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We show how many mesomorphic states illustrate the following gênerai scheme: The 
symmetry group of an equilibrium state of Euclidean-invariant quantum statistical mech-
anics is a subgroup H of the Euclidean group Ε such that the orbit Ε/H is compact. More-
over, the homotopy groups of Ε/H yield a classification of the topologically stable de­
fects and configurations of thèse ordered média. This suggests a prédictive value of this 
scheme for yet unobserved média and for defects. 

Homotopy theory has aiready been used explic-
itly by physicists for the study of topological sta-
bility of kinks,1 V Hooft-Polyakov monopoles,2*3 

and instantons4; it also appears that topological 
notions are used for the study of defects in or­
dered média, e.g., Burgers circuit and Volt erra 
process, which can be related in some way to 
homotopy.5 Toulouse and Kleman have proposed 
a topological classification of defects by the 
homotopy groups of the "manifold of internai 
states" and, as an application, have predicted 
that vortex Unes in superfluid He3-A should an-
nihilate by pairs.6*7 Michel has shown8 how this 
classification can be related to the spontaneous 
symmetry breaking of the invariance group G of 
physical laws (e.g., gauge group, Euclidean 
group, etc.) into a subgroup Hy the symmetry 
group of the perfect média (i.e., without déforma­
tions): The manifold of internai states of Réf. 6 
is the orbit G/H. Several applications9"13 and ex­
tensions14*15 of thèse ideas have been pubiished 
recently. 

Here we présent a synthetic classification of the 
possible symmetries of média with long-range or-
der, their defects, and their configurations16 with 
the hope that such classification has some pré­
dictive value. The complète list of the possible 
global-symmetry groups H of equilibrium states 
with spontaneously broken Euclidean symmetry 
has been given by Kastler et al.17: In quantum 
statistical mechanics if an invariant state is a 
mixture, it can be decomposed, in the transitive 
case, into an intégral over an orbit G/H of pure 
states and this orbit has to carry a finite G-in-
variant measure. When G is the Euclidean group 
Εy this means that the orbit Ε/H is compact. We 

first recall the classification of thèse subgroups 
//, up to conjugation in the affine group: For in­
stance, for H discrète, one obtains ail the 230 
crystallographic classes predicted last century. 
Consider the Euclidean group Ε given as the 
semidirect product 7DO(3) and let Th = TnHbe 
the intersection of H with the group Τ of transla­
tions. TH is an invariant subgroup of H; so H is 
a subgroup of N(Th) the normalizer of TH in Ε 
[i.e., N(TH) is the largest subgroup of Ε which 
has TH as an invariant group]. N{TH) may be 
written as the semidirect product TDQ H. There 
are then five cases to study18: 

In each case, the possible H are ail closed sub-
groups of Ε such that 

ΤΓ)Η = ΤΗ<ΖΗ<Ζ TOQH . (1) 

Below we give some known examples correspond-
ing to each case. 

Case IV.—This case corresponds to crystals. 
Case /.—In this case, the largest possible 

proper subgroup of Ε is Γ Ο Ζ > · Λ . This is the 
symmetry group of the nematics: They are con-
stituted of aspherical, randomly distributed, but 
aligned, molécules; their refraction index and 
electric or magnetic susceptibilities are axially 
symmetric quadrupoles. 

Cases II and V.—Here N(Tu)*TODmk; its iden-
tity component can be written as R?Cl[R *SO(2)] , 
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where RxSO(2) is the group generated by the 

translations along an axis and the rotations about 

it. Figure 1 represents several possible sub-

groups, with either H(lR = Z (case U) or H DR 

= 0 (case V ) . Known classes of liquid crystals 

corresponding to thèse cases are given as fo l -

lows : 

Subcase lia, cliolesterics.—Here H =R2Î-iRrOD2), 

where Rti dénotes an hélicoïdal group [see Fig. 

l(a)L The molécules are algned in the planes 

orthogonal to the cholesteric axis but the azimuth 

of this alignment is a linear function of the axis 

coordinate. 

Subcase IIby smectic-A.—Here H = (R2xZXJLXH; 

the molécules are in parallel layers and are o r -

iented perpendicularly to them isee Fig. l ( b ) J . 

Subcase Ile, smectic-C.—Here H = (R2 x Z)C2h; 

the molécules are ail aligned, but obilquely so, 

relat ive to the layers . 

