦ " Λ J \ * -
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Ρ Ρ 
-(ζ*+...+ζ ) 

(3) In the proof of Theorem 3-2 of [2], a factor e n 

g 
is missing from the définition of F (z) on page 173- With this 
factor, it is enough to prove the simultaneous continuity of 
β ( 1 ) 

Fp(x-iX J / ) in Q Ts and x ?s for each j, which follows again 
from the strong continuity of product on bounded set. 

§4. Proof of Lieb convexity 

We use the method of Epstein ([14]), for which we need an 
analytic continuation of <f (i) i n h, given by the following 
formula : 

« rl ^n-l 
n = 2 J 0 1 J 0 η η 1 2 n-1 η 

(4.1) 

By Lemma 2(2), the expression (4.1) is convergent and defines a 
holomorphic function of Q in the sensé that f(Q(z),Cf) is 
holomorphic in ζ whenever Q(z) is holomorphic in ζ. It is 
also strongly continuous as long as Q is in a bounded set. If 
Q = h = h*, then 

f(h,# - 9^(1), (4.2) 

which can be proved as follows. 

It is enough to prove (4.2) for a dense set of h and hence 
we assume that a ^ h ) i s a n entire function of t. In this case 
the following formula holds for real ζ and H = log Δ φ: 
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iz(H+h) -izH ? Λ · „ ^ ί V f Hf r*\ e 'e =2, d z ) dt . . . at

n

av* (h> — ·σζ*- (h). 
n=0 J0 1 J0 n zZn ZZ1 

(4 .3 ) 

See, for example, [6] Theorem 14.) D Ue to ΗΦ = 0, we have 

1 tn-l 
eiz(H+h) $ m £ ( i z ) n f d t [ n " d t y (h)...of. (h)«, (4 .4 ) 

at first for real z. Since 

( e-iz(H +h) ψ > φ ) 

for any entire vector Ψ of H+h (which is selfadjoint) and 
the inner product of Ψ with the right hand side of ( 4 .4 ) are 
both an entire function of z and coïncides for real t, they 

are equal. It follows that Φ is in the domain of e- z( H+h) 
and (4 .4 ) holds for ail z. For ζ = - 1 / 2 , (4 .4 ) gives Φ (h) 

(the right handside gives (3-4) and the left hand side gives 
( 3 - 3 ) ) · Hence 

5 ^ ( 1 ) = (Φy e H % ) 

- S*(l)+ ?(h) + Σ f l d t i e - J t n " l d t
n
( * , a - i t C h )--- a?it ( h ) < î > )-η=ζ-Ό -Ό η 1 

( 4 . 5 ) 

The desired resuit ( 4 . 1 ) follows ( 4 . 5 ) due to the formula 

(Φ,σ*7 (h)...o£ (ϋ)Φ) = f

n ( i t

1 - i t 2 ' · · · > i t n ^ t n ^ l ) , ( 4 / 6 ) 

n 1 
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which obviously holds for real t and hence by analytic continuation 
for ail t where f is defined. This concludes the proof of 

η 
(4.2). 

We now apply Lemma 3 of [14] to the function ρ + f(logp, 9?) 

defined on 

D = tj{A; Re e ~ i 6 A > ε } (4.7) 

where the union is over real ε > 0 and θ£[-π/2, π/2], and 
Re C dénotes (C+C*)/2. The convexity Qf Φ(log p) = fClog p, ) 
in ρ é M + follows from the following conditions to be satisfied 
by f : 

(i) f is holomorphic in p€D. 
(ii) If Im p > 0 and p*D, then Im f(log p,<?) > 0. If 

Im p < 0 and ρ é D, then f(log p, cp) £ 0. Here Im p dénotes 

tp_p*)/(2i). 

(iii) For every real r and péD, 

f(log (rp), γ) = rSf(log p > φ) (4.8) 

where 0 < s £ 1. 
Since ρ + log p is holomorphic in the domain (4.7) ([14]), 

(i) is satisfied. Since y (1) = eV(l), the corresponding 
équation holds for its analytic continuation and hence (4.8) holds 
with s = 1. 

To prove (ii), we introduce 

h e E J a t ( l o g p ) e / e d t / ( 2 * $ ) 1 / 2 . (4.9) 
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We can verify (ii) if we show that Im f(hg,$p) > 0 if Im ρ > 0, 
péD and f(hR,<?) <= 0 if Im ρ > 0, pèD, because lim h R = log ρ 

ρ g-H-0 P 

and f(Q,9) is continuous in Q. 
Let Εχ for λ6[ο,1] be the spectral projection of Δ φ 

for the spectral set [λ, Ι/λ]. Then Ε,Η is bounded and lim E, 
λ λ+0 

= 1 . By Remark 4 of [14], 0 < Im log ρ< π if Im ρ > 0. This 
implies 0 < Im h R < π if Im p > 0 . By Remark 2 of [14], 0 < 
Im SP hg < π where S.P dénotes the spectrum. Hence 

HE +h R 

Im Sp(e p ) > 0 and 

HE +h R 

Im (Φ, e Λ ΡΦ) > 0 

whenever Im ρ > 0. We now prove 

HE +h R 

limU, e λ ^Φ) = f(log ρ, cp), (4.10) 
λ-»0 

which will complète the proof of Lieb convexity for a gênerai von 

Neumann algebra. 

