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C A U S T I C S A N D M I C R O F U N C T I O N S 

B Y F R É D É R I C ΡΗΑίΊ J 

It has been known from the 1 9 ^ Century that the intensity of light 
on a caustic cannot be understood by mere geometrical optics, but only by 
the geometrical limit of wave optics. After recalling (in § 1) what the 
physical problem is, I shall relate it to a problem in microfunction theo­
ry. 

1. ™ r GEOMETRICAL LIMIT OF WAVE OPTICS 

A_ ~t-tionary wave of frequency ω can be written 

^u^x, t) = u(x) e i a ) t (x, t) e R 3 χ R 

The following are two special cases : 

1°/ the plane wave with wave vector k : 

~ r y -ik.X 
u[xj = a e 

~*2 2 2 
( k = 0) c , with c the speed of light, c = 1 if the 
units are suitably chosen) ; 

2°/ the spherical wave emitted by a point source y : 

e-ioKp(x, y) 
ufxl = a 1 τ — 

(with φ(Χ| yj = distance from χ to the point y ) . 
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3 

(1) u W " à? JY cptx ,y) a ( y ) d y 

where a(y) is interpreted as the amplitude of the 11 secundary wavelet 11  

emitted by the point y of Y (the normalization factor ~ will be 
accounted for below). 

V / ! . , ; , . ;ri) is large the uhase uxp(x, y) of the integrand oscillates 
rapidly ^ i n n g Υ , except at points where d^ cp(x, y) = 0 ; such 
11 critical " points give the main contribution to the integral (1 ) 
(" principle of stationary phase " ) . 

W<=> c^=ul denote by Σ ^ Χ χ Y the set of all critical points 

Σ = { (x o, y Q) € Χ χ Y I d cp(xo, yQ) = 0 } 

i.e. the set of couples (X q I y Q) such that the straight line X q y Q 

is perpendicular to the wave surface Y at y Q (Fig. 1) . 

At a " general " critical point (x , y ) we may suppose that the 

Hessian Hess φ Γ = dét 
y Ύ 

^2 
does not vanish (i.e. (X q J y ) 

is a non degenerate quadratic critical point). It then follows from the 

Consider now the general case. Given a wave surface ̂ Y <z R (surfa­
ce where u(x) has constant phase) we may consider that u(x) is a 
superposition of spherical waves emitted by every point of the wave sur­
face : this is the Huyghens-Fresnel principle, the basis of diffraction 
theory (see for instance [ 5 ] , § 59 ) ; this principle was introdu­
ced heuristically by Fresnel in 1816, and although it gave the first 
strong evidence for the wave theory of light, it is not at all easily de­
duced from the wave equation (nor is it easily formulated in precise 
fashion : see [ 3 ] , Chap. VIII ) . Here we shall admit the following 
vague formulation : in the high frequency limit the wave function is 
11 approximately 11 given by a surface integral 
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usual formula of stationary phase in classical analysis that in the high 
ω limit the contribution of the point (X q, y ) to the integral (1 ) 
is given by 

(2) u(x ) - a(x , y ) e - i u X ^ X ° ' y o ) 
v Ο ο ο 

where 
i J σ |Hess φ(χ , y ) Ι""5  

a(x Q, yoJ = a(y o) e * 

( σ is the signature of the quadratic form δ ψ ( χ
0 * · ̂ n e m a ^ n o ~ 

tice that a ( x

Q i y Q) i s a slowly varying function of X q , which goes 
to a(y Q) a s X

D approaches y Q (the normalizing factor in (l) 

has been introduced precisely for that purpose). Therefore, the wave 
function U ( X

Q ) behaves locally like a plane wave with wave vector 

k ω grad φ(χ , y ) (see Fig. 1) . 
" O A O υ υ 

The integral curves of the vector field k are straight lines 
x o 

Λ-u thus recover geometrical optics, where the light rays are the 
-rx-night lines orthogonal to the wave surface. 

