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SOME ANALYTICAL INSULTS ON TF1K 0 PN ST EI N- IJHLfiNB KGK 
SEMIGROUP IN INFTNITKLY MANY DIMENSIONS 

b y P . A# Meyer 

The infinite dimensional 0rn s t ein~U h 1enbeck process and the corres
ponding calculus with « laplacians » and « gradients » on Wiener 
space has recently been used by Malliavin, to prove results on hypoellij 
ticity of second order p#d#e# fs ( Hormander 1s theorem ) by probabilis
tic methods. The classical approach to the most elementary problems of 
this kind uses singular Integrals. So one may wonder whether there aren ?t 
on the infinite dimensional space itself some underlying « singular 
integral theorems » . We are going to show that indeed this is the case 
though the results don't seem to simplify Malliavin 1s method of proof. 
At the same time, we shall relate these results to the logarithmic Sobo-
lev inequality of Gross, which can be interpreted as a « Riesz poten
tial inequality » in infinitely many dimensions , relative to the Orns-
tein-Uhlenbeck semigroup. 

The results will be presented and commented, but the reader will be 
referred to [4~la a r i (3 [4]^ f ° r the proofs, except at the end of the papei 
where an improvement of the results will be given in full detail* 

I must express here my regrets that my mathematical education has bee 
restricted, to martingale theory, and has left me ignorant about gaussiar 
measures on general infinite dimensional spaces. It is obvious for me 
that the results have little to do with the particular structure of 
Brownian motion, and should be extended to abstract Wiener spaces. My 
ignorance also makes me feel uneasy about giving credit to other authors 

2 
1 consider that all the definitions and results for the case of L should 
be considered as known, thanks to the work of Feissner, Gross, Hid a, 
Kuo, N e l s o n . b u t that iP results, p^2 f aren't likely to be known -
though there is some overlap with the work of Shikegawa, also motivated 
by the methods of Malliavin. 

Finally, let me mention that the work concerning the logarithmic Sobc 
lev inequality has been done jointly with Dominique Bakry. 
I. STANDARD SINGULAR INTKHRAb RESULTS IN K d 

Let us first recall somn quite classical results on Fourier multipli
ers, whose proofs can be found, in Stein's book: [ 6 j • The analogy will 
guide us throughout t h e papor, and we'll carefully keep the same nota
tions to help the eompari son o f r o n u l I;s• 



- 127 -

NOTATION OPERATOR ON FUNCTIONS CORRESPONDING FOURIER 
ON E - WA MULTIPLIER 

D^. Partial derivative iu^. 

L Laplacian 

P̂ _ Brownian motion semigroup . i |2 
( analysts 1 normalization ) e~ ' u ' 

Q_k Cauchy semigroup ( also -t|uj 
called half-space Poisson 
kernel ) 

C Cauchy generator ( C--J^TJ -ju| 

R Potential of (P.), newtonian l 7 j ¡2 
potential v 

V Potential of (Q.), Cauchy 1 / { , 
potential v 

Ra Riesz potentials ( usually a c }u(~ Q 

is restricted to 0<a<d /2, and Q 

our R* is called ) 

The use of the probabilists 1 normalization for brownian motion would 

lead to factors 2 or Jl at many places* Let us state the main classical 

results. 

RIESZ TRANSFORMS THEOREM. The multipliers iu^ju] define bounded opera-

' tors on L p ( E d ) for l<p<oo ( Stein [6], chapter III ) • 

These operators will be denoted by » k • If d=l f R is the Hilbert 

transform. 

RIESZ POTENTIALS THEOREM* The operators Ea maps boundedly ^ P into £ q 

( l<p<oo , 0<a<d/2p , 1/q = 1/p - 2a/d ( Stein [6], p. 119 ) . 