By the formula (4.3) with H replaced by HE. and iz by 
-ΗΕ χ

 A 

1, we obtain by using e Φ = Φ 

HE,+hR » fl ^n-l 
(Φ, e λ ΡΦ) = l dt,... dt g(t....t), (4.11) 

n=0 j0 1 J0 η χ η 

(t 1-t n)HE, (t1-t„)HE, 
g(t 1...t n) = (Φ, h $e n _ 1 n \..e 1 2 λ η Λ Φ ) . (4.12) 

We replace each exponential in (4.12) by the formula 

e λ = {ΔφΕχ + (1-Ελ)> 
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η 1 
and obtain 2 ~ terms of the following type 

( Φ> V n - l ^ i s 1
( h 6 ) ' - - e l C f ? i s , ( h B ) < t ) > ( 4 ' 1 3 ) n-l ι 

where 

n-l 

and 8j is either 0 or 1. By the continuity of the product 

of uniformly bounded operators, (4.13) is continuous in (X,s^,..., 
s Ί ) and hence tends to zéro as λ + 0, except that the term with n-l 
ail ε. = 1 tends to 

( φ> V-i(t n_ 1-t n) ( h3 )---°-i(t 1-t n) ( he )* ) 

= <*> <'?it n( h3>-"°ÎLt 1
( h3 )* ) 

where ail convergence is uniform in (t '...t ) within the compact 
l n 

région of intégration in (4.11). (4.13) is also bounded by 

2 n- 1{sup |σ* (hg)|}>|| 2 

0<s<l l s 15 

independent of (λ,̂ ,. .. ,t ). Hence the séries (4.11) is absolutely 
convergent uniformly in λ and we obtain (4.10) from the conver
gence of (4.13). 
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§5· Relative Entropy 

Let be the spectral projection of Δ φ ψ . Then the 

définition (2.20) is 

SCy/φ) = - log λ ά(Ψ,Ε.Ψ). (5-1) 
J 0

 λ 

By a numerical inequality 

log λ < λ - 1, (5.2) 

we have 

.00 
> (Ι-λ)ά(ψ,Ε.Ψ) 

J 0
 λ 

- Ν 2 - Ι ( Δ Φ } Ψ ) 1 / 2 Ψ | 2 

= ψ(1) -cp(.l). (5.3) 

Hence we have the positivity 

S-Cp/ψ) > 0 (5.4) 

if #>(1) = φ(1). Since the equality in (5.2) holds only if λ * 1, 

the eqality in the inequality of (5·3) holds if the measure 

άίΨ,Ε^Ψ) is concentrated at λ = 1, i.e. 

Φ = ( Δ φ ) ψ ) 1 / 2 Ψ = Ψ. 

Hence if 9»(1) then 
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= ο 

holds if and only if ψ = ψ. (Strict positivity.) 
h—c 1 

We now consider perturbed functional ψ where h = h* é M 
and the number c is chosen to be 

c = log(9>h(l)/^(l)) (5-5) 

so that 5^ h" C l(D = ^ ( 1 ) · By (3-2) and Δ φΦ = Φ, we have 

S(c/>h"cl/9?) = -#h-cl) 
= 9?(l)c - 9>(h). (5.6) 

The positivity and (5·5) imply 

9?(h) < 9KD log(9>h(l)/V(l)), (5-7) 

which is the Peierls-Bogolubov inequality (the second inequality of 
( 1 . 1 1 » . 

The WYDL concavity has been generalized ([7]>C9]) to the 
joint concavity of |(Δ φ ψ) ρ /' 2χΨ| 2 in faithful normal positive 
functionals ψ and ψ for 0<p<l. This implies the concavity of 

»00 

P J 0
 λ 

= | ( Δ Φ > Ψ ) Ρ / 2 Ψ | 2 (5.8: 
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and hence the convexity of 

SÎÎP/ψ) = lim ρ"1{ψ(1)-3^(^/ψ)} (5.9) 
p+0 p 

jointly in ψ and ψ. 

This convexity can by used to prove the monotonicity 

S(9/y) > 3(Ε Ν^/Ε Νψ) (5.10) 

where E N dénotes the restriction of functionals to Ν and the 
proof has been found so far ([7]) for a gênerai M and for a 

von Neumann subalgebra Ν of M belonging to one of the following 
cases : 

(1) M = Ν © Ν χ for Ν = M Λ Ν 1 . 

( 2 ) Ν = Α ! λ M for a finite dimensional abelian von Neumann 
subalgebra A of M. 

(3) Ν is an approximate finite von Neumann algebra- This 
includes any finite dimensional N, which is the case needed in 
applications ([5], [10]). 
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