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1. LOCAL COHOMOLOGY 

Let me begin by recalling the standard notions 1 of singular 
cohomology. If X is a topological space then an n-simplex of X is 
a continuous map of the standard n-simplex A x { Ct,t,...,t j t IN 

t v >- o , £ « f c s 1 3 into X . Let 2^lx) denote the set of 
n-simplexes of * . There are face maps • 21 ̂ O O S^ . f CX) , 
i = 0,1,... ,n defined by 

Oi«) ( f , i ' , . . . t"") = t l i M V - r ' . , * ' , - - * " ) . 

An n-cochain of X with values in an Abelian group A is a mapping 
$ • X,*0O —> h . The set of n-cochains forms an Abelian group 

under addition denoted by C**(X>A) . Using the face operators and 
the group structure of A one defines boundary operators *L : C^CX,A) 
- » C ^ 4 L X , A ) by 

One checks that - 0 and this gives rise to a cochain complex 

C ° C x , M ^ ' a x , f l l i c l t X , A ) i 

The n-cocycles 2 (XjA) a n c| the n-coboundaries are the subgroups of 
C U , A) defined by Z ~ ( > , A) = , B^tX^ft) * t*<A . 

Conventionally one sets B (X>A) =• o . The cohomology groups 
are the quotient groups Z ^ C x , A ) / B t X j A ) . 
In fact, I am interested in the case that X is Minkowski space IK , 

s is the number of space dimensions, which has a trivial cohomology ; 
let me remind you why. One picks a fixed origin * 0 and if c is 

K For further details, the reader may consult any standard textbook, 
for example 
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an n-simplex one lets k c c ) denote the n+l-simplex which is a cone 
with vertex and base c 

Here we have written r - U - t ) .We have 

except that if c c r o C X ) then S ^ c c ) s x 0 . A mapping ^ 
with this property is called a contracting homotopy. Once v/e have a 
contracting homotopy we proceed as follows : if r e Z ^ ( . X ; A ) , 

* ^ 1 , define 3, € C ^ C X j A ) by vjltf* z t k l U ) , (r6 Z ^ O O . 
Then if c c Z^(X) , 0 n Cd^)(Wco) z:te) - J? z(u*;0 
- zco-dL>cc) -Hence V T C X > M ^ o for * 0 i "° 

From now on we restrict ourselves to Minkowski space and omit 
the symbol X ~ JK , however the cohomology will not be trivial 
because I shall add a locality condition to the definition of cochain 
which takes into account the causal structure of Minkowski space. 
The causal structure of Minkowsky space may be defined in terms of the 
quadratic form C^ 5*) ~ - 2- . x and 4. are said to be 
timelike, lightlike and spacelike according as >o , l < ? e = o , 

Let V + - t* *- *0>'° and t*,*i)£oj . if * V + and 
then O = - n is said to be the double cone with vertices 
*c and . Let # denote the set of double cones ordered under 
inclusion and #o the subset of double cones centred on the origin, 
i.e. with % = . Let ^ denote the set of compact subsets of 
Minkowski space ordered under inclusion. We now take as coefficients for 
local*) cohomology a net A of Abelian groups over "4 , i.e. for each 
F e 4 , ACF) is an Abelian group and if F% c then AC?;) 

is a subgroup of Atf^) . Let denote the inductive limit of 
the kLF) . A local n-cochain is an element of C^C^oo) such that 
there exists an 09 € # 0 with 

* The term local cohomology is appropriate within the context of algebraic 
field theory, in a wider context causal cohomology might be preferable. 

7C/D 0-70 
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Here we have written for .Since tf+^e c 15+c , 
if £ is local, J-f is also local. 
Thus local cochains give rise to a subcomplex 

and we have the obvious definitions of local cocycles, local coboundaries 
and local cohomology groups. A contracting homotopy can now no longer be 
used to show that the resulting cohomology is trivial. One can only 
expect to find interesting results when A itself reflects the causal 
structure on Minkowski space. 

For example one can construct a net W from the real 
C 00-solutions of the wave equation by defining to consist of 
those solutions which vanish on F 1 , the spacelike complement of 
F , F' • I * : (:3t-^)*< o, ̂ e Fj . I present here a preview in 
tabular form of some results involving coefficients which are real 
C*°-solutions of invariant partial differential equations with analo­
gous support conditions. 

0 O 0 o o 
, s> t o (R o o o 

Hj , s> z O ? o 0? (RxJR . ' I I d a iJ 

Here W denotes the solutions ? of the wave equation such that 
I ico,^c)4 5>e. = 0 ; it denotes the vector wave equation 

with Lorentz condition • ̂ h - o , d^^^^o ; X is the Klein-
Gordon equation (n-*-** x)5 =- ° and M~ Maxwell's equations 

a c > 5 H s o , 3 A ^ y - . o . The results for H° and H\ 

76/P.878 
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are trivial although the dimensionality restriction s > 1 is essential. 
If s - ± one finds for example that W^(ior) can be identified with 
the set of all real C -solutions of the wave equation. By contrast 
the results for are not trivial and hinge on the fact that the 
sheaf of Cauchy data for the wave equation on a spacelike hyperplane 
is a soft sheaf. These results have some indirect physical interest ; 
H*(£) may be regarded as parametrized by an electric charge and 
H^(J^) by a n electric and magnetic charge, (see the discussion in 
section 4). 