Subcases IId and V, chiral smectic-C.—The 

oblique orientation of the molécules makes a 

constant angle with the axis orthogonal to the lay­

e r s , but it turns from layer to layer by an angle 

θ about this axis ; the two subcases correspond, 
respect ively, to Θ/η rational or irrational [the 
latter subcase is given in Fig . l ( c ) J . 

Case III.—This case is illustrated by a lattice 
of vor tex Unes in a type-Π superconductor in the 
intermediary state 1 9 or by the hexagonal rod lat­
tice of lyotropic c rys ta l s 2 0 ; then H = (Z2*RÏ3D6h< 

One expects that other examples of mesomor-

phic states, corresponding to other possible sub-

FIG. 1, The intersection HC\{R * SO(2)] is shown, 
where Λ x SO(2) is the cylinder group of translations 
along an axis and of rotations about it; H are the sym-
metry groupe of (a) cholesterics, (b) s mec tic-Λ, and 
(c) chiral smectic-C with 0/π irrational. 

groups / / , wi l l be discovered (see , for example, 
Réf. 11). The states which are not covered by 
this classification are those which do not havea 
global-symmetry group. either because Ε has 
only an ergodic action (ergodic states of Réf. 17) 

— e . g M in case of helimagnetic crystals or modu­

la ted crystals when the ratio of the two super-

posed periods is irrational—or by lack of long-

range order corrélations in some directions in 

the last case the local order cannot be preserved 

macroscopical ly, e.g. , in the smectic-2* or -£ 

which has a hexagonal or tetragonal structure in 

the layers ; so they are very crystal- l ike locally, 

but the order corrélation disappears along the d i ­

rection orthogonal to the layers ) . 

Consider again the média with global-symmetry 

groups (transitive states of Ref. 17). Acting on 

them by the Euclidean group, one obtains the 

whole orbit EH of its positions. The state of a 

perfect médium is characterized by its position 

beside température, pressure, etc. In an imper-

fect médium the position var ies local ly; this v a r i ­

ation defines a function φ valued in EH and whose 
domain is the volume V occupied by the médium 
excepting the defects. If φ can be extended con-
tinuously over a defect, this defect is not topo-
logical ly stable. If φ cannot be extended contin-
uously over a defect Δ . around this defect it 
must belong to a nontriviaî homotopy class of 
E/H. This yields the topological classification 
of defects: Eléments of τη(Ε/Η), η = 0 ,1 ,2 c lass i -
fy wall , line, and point defects, respect ively. It 
may also happen that Φ may be inade constant 
over a whole sphère S2 and defined everywhere 

inside without being homotopic to a constant: This 

defines a topologically stable configuration, 1 6 

classified by the éléments of ir3(E H). 

T o compute the homotopy groups „ ( £ / / / ) , for 

η > 0, f i rs t note that they are also those of Ejti' 
= E0/Hf, where EQ is the connected subgroup of 
Ε (no reflections) and E0 is the (double) universal 
covering of E0: The kernel of the homomorphism 
θ;Ε0-Ε0 is the center of EQ (it is generated by 
the rotation of 2ir); finally Η' =ΗΠΕ0 and H' 
= 0 - 1 ( / / ' ) . » Then one can use the long exact homot­
opy séquence for principal fiber bundles 2 1 and 

other basic facts of homotopy. 2 2 Since ÏÏ0(£0) = 1, 

T T ^ O ) = 1, and τ2(ΕΌ) = l , 2 3 we deduce 

nl(E/H)^0(J}')) ^(E/H)^^'). (2) 

L e t / / 0

r be the connected subgroup of H'. We 
have to distinguish two cases: 

In case ( i ) , # D S O ( 2 ) . Then π ^ ' ) =^ilS0(2)] = Z 
= n2(E/H): There are point defects—this is the 
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case of nematics and s m e c t i o > 4 . The line defects 
are classified by 

r, \Η') = Η'/Ή0' =~ 1(E/H). ( 3 ) 

In case ( i i ) , #3)SO(2). Then ïï,(ff') -1 = u2(E/H): 

There are no stable point defects and 

τ: 0(H')=H'/H0' = f f L ( E / ^ ) . 

In ai l cases I R „ ( / / ' ) =ττ π ( / / ) = 1 when w > 1 so that, 
for η > 2, Ε/Η and EQ have the same homotopy— 
that of SU(2); and from Bot t , 2 4 n3(E/H)=Z, which 
classif ies the configurations of ail média. We re -

call in Table I the explicit homotopy groups of ail 

previously listed mesomorphic states. Of course, 

defects are studied and should be studied from 

the point of view of energy stability. Hcwever , 

this simple topological classification is already 

intoresting and has some prédictive power. 