But the above analysis rested on the hypothesis that Hess^ φ φ 0 , 
not valid above the caustic (envelope Of the family of light rays). 
Before pushing it further, let us make a 

PARENTHESIS : GEOMETRICAL OPTICS " A LA THOM " 

A caustic point is the intersection of two 11 infinitely near " light 
rays, i.e. a point X q such that C?(X q >.) is stationary for two " infi­
nitely near 11 points y Q . In other words the caustic Κ is the " bi­
furcation locus " of the family .of functions φ (as functions of 
y 6 Υ , with parameter χ € X ) . Given such a family of functions, a 
topologist will like to consider its 11 discriminant locus " Δ , de­
fined as the image of the critical set of the mapping 
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$ : Χ χ Y > Χ χ R 
χ, y I > χ, φ(χ, y) ; 

here the critical set is the already introduced set Σ 9 whereas 
Δ = Φ Γ Σ] = fix ι t ) 6 Χ χ R Ι χ is at distance t from Y 

along some light ray } 

Fig 0 2 shows a typical caustic and its discriminant locus (the ce­
lebrated " swallow's tail " of Thorn1s classification). 

From Thorn1s theory of deformations of functions, one knows that in 
the 11 generic 11 situation, the critical set Σ is smooth and n-dimensio-
nal (where η = dim Χ) , and finite over its image Δ (a point of Δ 
comes from a finite number of points of Σ ), whereas Δ itself is fi­
nite over X . Furthermore the 11 apparent contour 11 of Δ on X is the 
union of the caustic Κ and of the " Maxwell set 11 M (here M is the 
set of points X q which lie on two different light rays at the same dis­
tance from Y : see Fig, 2) 

I want to stress here is that the discriminant locus Δ is a 
nice geometrical object which carries all the information on geometrical 
optic- any generic situation, I shall now show that it also 11 carries 11  

(in the orecise mathematical sense of being the support of a sheaf) a ni­
ce analytic object which describes the asymptotic (ω -* + 0 0) limit of 
wave npî >cs. 

2. ASYMPTOTIC INTEGRALS AND MICROFUNCTIONS 

Considering (1 ) as a function of ω , (and writing u(x, ω) , 
instead of u(x) J , let us perform a Fourier transformation. Calling t 
the variable conjugate to ω , we get 

(3) u(x,*) , j e " 1 0 * u(x, t) dt 
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where 

*> -.Sï It /*tt-,(x. ri#a<* · 

From formula (3) we see that if we add to u(x f t) a function analytic 
on the Im t < • side we only change u[x f ω J by exponentially decrea­
sing terms [as ω + ») , This means that if we are interested in the 
asymptotic behaviour of u(x, ω J up to exponentially decreasing terms, we 
must consider u(x f t) in equations (3) (4) as a microfunction in the  
variable t . I now proceed to explain how an integral such as (4) de­
fines a microfunction. 

2 P1 Let us consider the following general geometric situation. 

φ : Χ χ Y > R 

is a real analytic function on Χ χ Y where X [ resp, Y ] is an n-di-
mensional [ resp. a k-dimensional ] real analytic manifold. All the 
considerations below are local and can be put in sheaf language but for 
simplicity let us fix one point (χ , y Q) and consider the correspon­
ding gp™s (pointwise situation). Let us assume 

Assumption 'ί , φ is of " finite singular type ", i,e, the critical 
set Σ is rinite over X in the algebraic sense : 
this means that the complexified critical set Σ is finite over the 
complexified manifold X , a condition which can be expressed in alge­
braic fashion by asking the quotient module/ 

* ς - * X X Y / ···> ^ 

to be a (free) finitely generated &-module, where d denotes the ring 
of complex valued analytic functions on the subscript manifold. 

We shall sometimes need also 

Assumption 2 . φ is " non degenerate " , i.e. the analytic set Σ 
is reduced and smooth (algebraic translation : G is a regular ring). 

Both assumptions are satisfied for generic choice of φ . Furthermore, 
given any function 9 Q(y) satisfying assumption-i , we can get a "function 
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φ(χ, y) satisfying assumptions 1 and 2 by taking a versai deforma­
tion cp 

Proposition . Under assumption 1 , the integral 

(5) u(x, t) = J ô(t - cp(x, y)) a(x, y) d y i ... dy k , 

where a 6 C? , defines a family, analytic with respect to the para-
X X Y 

meter χ , of microfunctions in one variable t (on the Im t > 0 side) 
with support on the discriminant locus Δ 
Sketch of the proof. We replace the δ-(micro) function by its defining 