Unfortunately the local cohomology which is of direct interest 
for algebraic field theory involves another essential, but disjoint, 
complication in that the coefficients are not nets of Abelian groups. 
This compells me to say something about non-Abelian cohomology. Suppose 
one were to try and make a non-Abelian group Cr into the coefficient 
group for cohomology (locality is irrelevant here). There is no problem 
for * * o , l . For example a 1-cocycle is defined by the identity 

Two 1-cocycles 2 , 2 : ' are cohomologous if there is a J J . : & 
such that 

z is a 1-coboundary if it is cohomologous to the trivial 1-cocycle, 
z 'lfcr)- , t€ 2T* . Comparing these formulae with the corresponding 
formulae in Abelian cohomology, we see that the problem lies in ordering 
the terms. There is no ordering which works for > 1 and in fact 
even for * ± something has been lost because the product of 
1-cocycles cannot be defined. There is a way out which I can only hint 
at here : non-Abelian cohomology needs coefficient objects which have 
a richer algebraic structure. This structure becomes increasingly compli­
cated with increasing *t . A relevant example of such a coefficient 
object will be discussed in sections 3 and 4. 

76/P.878 



2. ALGEBRAIC FIELD THEORY 

Algebraic field theory tries to describe the structural properties 
of elementary particle physics in terms of the "algebra of local observa-
bles" ; this is a net GL of von Neumann algebras Experience with 
quantum theory tells us that observables can be represented as self-adjoint 
operators on a Hubert space and ©LIO) is to be thought of as the von 
Neumann algebra generated by the observables one can measure within the 
space-time region (5 € # . if \3A and are spacelike separated 
then the causality principle implies that no signal can connect Oi and 

(5Z so that measurements in (5H do not interfer with those in (5r 

Again experience with quantum theory tell us that consequently OtCüH) 
and commute. Thus i s a local net : 

A<A2 = A X A , ; A ^ C U I S O , 

The Poincaré invariance of the theory is expressed by saying 
that there is a continuous representation L- w u of the Poincaré 
group P by automorphisms of GL such, that 

A state of the physical system is represented by a state of the 
C*-a1gebra which is the C*-inductive limit of the local algebras . 
By abuse of notation this algebra is again denoted by the symbol . 
The most important state is the vacuum state c0 o , a Poincaré invariant 
state describing the complete absence of particles, 

° *U = W o > L t P # 

Associated with the state to0 by the GNS construction is a represen­
tation TT0 of Ou on a Hubert space # 0 with a cyclic vector fL 

* For details on von Neumann algebras, the reader might first consult the 
review article by A. Connes in these proceedings and then a standard 
textbook, e.g.[2, 3 ] . 
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and a continuous unitary representation L- -* L) of the Poincaré 
group satisfying 

tD0 is a state with minimal energy so that the spectrum of the repre­
sentation <x -> U 0

C a) of the subgroup of spacetime translations is 
contained in the forward light cone V + in momentum space. 

In general, one can find several states fitting this description 
of the vacuum state although physical intuition suggests that the vacuum 
s.tate is unique. I shall pick a pure state co0 as 'the" vacuum state 
and the discussion that follows is relative to this one pure vacuum 
state. 

Fortunately of the totality of all states of &> very few 
have any relevance to elementary particle physics and I shall make a 
preliminary reduction in the number of states by taking TT0 to be 
faithful and by treating only locally normal states. On the other hand 
it is one of the striking features of elementary particle physics as 
opposed to elementary quantum theory that one must take into account 
states which are not represented by vectors or density matrices in # o , 
i.e. states which are not normal states of "nr0 . The pure states 
represented by vectors of # 0 constitute the vacuum sector. 
The appearance of other superselection sectors in elementary particle 
physics was first pointed out in [ 4 ] and interpreted in an algebraic 
setting in [ 5 ] . It seems that the states of 6^ relevant to elementary 
particle physics are those which are local finite-energy perturbations ' 
of the vacuum state 60^ . One of the important problems of algebraic 
field theory is to describe the structure of these states and their 
relation to the algebraic structure of the net OU 

The first results in this direction may be found in [ 6 ] and 
the most systematic treatment to date in [ 7 , 8] . The selection criterion 
used in [ 7 ] is to consider states which are normal states of representa­
tions ir such that there exists 19 a *K0 with 

^Similar problems have recently been investigated in the context of classi­
cal field theory. See the article by G. Velo in these proceedings. 