Taking into account the first theorem, the second one is closely 

related to the classical Sobolev theorem ( Stein, p. 125 )• 

Let us state the first theorem in another way, which will extend more 

easily to a general set up* Let f belong to the Schwartz space S ; then 

the Riesz transform RiCf is -D-if , and the theorem tells that jpvf|| ~ 

^ cp||Cf || p ^ • Let us set M 

r(f , g ) = z k 

then we also have 

(i) lk/nTrO||p ^ c pl l C f l l p 

On the other hand, we have Of - Ê - ft^^f , from which we can deduce that 

the above inequality in fact is a norm equivalence in Ip. The point here 

is the fact that we can forget now about the differentiable structure, 

partial derivatives, etc : F(f,g) can be defined from the semigroup only, 

1. It is understood that a constant like c may vary from place to place. 
Also we denote the L p norm simply by ||.|f*fif no confusion can arise. 
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through the formula f(f,g) = L(fg)-fLg-gLf • 

II. GENERAL SYMMETRIC SEMIGROUPS 
Let now E be a nice measurable space, \i be a a-finite measure on E, 

and (P^) be a Markov semigroup on E, such that P^l=l f and symmetric 
with respect to ]i : 

< P,f,g > = < f,P.g > ( f,g bounded and measurable )• 

It is well known that P, induces a contraction on every space L^(u)• 
2 ~ As a bounded self-adjoint operator in L , it is well known that P^ 

has the following representation - with a spectral family independent 
of t oo t x 

P, = / e ^ d E , t 0 A. 

Let (j>(A.) be a function on [0,oo [ • To stress the analogy with the pre-
ceding section, we shall say that the ( possibly unbounded ) self-adjoin^ 
operator / <j>(A)dE^ corresponds to the spectral multiplier <[>. Then we 
may extend^as follows the preceding list to the abstract situation : 
only the partial derivative operators have disappeared* 

OPERATOR SPECTRAL MULTIPLIER 
P^ Semigroup e ~ ^ 
L Generator ( « laplacian » ) -A _ 

Oauchy semigroup / e""*^ 
C Oauchy generator ( -J^TJ ) -Jk 

R Potential 
V Cauchy potential ( R 1 / 2 ) A ~ 1 / 2 

R a Riesz potential A ~ a 

The last three multiplier functions <J>(A) are defined to be equal to 0, 
not to +oo , for A - O o 

The problem of giving conditions on the multiplier so that the cor
responding operator acts boundedly on L^ (l<p<oo) has been studied by 
Stein [̂ f] using Littlewood-Paley methods ( martingale methods I )• The 
most important case for which the answer is positive is (p(A)=:A 1 U, cor
responding to a Riesz potential of purely imaginary order. 

If the domain of L contains a sufficiently rich algebra, we may also 
define the bilinear operator r(f,g)~L(fg)-gLf-fLg, and it turns out 
that this is formally a positive bilinear function. So it has a meaning 
to raise the following problems 
« RIESZ TRANSFORM » PROBLEM . Are the norms ||Vr(f ,f )|! and ||Cf|| 

x Jr 

equivalent, l<p<oo ? 

1# We assume the semigroup is strongly continuous on these spaces. 
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( The answer is trivially « yes » for p~2 ) . 

« RIESZ POTENTIALS » PROBLEM . Which are the « smoothing properties » 
of R a ? 

This certainly is a very vague problem, while for the first one some 
results are known : for instance, Stein ?s methods in [̂ ] work for com
pact Lie groups. On the other hand, the answer is positive for all con
volution semigroups in lBd for p>2 ( [ 5 ] a

 a ^ d [5]^ )• 

III. THE ORNST EI N -UHLE 1M"B EC K SEMIGROUP 

From now on E will be the space of all continuous functions w from 
d 

[0,oo [ to ffi such that w(0)=0, with the usual Borel a-field. The measure 
\i of section II will be the standard Wiener measure on E. We are going 
to define a Markov semigroup 03^) on E, symmetric with respect to p,« 
Probably the shortest way to define it consists in throwing in the Meh-
ler formula 
(1) P t(w,f) = /f(we~ t / 2^Iipt) li(du) 
which obviously defines a Markov kernel. One then must check the semi
group property and jx-symmetry by having P^ act on some simple functions. 
Though we shall not go into details, we 111 need a few facts below. 

Let E 1 be the space of all mappings a from to B^, right conti
nuous, such that a(0)-0 with compact support and bounded variation. 

