The Generalized Three Circle - And Other Convexity Theorems with Application to the Construction of Envelopes of Holomorphy
Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 23 (1976), Exposé no. 3, 39 p.
@article{RCP25_1976__23__42_0,
     author = {Borchers, H. J.},
     title = {The {Generalized} {Three} {Circle} - {And} {Other} {Convexity} {Theorems} with {Application} to the {Construction} of {Envelopes} of {Holomorphy}},
     journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25},
     note = {talk:3},
     pages = {42--80},
     publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur},
     volume = {23},
     year = {1976},
     language = {en},
     url = {http://archive.numdam.org/item/RCP25_1976__23__42_0/}
}
TY  - JOUR
AU  - Borchers, H. J.
TI  - The Generalized Three Circle - And Other Convexity Theorems with Application to the Construction of Envelopes of Holomorphy
JO  - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25
N1  - talk:3
PY  - 1976
SP  - 42
EP  - 80
VL  - 23
PB  - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
UR  - http://archive.numdam.org/item/RCP25_1976__23__42_0/
LA  - en
ID  - RCP25_1976__23__42_0
ER  - 
%0 Journal Article
%A Borchers, H. J.
%T The Generalized Three Circle - And Other Convexity Theorems with Application to the Construction of Envelopes of Holomorphy
%J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25
%Z talk:3
%D 1976
%P 42-80
%V 23
%I Institut de Recherche Mathématique Avancée - Université Louis Pasteur
%U http://archive.numdam.org/item/RCP25_1976__23__42_0/
%G en
%F RCP25_1976__23__42_0
Borchers, H. J. The Generalized Three Circle - And Other Convexity Theorems with Application to the Construction of Envelopes of Holomorphy. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 23 (1976), Exposé no. 3, 39 p. http://archive.numdam.org/item/RCP25_1976__23__42_0/

[1] Borchers, H.J. and J. Yngvason : Necessary and Sufficient Conditions for Integral Representations of Wightman Functionals at Schwinger Points. Commun. Math. Phys. 47, 197 (1976). | MR | Zbl

[2] Bremermann, H. : Über die Äquivalenz der pseudokonvexen Gebiete und der Holomorphiegebiete im Raum n komplexer Veränderlicher. Math. Ann. 128, 63 (1954) | MR | Zbl

[3] Bremermann, H. : Complex Convexity. Trans. Amer. Math. Soc. 82, 17 (1956). | MR | Zbl

[4] Bremermann, H. : On the Conjecture of the Equivalence of Pluri-Subharmonic Functions and the Hartogs Functions. Math. Ann. 131, 76 (1956). | MR | Zbl

[5] Grauert, H. und F. Fritsche : Einführung in die Funktionentheorie mehrerer Veränderlicher. Hochschultext Springer ; Berlin, Heidelberg, New York (1974) . | MR | Zbl

[6] Hörmander, L. : An Introduction to Complex Analysis in Several Variables. D. van Nostrand ; Princeton N.J. (1966). | MR | Zbl

[7] Meschkowsk , H. : Hilbertsche Räume mit Kernfunktionen. Springer ; Berlin, Göttingen, Heidelberg (1962) | MR | Zbl

[8] Pietsch, A. : Nukleare lokalkonvexe Räume. Akademie-Verlag; Berlin (1969). | Zbl