76/P.878 
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Here Otto') denotes the C*-subalgebra of St generated by the ©1«^) 
with Ô fc » and O t c , and the symbols and ~ denote 
respectively restriction and unitary equivalence. In [8] , in order to 
treat particle structure and construct scattering states, ^ is in addi­
tion supposed to be a covariant representation, so that there is a conti-
nuous unitary representation L -> U^CO of the covering group «P 
of the Poincare group with 

In this case it is sufficient of course to assume (S) for a. = o 
Unfortunately, some of the most interesting quantum field 

theory models do not fall within the scope of this analysis. In particular 
states with non-zero electric charge are not normal states of representa­
tions satisfying (S) because, by Gauss'law, a localized electric 
charge produces a constant flux of electric field strength through any 
enveloping sphere. Hence states with differing electric charge will never 
coincide on QLL&) however large (9 itself is. 

The analysis in \l % 8] also relies on a structural assumption 
on 6L , known as duality : 

T C ( e u t f ' ) y = TT0 teu<$>) > (9 € i t . 

In this connection it may be helpful to point out that if is any 
net of von Neumann algebras over X on a Hilbert space, one may 
define a dual net & A by setting 

76/P.878 
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Trivially O t ^ &LZ implies & J ̂  (it and 6 C c . Thus the 
operation GL -* has the same formal properties as building a commu-
tant. A net is local if Qi c <3La . If a is local, so is 0L d l t . 
A net satisfies duality if GL = <9t̂  and this implies in particular 
that Gt is a maximal local net. Let me introduce one further concept 
and say that a net satisfies essential duality if - . The 
reason for this is that, as will be discussed further in section 3 , 
duality for ttoC0Q is too restrictive because it rules out sponta­
neously broken gauge symmetries. Instead I shall suppose that n-0C6C) 
satisfies essential duality. 

As a first application of local cohomology, I shall show how 
the condition (S) may be analysed with its help. To simplify notation 
in the remainder of this section, the symbol TT^ will usually be 
suppressed and QL will be treated as a net in P-0 . Consider GL^ 
as a net over ^ by defining 

Let U(6Ld) denote the unitary group of GL^ with the induced net 
structure. 

2.1. Proposition. The unitary equivalence classes of representations 
satisfying (S) are in 1-1 correspondence with the cohomology classes 

CHCec4)) > provided s >-1 . 
I will not give a proof, but indicate how the correspondence 

is established. Given TT and a e £0 , pick a unitary operator 
+ : —* $ o such that 

and define 

O i 

then xfc Z ^ t U t f l C 1 ) ) . Conversely, given z £ Z ^ U C ^ ) ) 

76/P.878 
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and at r o , one may define a representation tt^ by requiring 
that 

whenever l> t 2!1 , = a , 6 6U<V and 0, « OV^fcr (compare 
[9 ; Thm. 2 . 2 ] ) . Furthermore 

This implies that Tra satisfies (S) and also that "*v((9l) c 6L^ 
In the above, the net structure on LI(OL^) would a priori 

be changed in one replaced ©L by G L ^ in its definition. 
However a little argument shows that the notion of local 1-cocycle 
remains unchanged. Consequently when $> 1 . , the given represen­
tation TT of may be extended in a canonical manner to a 
representation TT of by setting 

and tr satisfies (S) (with TT0 of course being replaced by T?0 

the defining representation of ). 
Specializing this result to the case of a net satisfying 

essential duality, we have 

2.2. Theorem. If *>1 and the observable algebra satisfies essential 
duality, then every representation *nr satisfying (S) has a cano­
nical extension to a representation t of OC* which also satisfies (S). 

This shows that the analysis of superselection structure in 
[ 7 , 8] applies equally well to essentially dual observable algebras. 

76/P.878 
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If s = i , is no longer path-connected but decomposes 
into two components denoted by © and (5* , the right and left 
spacelike complements of <9 respectively. One may define (compare 
[9 ; Prop. 3.2] ). 

In general IT :f ir .On the left behaves as ^ e i the vacuum 
representation of & , on the right it behaves as T?O , which is 
in general a different extension of ir0 to Ot/ . Typically one 
expects ([9 ; Thm. 3.3] is applicable here) that is the vacuum 
representation for a different choice of vacuum state - % 
of GL where is a gauge automorphism (see Section 3 ) . The inter­
pretation here is that IT describes a "soliton sector". It is a repre­
sentation relevant to elementary particle physics because it represents 
a local finite-energy perturbation of the vacuum representation. The 
soli ton aspect only becomes apparent when one tries to extend ir to 
a larger algebra & containing some "field quantities". However 
this extension is done it exhibits non-local features usually expressed 
in some way in terms of a homotopy invariant. This is analogous to the 
interpretation of the chemical potential in [lOj where this too is a 
latent parameter which appears when a KMS state of the observable algebra 
is extended to a KMS state of the field algebra. 