- 1 analytic function rr t s \ . and integrate over a small ball Β 7 2Hi (t - cp(x, yJJ 1 

in Y space, surrounding y Q . For Im t > 0 ( χ real) there is no 
trouble, the denominator does not vanish and the integral is analytic in 
χ and ~t . For t real, (x, t) fz Δ there is no trouble either because 
dy φ vanishes nowhere along the zero locus of the denominator, so that one 
r^ry ^ - p û r m tftg r e a i ball of integration 

(Fig. 3) 

p'! liing it in the imaginary direction iE^ , where is a vector 
field tangent to the sphere, and such that dy φ( ξ̂_) > 0 on the zero lo­
cus of the denominator (see Fig, 3) . For (x. t) 6 Δ this procedure 
fails because the zero locus of the Μίΐιΐϊΐΐιτηη ιη1~ has singularities. But 
if (x, t) is close enough to (X q, t ) none of those singularities will 
escape the ball, so that the integral on a bigger ball B f will yield the 
same microfunction (by the above reasoning the integral on the spherical 
shell B f - Β will be analytic). Therefore, the resulting microfunction 
u(x, t) does not depend on the choice of the ball Β (provided Β has 
been chosen small enough to start with). 

Remark . Seen as a microfunction in the n+1 variables (x, t) (ins­
tead of just one variable t , with parameter χ ) , u(x, t) is sup­
ported by the conormal bundle of Δ f i.e. the set of codirections 
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Δ = { (x Q + i« d x 9 ( x q I y o ) , t Q + i« 1) | d y 9 ( x Q f y Q) = 0 } . 

2.2 Given φ , we now study the set of all integrals (δ) when a 
varies in (2 , Let (3° be that set of microfunctions, and 

Γ\ X Y CP 

φ t φ (λ € C) 

We shall be especially interested in the case when λ 6 Ν : recall 
—r 

that derivating a microf unction u by a negative power corresponds 
through Fourier transform to multiplying u by ω , an operation which 
increases the regularity of the microfunction u [ resp. of the asympto-
tic expansion u ] 
Let 

CI a;1 I) - ί Π ° r M \ r e c[[ χ, ^ ]]| 
r=o 

r=o 

-1 
be the /-mu of microdifferential operators of zero order in 'd , with 
coeff .Is depending only on χ . Our main results are summarized in 
the f " '..-g 
Theorem 1 . Under assumption 1 , one has a filtration 

fO) &° 3 3 C 2 3 ... ; furthermore, ^ J φ φ φ ' ' 

(i) C° is a finitely generated & {{ ôT^ }} - module ; 
Φ A U 

(ii) every u 6 (3-° is a microf unction with regular singularity 

(i.e. a solution of a differential equation with regular 
singularity) . 

Theorem 2 . Under assumptions 1 and 2 , the module 
(3 ^ 2 = depends on φ only through Δ (one must understand 
that different functions φ with different values of k = dim Y may 
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give rise to the same discriminant locus Δ } , This module will be writ­
ten <3 ° i w D and will be called the module of microfunctions holomor-

Δ|Χ χ R 
phic on the discriminant Δ , 

k/2 
Remark , The operation may be understood as a " normalization 
factor " : for instance in the k = 2 case (i.e. when Y is a sur­
face) the formula C ^ i ^ D = a £° accounts for the factor in 

J Δ|Χ χ R t φ t 
equation (4) , corresponding to the ~ factor in equation (l) , 

Let me give a rough idea ot the proof of ̂ theorem 1 , Integrating by 
parts, it is easy to see that the integral / 6(t - ep(xf y)) ω (where 
ω s a(x, y) dy^ Λ , β # Λ dy^) depends only on the class of ω modulo 

k—1 
φ A Ζ fopei^ 9 where (̂ ê f ^1 ^ s the complex of germs of re­

lative differential forms of the space Χ χ Y over X , 

Set G = ^Bij d
y Φ Λ , One verifies at once that the 

-1 
operation on the integral corresponds to the following operation on 
G : Cf 1

 : g > G 

[ ο » d X ] I > [ d y φ Λ χ ] 

the inverse of the Gauss-Manin connection on G (see [ 6 ] ) 
Part, (i) of theorem 1 then follows from the following 
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Theorem 3 t G is a free -ί^ {{ D }} - module of rank μ , where μ 
is the Milnor number of the germ φ at (x^, y^) ( μ = rank of the free 
(7 -module ) 