We remark that, except for the nematics, ail 

ïïjCE/tf) are non-Abelian; so isolated line defects 

are characterized only 9 * 1 0 by conjugation classes 

of tfj. However , pairs of line defects correspond 

to conjugated pairs of ir1 éléments: Thèse line 

defects can coalesce 9 but, as show η by Poenaru 
and Toulouse, 1 4 they cannot c ross each other when 
they correspond to noncommuting éléments of 

ÏÏX(E/H). Note also that ÏÏl(JE/H) acts nontrivially 

on n2(fi/H) when the latter is Z. Hence for smec-

t i c - A we have the same situation as that described 

by Volovik and Mineev 1 0 for nematics: The sign 

of isolated point defects is undefined; the relat ive 

sign of a pair of point defects may change when 

a line defect is moved between the m. In ail cases 

ÏÏA acts t r ivial ly on the configuration group ÏÏ3(E/H) 

= Z . 

A s shown in Réf. 9 , n0{E/H) i s nontrivial for 

crystals when H - H'; then TJ0(E/H) = Z 2 classifies 

wall defects annihilating by pairs (the twins by 

reticular mer ihedr i e s 2 5 ) . The relation / / = H' is 

also true for cholesterics-and chiral smectic-C 

but thèse phases seem to exist only for optically 

active molécules (the existence of twin defects 

would exist if one could observe the same phases 

made with racemics ) . 

We are grateful to Professor V . Poenaru for 

discussions and for some help with homotopy cal-

culations. 

Note added.—Since this paper has been written, 

new examples of thermotropic mesomorphic 

phases of disklike molécules have been dis-

c o v e r e d . 2 6 ' 2 7 

The topological classification of defects and con­

figurations based on homotopy as presented here 

and in the quoted références is too coarse for 

three reasons: 

(i) If the domain Ω = (7 - the defects) is not con-
tractible, there might be other topological ob­
structions to extending the function φ when it is 
homotopically t r ivial ; they are characterized by 
the cohomology of Ω vaîued in the ÏÏ ' S of E/H. 

( i i ) The continuous déformations of φ necessary 
to show the homotopic équivalence of two defects 
or configurations may require déformations of 
the médium beyond the eiastic l imit and are there-
for unphysical. The médium generally deals with 
tins difficulty by creating new defects to which 
the homotopy classification applies. 

( i i i ) A médium can eventually be submitted to 
the "conditions of integrability" (e .g . , h · V x « =0 
for smectics or the well-known compatibility con­
ditions of dislocation theory). This additional con-
straint has to be taken into account. Thom has 

TABLE L List of some predicted subgroups H of the Euclidean group Ε which are symmetry groups of phases 
already observed in nature. 

Case H Name Π3 π2 
πί Réf. 

I 
lia 
11b 
Πο 

nd or V 
ni 
IV 

R2D(RhDD2) 
{R2*Z)QD»k 

(R2* Z)QC2h  

(Λ2χ Z)DC2 

(R x Z2)DDQh 

(z\pV 

Nematics 
Cholesterics 
Smectic-i4 
Smectic-C 

Chiral smectic-C 
Rod lattices 

Crystals 

Ζ 
ζ 
ζ 
ζ 
ζ 
ζ 
ζ 

Ζ 
1 
ζ 
1 
1 
1 
1 

Q = D2 

ζοζ2 

ΖΟΖΑ  

ZUZK 

Z^Dz 
H0 = (Z3,Po)a 

1 
. . , a 

1 
1 
. . a 

ίΖ2 ii Ρ = Ρ0  

(1 otherwise 

6,9,10 
10,13 

12 
12 

9 

a These chiral phases are made only from chiral molécules, and so we should consider only EQ invariance. The 

group Dn = 8'{{Dn) has 4n éléments; it is defined by the gênera tors r , s and relations r 2 n = s4= 1, rsr= s; for η = 2, 
it is the quaternion group 1 , - l9±irkf where rk are the Pauli matrices. The symboi (z\ P) me ans that H./Z"- Ρ, 
where Ρ is the point group of the crystal, for which P n is its subgroup without reflections and P c = θ Μ ( Ρ ρ ) . 
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recently made some suggestions in that direction. 2 8 

This synthesis suggests new types of problème 

(for instance, at phase transitions). 
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