Examples of soli ton behaviour which fit into this pattern may 
be found in 12] . Of course the analysis presented here applies only 
to a 2-dimensional space-time. However the class of representations singled 
out by (S) are those usually described by gauge groups of the first kind. 
The usual argument for showing that gauge groups of the second kind are 
needed to produce soliton behaviour in more than two space-time dimensions 
is an energy argument [13] . It is remarkable how two apparently unrelated 
arguments lead to the same qualitative conclusions. For a review of soliton 
behaviour in higher dimensions illustrating the role of homotopy, the 
reader may profitably consult [ l4J . 

76/P.878 
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3. FIELD ALGEBRAS 
In practice one does not usually proceed by constructing the 

observable net GL in the vacuum representation and then looking for 
new representations of GL . Instead one constructs a net of fields in 
some irreducible vacuum representation on a Hilbert space № . 
may be thought of as the von Neumann algebra generated by the bounded 
functions of the fields smeared with test functions with support in & . 
GL is then considered as a subnet of $ , GL c. . i n favourable 
cases, the relevant states of 6L are the normal states of the defining 
representation on ft . Associated with £ one has a continuous 
representation L-*(3L of P by automorphisms of £ inducing L->otL 

on GL and a vacuum state 4*0 on inducing coc on GL . 
Some condition is needed to ensure that the normal states of £ are 
physically relevant as states of fit . One way of ensuring this is to 
suppose that $ is relatively local to GL . 

GLLO) c: Kl9') ' > $ € # . 

A gauge automorphism of $ is an automorphism ^ of $ such that 

Let ^ denote the group of gauge automorphisms of ^ • If <fr€ ^ , 
then L $ »• ̂ u^fj £ ̂  • ^ is said to be a gauge group of 
the first kind if 

. . » ' * . 1 . » - « * . 

Let 1 ^ : 4>o°3= '•'ol be the stability subgroup of 
the vacuum. The elements of ^ e can be represented by unitary 
operators i n ^ 

76/P.878 
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If ^ 4 ^ 0 , then one talks about spontaneously broken gauge symmetries. 
It will also prove convenient to introduce a net G> intermediate 
between <X and $ . Set 

r { F e Jos) : |CF) * F , }*%o] , (Sc ^ ( 

The net $ may be usefully regarded as an extension of the 
net (X . There has been as yet no systematic study of such extensions 
although incidentally many partial results are known. Let me give a long 
list of properties which seem to be valid for the most useful extensions 
in field theory at the same time giving some references to the partial 
results which go some way towards establishing these properties. The 
first property is usually used to define Ot in terms of f and ^ 
by a principle of gauge invariance. 

1) 6CU5) * i F t f cU) : ^(F) - F, % * ^ } ' 

2 ) ^ c i s compact, considered for example in the topology induced by 
strong operator convergence on it [ l 5 , 16] . 

3 ) ^ commutes with Poincare transformations [ l 5 , 1 7 , 1 8 ] . 

4) $ has "Bose-Fermi commutation relations", this is most conveniently 
described as follows : there is an involution W € ^ such that if 

(3< a (9/ then 

F, * t\ F, , F 2 t JtOj, F,€ 

F, F 2 - WCFJ F 1 , F 2 * *USJ , F ^ K W , ) 

Here i - iFfc V . UCF) * F } , f_ * * * ' W t F > - Fj 
In fact k c % [ 1 9 ] . 

7 6 / P . 8 7 8 
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5) f satisfies twisted duality [l6, 20] . 

6) 6C and even OUT*")'* S U S ' R , ( 3 * # [ 1 9 ] . 

7) &~ - V . Furthermore the irreducible subrepresentations of 
the defining representation of ® (and hence by 6) of GL) on ft 
are in 1-1 correspondence with the irreducible representations of 
[ 1 6 ] . 

8) ® satisfies duality on # D - I®ft] = Can.] and hence by 6) , 0/ 
satisfies essential duality on # 0 [l6] . 

Of course, GC itself does not satisfy duality on 
unless Ĵ- ~ and the presence of spontaneously broken symmetries 
is the main reason for insisting on essential duality in place of duality, 
fi plays the role of the net CL of section 2 and is isomorphic to 
this net. 

Before going on to list two further properties, I must 
describe some techniques introduced in [2l] and developed in [22] . 
If Vt is a von Neumann algebra, then a Hilbert space in is a 
norm-closed linear subspace H of such that 4*e ^ implies 

4 ^ t t l and k € W( and =° i *M H implies A - o . 
As the name implies, H is actually a Hilbert space with 

the norm induced by Vt- • If {4\-}:*.t is an orthonormal basis for H , 
then the ^ a r e mutually orthogonal projections and . ^ J . I F J T ^ = : I . 

Of course, unless W is properly infinite, all Hilbert spaces in 
are one dimensional. Associated with W is a morphism f>H of W , 
i.e. an identity preserving, normal x-homomorphism of tfi into itself, 
defined by 

p HCA) + = 4*A , \t H , A6 № . 

In fact, pM(A) = | ^ j ^ A ^ • If Wt and are Hilbert spaces in W- , 
then the bounded linear operators from H t to can be identified 
with 

76/P.878 
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( Wa > HO = { fife m : ftH.c H t } 

If & € C wi, K.) then 

A F H I

 U ) = P h . C b ^ A , B e r n . 