The well known regularity property of the Gauss-Manin connection then 
yields part (ii) of Theorem 1 , 

Remark . Under assumptions 1 and 2 one proves that the integration 
epi"!orphism G — > (3° is an isomorphism, so that in that case is 

φ jj e φ 
free of rank μ over # Y{£ 9 }} 

Λ t 
2 , 3 Exponents measuring the singular behaviour 

It follows from part ii) of theorem 1 that every microfu, ;L-*jn u 
in CT (or in C ° j x χ R ) can be given in the neighbourhood of any point 

( X q , t Q) 6 Δ by a convergent expansion 

ω u(x„. t j . [ ε c cx 0).(t-t 0ywct-t 0H 
α € A + N c: C K ' 

ρ € Β c Ν 

where ρ Ç Β , a finite set of natural integers, whilst ot € A + Ν , with 
A a finite set of complex numbers (in that formula the parameter χ is 
fixed : χ = χ .so that u is a microfunction in one variable). 

ο J 

The smallest real part Re α of all c*f s appearing in expansion 
(6) measures, in some sense, the singular behaviour of the microfunction 

*) The " formal " analogue of this theorem was proved by Malgrange in 
[ 6 ] . The difficult part in theorem 3 is the proof that one can make 
series converge in ^ Χ Ί { D~ }} · This proof also relies on an idea of 
Malgrange (see [ 7 ] for further details). 
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u (with regular singularity) at point (x , t ) : smallefcf that 
exponent is, the roeot singular u will be. Now it is obvious that mul-
tiplication by ô , or by a microdifferential operator in ^ χ ί { ^t } } j 

can but increase that exponent. Part (i) of Theorem 1 thus warrants the 
existence of a higheç£lower bound  β( χ

αι t Q] ^ o r the exponents of all mi-
crofunctions in C j u _ . at a given point (χ , t ) . Going back to 

Δ|Χ χ π ' ο' o' 
the physical problem of § 1 , easy considerations on Fourier transforms 
show that the wave amplitude u(x) behaves, as the frequency ω goes to 
infinity, not worse than uu^ X^ , where 
γ(χ) = - inf { p(x, t) + 1 I (x, t) 6 Δ } (not unexpectedly, γ(ϋ) = 0 
outside the caustic). 

Notice that this is just a pointwise estimate (for fixed χ ) , and 
that the problem of finding uniform estimates is up to now unsolved, 
except in simpler cases. 

HISTORIGAL COMMENTS AND OPEN PROBLEMS 

Exponents measuring the asymptotic behaviour of oscillatory integrals 
huvc been defined and computed for the first time by V.I. Arnold in 
Γ Λ ] (for simple singularities)and in [ 2 ] (for more general singu­
larities, including all generic singularities if dim X £ 10) . Then 
J3£ 'îistermaat [ 4 ] proved that all quasihomogeneous singularities 
M-Msfy the uniform estimates conjectured by Arnold. Weaker than the 
conjecture on uniform estimates is the conjecture on the semi-continuity  
of Arnold's exponent : this conjecture was recently disproved by a 
counterexample of Varchenko (about which I first heard from J.M. Kantor 
in this conference) . 

One of my aims when starting this work (a full exposition of which 
will be published in [ 7 ] ) was to prove Arnold's conjecture : I hoped 
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that the microfunction techniques were best suited (through 11 coherent 
sheaf " arguments) for proving such semi-continuity properties. In the 
meanwhile, I realized that my results gave much better control on the 
sheaf G (see Theorem 3) than on the sheaf C-° . so that I had better 

Φ 
hope to prove semicontmuity properties of " generalized " β exponents 
defined directly from G . A module defined in purely algebraic fashion, 
G may be considered as kind of a " complexification 11 of <3° f des­
cribing the singular behaviour of integrals like (5) over arbitrary 
complex integration cycles : one is thus led to define a 11 generalized 11  

β exponent, whose semicontinuity is not disproved by Varchenkofs 
counterexample (V,I e Arnold : private communication). 
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FIG. 1 : a wave surface and wave vector 
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FIG. 2 : A caustic Κ , its discriminant locus Δ and the Maxwell 
set M . 
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(x, t) = (x Q, t Q) € A (x, t) 6 A (x, t])5 4 

3 : Singularities of the integrand of (5) for various 
choices of (x, t) . 