If o< is an automorphism of Wt , is again a Hilbert 
space in W<- and there is a unique unitary U € (.N,«(.14)) such 
that U + = 4- £ H . 

Returning now to the field net $ , let &LQ) denote the 
set of Hilbert spacesin $L$) such that 9CH) = H , } < . 
Thus each element of #t(5) carries a unitary representation of ^ . 
If ^ , ' ^ € # « 9 ) then St(M t , lQ is in fiL if and only if S 
intertwines the corresponding representations of ^ .If U e-#.119) 
then p H may be considered as a morphism of the net f and pH[<sua))e&s3). 

The two further properties of field nets are 
9) ft<9) is generated as a von Neumann algebra by Hlo) [21] . 

10) If U is a Hilbert space in and p H L6LU9,)) a 6U®<) for 
(9t o 0 then H € ^((9) . 

If 10) is used to define $tLO) then 9) provides what is 
perhaps a useful notion of extension of nets analogous to the use of 
normal subgroups in the theory of group extensions. The gauge group ^ 
appears as the Galois group of the extension. 

We have seen in Proposition 2.1 how the local 1-cohomology 
of UtfiO gives information on the sectors of GL and hence on the 
representation theory of ^ 0 . We shall now show how the local 1-coho­
mology of tllOl) gives one information on the field net and the repre­
sentation theory of ^> provided ^ is a gauge group of the first 
kind. 

We may regard £t as a net over by defining 

76/P.878 
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This is consistent with the net structure over # . We give ttttSO 

the induced net structure over ^ 

Given l9fc # 0 and l-U of^CH) c #«94«0 when ^ 

is a gauge group of the first kind. Let C+jij^ j be a basis for H ; 
we set 

3 . 1 . Proposition. z c CutOt)) and z_ is a local 1-coboundary 
if and only if H is a 1-dimensional Hubert space in 6LÜ9) 

It is easily checked that * £ Z^CUCOO) and the remainder 

of the Proposition can be deduced from [9 ; Thm. 2.2J . 

One defect of this local 1-cohomology is evident : there 
will always be Hubert spaces in 0Lll3) of dimension greater than one. 

The corresponding local 1-cocycles are of no importance but this 
information is not contained in the local 1-cohomology. There is also 
an analogous defect in the local 1-cohomology used in Proposition 2 . 1 . 
The reason is that the appropriate coefficient object is not UOSL) but 

the algebraic system 0^ morphisms and intertwiners, which we shall now 
describe. 

If p and yo' are morphisms of QL , then an intertwiner 

[7, 23] from f> to f>' is a triple ( p ' l S l p ) with Sc(5t such 

that 

p'(A) $ = S f ( A ) , A€ (X . 

The set of intertwiners from p to p ' forms a linear space. An 

adjoint is defined by setting 

76/P.878 
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C f ' l S I R > * = C f> I S * I P ' ) . 

There is a composition of intertwiners defined if the adjoining 
morphismscoincide 

Cp" l s ' i * Cf'l s i p ) x c f , , i s ' s i f ) 

and an associative product 

At some risk of confusion, the triple Cp'lSlp) will be denoted 
simply by S . One has 

the interchange law being valid whenever the left hand side is defined. 
This structure was also discussed in [22] under the name monoidal 
Wx-category *L Here we have a monoidal Cx-category or, if one takes 
the local structure into account, a net of monoidal Cx-categories 
which will be denoted by End ©t . 

End OL plays an important role in describing extensions : 
the field net £ determines a full monoidal subcategory of End 
whose objects are { p ^ O l : H 4llO)> . This subcategory plays 
the role of a "quotient object of by 6L" and is represented in £ 
as a category of representations of ^ (Compare [21 , Thm. 3.6]). 

A (unitary) 1-cocycle in End GL is a pair t^>Z.) where 
for each cl£ r o , is a morphism of ©L and for each (RE F T , 

Z.O) is a unitary intertwiner from ^ C ^ ( R ) to «ft*OW 

z«r ) * T V H F T ) = ^WLf\) *U>), fc*^ 

such that 
x For the more standard notions of category theory used in the sequel, 
the reader may consult [24] for example. 

76/P.878 



The right way to describe the non-Abelian cohomology is not to stress 

the equivalence relation "cohomologous" but to regard the 1-cocycles 

as the objects of a category Zi C E*<t ^0 . In this category, 

t : (y,*) (/,2') if, for each r o , fct*) is an intertwiner 

He) ^t«o (ft) tf'toi)(A)fc<«o , A€ CL 

and 

If t* is defined by t*c*) ^ t ^ ) * , a C - r o , then t*: 
(^,2.) and are cohomologous if there is a t ' -*(^',*^ 

with W> unitary for each a-fc r o . 

There is a monoidal x-functor [22] G : EdA 8L -*Z4(£v4&) defined 

as follows : let S =: (p'|Slf>) then G-cp) - C^»*-) where ju) 1 p , 

zlW = IpS ( f I Xlf) , G(SH<0 » S , * * F 0 , fc> € 5lh .The 

image of G- consists of the trivial 1-cocycles. There are also monoidal 

x-functors • Z 4LG«A 6t) —* fw,<iôt defined by evaluation at 

a C T ô 

is a left inverse of &• . A contracting homotopy K based on 

c X 0 gives a natural transformation ' ^z 4C£kAGc) 
G-f^ defined by 

* I U ) , < ^ ' > ^ z(kfJ) , a! e Ie . 

This shows that Z 4(EndGL) is monoidally equivalent to End Ot and 

expresses the triviality of the cohomology. 

To define the local 1-cohomology, one looks at Endfit as a 

net over ^ .If f€ 4> , we define a full monoidal subcategory End8l(Fj 
of End CL by requiring that ( p ' | S ) f O is an arrow 

76/P.878 



- 184 -

o f E n d & C O if p(A)*p'(A)*A for A e O U O ) , (9 c f' .This 
automatically implies that S £ 6L£F) . We now define a 1-cocycle 
^ *) to be local if there exists an (9 c # c such that 

is an object of End CtCC9-̂ oJ , <x e 2T0 . This automatically implies 
that z(M is an arrow of End <9ltl£*k) , . An arrow t,: 
-*(^\ X'J of local 1-cocycles is automatically local in the sense that 
there exists an (9 t K0 such that *^*> is an arrow of End0cC.C9̂ <̂ ) , 
a€ r o . The resulting C -monoidal category will be denoted by 
Z^(EndflL). 

A 1-cocycle of the form G>cp) is local if and only if f>-^> 
the identity automorphism of 9/ .A Hilbert space H €. ttLO) still 
generates a local 1-cocycle x.) as in Proposition 3.2, if we 
use the previous definition for r(W and set yto.) =l CH) T fit. 
If H is a Hilbert space in QiLO) and U , there is an arrow 
"i^ • frCO -» t^-z . ) defined by = > ^ ^ T e . 

The image of Z^(EndGL) under the monoidal x-functors 
is independent of a. and is denoted by t/(6Q . A morphism is an 
object of 3t(X) if and only if it is a transportable localized 
morphism, i.e. if there are unitary intertwiners (pcju^lp) with 
p 0 s p and an (9fe K such that 

fVtA^ = A, A c ©tils' + 0 , *u«r . 

This is the analogue for morphisms of the condition (S) for representa­
tions studied in Section 2. Z^(£*ul<9l)3f(QtJ is an equivalence 
of categories. For this reason we shall talk about ĈGl) r ather than 

H\ (End IX ) in the remainder of this section. Statements about 3(.(9l) 
have pointwise extensions to statements about Z^(EndflL ). 

The results on superselection structure in [7, 8] rested on 
an analysis of CftGL) where it was assumed that GL satisfies duality. 
We have already seen in Section 2, however, how these results can be 
extended to the case that GL satisfies essential duality. In fact, 
the same is true of the analysis of CfCl9L) and this provides an 
abstract way of studying spontaneously broken gauge symmetries of the 
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first kind without explicitly introducing field nets of gauge groups. 
The key result which is just a variation on Theorem 2.2 is 

3.2. Theorem. If s>i and OT satisfies essential duality then 
every localized transportable morphism p of ^ can be extended 
to a unique localized transportable morphism p of & 
Furthermore pi->p and b *-* t is a monoidal x-functor from 3f(.<*-) 
to 3COLA) . 

This functor from 3COg to 9t<S?) is the abstract version 
of the operation of restricting representations from ^ to ^ 0 

We may construct, as in [7, 23] , the permutation symmetry £ 
for Furthermore, if we suppose that 

which is the case if & is derived from \ as envisaged at the 
beginning of this section, the construction of conjugate morphisms 
^8, 23] may be carried out within 7(<SL) . 

76/P.878 



- 186 -

4. QUANTUM ELECTRODYNAMICS 
The best way to approach the second cohomology is first 

to consider where one might expect to find a non-trivial local 
2-cocycle. Let me recall the relationship between the cohomology 
of differential forms and singular differential cohomology. 
If A/* is a vector field x) satisfying *^A V - V a ^ o and I* 
is a differentiable 1-simplex, one may define a 1-cocycle A by 

since, by Stokes1 Theorem, if c is a differentiable 2-simplex, 
A (30 - O . A is a 1-coboundary if there is a scalar field 4 

with - + • Similarly if F^ y is an antisymmetric 
tensor with 3 c > F ^ 3 r o then one gets a 2-cocycle F by setting 

Fco ~ J F^ voo cu>v,c>c> . 

F is a 2-coboundary if F ^ v ^ 3>*AV- 3 VA^ . 
Now one knows that in quantum electrodynamics, the electro­

magnetic field F ^ is a local field satisfying B c V v J =l o but 
that there is no local electromagnetic potential A** such that 

F ^ v = *^At v-a vA^ , unless one is prepared to sell one's soul, 
abandon Maxwell's equations and adopt the Gupta-Bleuler formalism. 

In the case of free quantum electrodynamics, the ideas of 
local cohomology provide a new, and physically more transparent, proof 
of this well-known result Q>5] . Let F ^ v be the free electromagnetic 
field and $ a C°-function of compact support in fca . Set 

so that we still have S C > f ^ r v J = o .Now let 

* We adopt the physicist's convention and talk of a covariant vector field 
in place of a 1-form. In this section, we take s = 3. 
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and consider the associated inner automorphism 

where 61 is the net of von Neumann algebras generated by the free 
electromagnetic field, z is a 2-cocycle in the sense that for each 
differentiable 3-simplex d , 

There is no ordering problem here because these automorphisms conmute. 
More precisely, let ft denote the subgroup of all inner automorphisms 
of GL induced by the Weyl operators, i.e. the subgroup of 1-particle 
automorphisms, then z is a local 2-cocycle with values in the Abelian 
group A . This is the origin of the examples illustrating the concept of 
local cohomology in Section 1, because the C°°-solutions of Maxwell's 
equations corresponding to Cauchy data with compact support can be 
regarded as a subgroup of A and z even takes values in this subgroup. 

4.1. Theorem. If $1^)^$ 4 o * then z is a non-trivial local 
2-cocycle of A . In fact there is no function ^ on differentiable 
1-simplexes with values in morphisms of flL , such that there exists 
an O c # 0 wi th 

> T » ( M - f c , A R E A T A , ) , » H C , * * l * A > 

To prove this result-, suppose ^ exists and (5+at* c: 9 

then we may find a differentiable 2. -simplex c with &(c = -(r and 
( ^ i o ^ u t O + V ) <̂  O! . If yl^(ft) = ̂ OCft) ̂  A 
so 

>UR)UFL - ft*«0(A) - * ( c ) ( A ) , A * at©,). ( x ) 

76/P.878 



- 188 -

We show that (x) leads to inconsistencies/Before proceeding to a formal 
proof, it may be useful to sketch the ideas involved. y((r) if it 
existed, would create a charge <̂  at 30fr and -\ at 
contradicting 0 = - 3 v f > v " . This suggests what to do : 
take for A the surface integral of the electric field over part of 
the surface of a small sphere surrounding 30(x such that b* 
intersects this surface.-A is equally the surface integral of the electric 
field over the complementary part of the surface of the sphere. In the 
latter case (x) would give •jlMOO - A and in the former 

Now let F*>*v denote the dual tensor of F >* v and ^ 
be a C*° -function with compact support in . We can define another 
local 2-cocycle with values in A by setting 

z'to ( A^ = e ' (\e * ^ At & 

x) 
Now define <x'tc»>, - * c o > by 

( I ' C C ; ) ; x c o > takes values in the circle and is a 2-cocycle in c 
and c' separately. As such its values depend only on 3c and ^ C ' 
The interesting configurations are those for which ( * c +*4t > 0 c ( 3 c ' + . 

In fact if ^c, and Bc x are homologous as cycles of ( V + ^ T T F - R * F K ^ 

then < 2 ' C C , ) ) I C C 1 ) > - <x 'CC ' ) , * C C O > . This suggests evaluating 
<-z!cc'>t zco > when ^ c has a non-trivial homology class 

in ( ^ C ' + - * * V K ) ' • ̂ u s t suc'1 a situation is involved in calculating 
^tt)(A) using (x) if A is the surface integral of the electric 

field as discussed above. Taking to be 3c«=o , a> , 
x^xo and to be * e ~ ° , = ° , (*<-*f**3 = a* , 
an explicit computation gives <Tz'tc') , x u ) > = ^^hc^yi ^I-f***** f o p 

a sufficiently large, where Ik! 4 o depends only on the normalization 
of the basic field F > v and the sign of k depends on the 
relative orientations of 3c a n d 3c' . In particular choosing 

* A similar coupling of local cocycles takes place at the level of the 
1-cohomology for the massless "scalar field" with s=l discussed in [26J. 
This is really a vector field A ^ satisfying the self-dual equations 

3^A***o and KlV-a vA K - o . 



- 189 -

X ^ t x ) * * ^ suitably, < *'cc'>, x c o > 4 l , whereas if 
there were to be a ^ with the properties described in Theorem 4.1, 
one would need < TL!CCJ> , *to> ~ i for cl sufficiently large. 
Of course, the situation is symmetric as regards z. and . Thus z.' 
is a non-trivial local 2-cocycle because any local would have 
to be such that '̂CW creates a magnetic charge <^ at 
and ~\ at . This is the reason for regarding H^(yO 
in Section 1 as being parametrized by an electric and a magnetic charge. 

The same argument, replacing group-theoretical commutators 
by commutators, will show that, if Jf< ~ > 4 * * =fc o , there is no 
function CP) with the properties expected of 
iI(S->jyi**J>> Q ^ X ^ ^ V ^ f o r a ^ o c a 1 electromagnetic potential, 
where P is a polynomial in the fields. 

In interacting quantum electrodynamics the dearth of rigorous 
results forces me to rely on a speculative chain of reasoning. In the 
first place, everyone believes that here too there is no local electro­
magnetic potential A/* . However, as there are electrically charged 
particles in the interacting theory, the reason is not just that e w V ^ 
tries to create charges at the vertices of ^ , but probably that 
such charges would, as in the free theory, not be quantized. 
The next step is to realize that there is a formal expression with 
just the right properties for being an electromagnetic "potential" of 
a quantized charge for the interacting theory : 

This expression is gauge invariant in the conventional sense and should 
therefore generate local quantities in the vacuum Hilbert space of 
quantum electrodynamics, which cannot be expressed as local functions of 
the electromagnetic field. In other words, one would expect that if & 
is the net generated by the vacuum representation of the electromagnetic 
field, then & does not satisfy duality although it should still 
satisfy essential duality in the light of the general arguments in [z6j. 
The "true electromagnetic potential" might be thought of as a path-dependent 
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field taking values in the circle. More precisely, I suppose that, 
in place of the formal expression above, for some (and presumably 
any) © € # 0 there is a unitary ut>)c &.4U9+(r) , Zi 

such that 

xtc) e u ( ^ c ) u,L\c.y4 uxago"* €: ecu***; , 

In Section 3, gauge automorphisms of field nets were defined and one 
may ask whether there are any gauge automorphisms of Ct^ considered 
as a field net. The interpretation of u(W as a potential leads one 
to suppose that there are such gauge automorphisms and that if ^ 
denotes the gauge group of fiLA , presumably Abelian, then 

where %^ is character of ^ . This is not a logical contradiction 
to the gauge invariance of the formal expression above but at most 
a linguistic one. If X C O 9 for Ffc < , denotes the set of 
characters % of ^ such that there exists a unitary * in 
6Ld(F) with j(^)=y<.j)u , then % y is a local 
1-cocycle with values in the net X . A natural conjecture is 

H^W) s 2 > where the parameter is interpreted as an electric 
charge. 

However, returning to the 2-cohomology, the algebraic structure 
of End GL also allows it to be used as the coefficient object for 
a 2-cohomology. I will not attempt to describe the general version 
which would be necessary for non-Abelian gauge theories of the second 
kind but will just present the simplified version relevant to the 
Abelian case. A (unitary) 2-cocycle with values in End 6l is a pair 

( ^ x ) where for each (r£ Ti , t̂t) is a morphism of 6t and 
for each , r£c) is a unitary intertwiner 
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such that 

As in the case of the 1-cohomology, the 2-cocycles can be regarded as 
the objects of a category Z*(End0i). In this category, (.v,w) -J>t<j',z'>> 
if, for each <±e Z0 , vfco is a morphism of and wCW is an 
intertwiner 

such that for c & Zz 

The composition law is given by (V> w1) * (v, w) - ( J , w) where 

wt<0 - C w ' t W x t v c W ) . ( i v , ( W x w t H ) ; ^ T ^ , 

In fact, there is much more algebraic structure ; in particular, 
Z z(End GL ) may be considered as a 2-category but I refrain from 
giving further details. End fit , being a monoidal category, is also 
a 2-category in a natural way and it is this aspect which allows it 
to be used as the coefficient object for 2-cohomology. Note, however, 
that this 2-cohomology does not allow a product of 2-cocycles and this 
is a defect in the sense that, in the application to quantum electro­
dynamics, the "product" of 2-cocycles corresponds to the addition of 
electric charge. 
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Adding a locality condition to define Z* (End (SL ) poses 
no problems as one may follow the pattern established in defining 
Zj(End & ) in Section 3. 

On the basis of the conjectures made above for quantum 
electrodynamics, one may define a non-trivial local 2-cocycle (̂ i*-) 
by setting 

zee) =. a C ^ O u.câ c)"1 uCV) ~* , c C s . 

Now uU) is associated with a local 1-cocycle %^ with values 
in K and a tedious but trivial computation shows that cohomologous 
local 1-cocycles give rise to cohomologous local 2-cocycles. In other 
words one has a "connecting map" W ^ O O -V H^iewet) . 

In general terms, it should be expected that, just as theories 
involving fields and a principle of gauge invariance of the first kind 
can be described intrinsically by saying that Z^(Endtfc) is non-
trivial, so theories involving fields and a principle of gauge invariance 
of the second kind will be able to be described intrinsically by saying 
that Z^(EndOC) is non-trivial. 

Theorem 4.1 expresses the fact that in free quantum electro­
dynamics the local 2-cocycle z. with values in A cannot be derived 
from a local 2-cocycle with values in End by setting 

zccKft) ^ z'co A x'ccj-1

 % zr^ . It may perhaps be considered 
as illustrating the dictum that the principle of gauge invariance of 
the second kind forces an interaction on the theory. 
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