CD 
The duality form between E'and E 1 is jw faj = -/ w(s)dcr(s) (weE). 
We set 
(2) q(er) = / ^ l a C s ^ d s , e a ( w ) = e 1!"'"* , e ^ w ) = e a ( w ) e - * ( a , ) / 2 

The Fourier transform of p, is pf(a)=e ^ J Mappings {•,(*} are called 
linear^ and the algebra they generate is that of polynomials on E. On 
the other hand, finite linear combinations of functions ( or ) 
are called trigonometric polynomials, and constitute an algebra by 
themselves. Both algebras are dense in all spaces _ P(jx), l<p<oo . 

P. acts very simply on trigonometric polynomials : 

(3) V a
 = e - t /2 

ae 

formula from which the semigroup property and symmetry can easily be 
deduced. On polynomials, the action of P^ can be described as follows. 
Let ^ » be a finite orthonormal system in E 1 ( with respect to 

1' ' n 
the quadratic form q ) and let H(x 1,..-,x n) be a Hermite polynomial of 
degree k on B n . Let h(w) be the polynomial H( j w , ^ j , •. • , {w,c*n} ) on E. 
Then we have 
(4) Ph. - e ~ k t / 2 h 

oo 
1 . We could also consider linear function^ls \vj.a\-f a(s)dw(s) ( stochas

tic integral ) defiiiod | i , for aeI/~(If?( ,B ). 0 

file:///vj.a/-f
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It follows that the algebra of polynomials is closed under the action 
of (P^), and of its generator L • A consequence is the possibility of 
using the operator r • 

From the point of view of spectral decomposition, P is very easily 
2^ 

described. Let be the orthogonal projection in L (p,) onto the k-th 
Wiener chaos ( is simply the integral jx(f ))• Then we have 
(5) P tf = E f c e - ™ " \ 

Therefore the spectral multipliers <(>(A) of section II are really multi
plier sequences <J)(k), and the gap between 0 and the first eigenvalue 
1/2 greatly simplifies the theory of the Riesz multipliers : ( k / 2 ) ~ a 

for k>0 ( 0 for k-0 ) is a bounded multiplier sequence for complex 
a of real part >0 . 

IV . LOGARITHMIC SOBOLEV INEQUALITIES 

The well known logarithmic Sobolev inequality of Gross is the follo-
2 2 wing. Let f belong to £ (L), the domain of L in L Then f also be-

2 ~ longs to the Orlicz space L logL, and we have 

(6) p.(|f|2log|f |) ^ ||f||loS||f||2 - 2<Lf,f > i x 

This is a very sharp inequality, and we are going to lose some informa
tion in its interpretation as follows : assume p,(f )=0, and set -Cf=g 
so that f=Vg. Then the last, term on the right is just 2<g,g>-2 ||g||p. 
On the other hand, V is given by a bounded multiplier sequence, so it 

2 2 
is bounded from L to L , and the first term on the right is negative 

- - 1/2 for ||gJJ2 small. So we deduce from (6) that V-R ' is a bounded operator 
from L to L"logL . 

The beautiful results of Feissner [3] extending the inequality of 
Gross can also/interpreted ( less obviously ) as a statement on V : it 

2 n 2 n*f"l 
maps boundedly L log L into L log L for integer n ( positive or nega
tive ) . This gives at once regularization properties for R ^ ^ , kelN , 
and since we may define R z for complex z, the natural idea is to try 
complex interpolation ( as Feissner himself did ) . On the other hand, 
Stein's result mentioned in section II is a theorem of the same kind 
in iP, for purely imaginary z. So the first work consists in extending 
Stein's theorem to Orlicz spaces ( the Burkholder-Davis-Gimdy inequali
ties of martingale theory will care for that ) , and the second part of 
the proof is complex interpolation. We get : 
THEOREM 1. The Riesz potential operator R z for z complex, Re(z)=e>0, 
maps boundedly the Orlicz space L^log SL into L^log S +^ eL , for l<p<oo , 
s real. 
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V. SINGULAR INTEGRALS 
We introduce some notation . If k is a positive integrer, we denote 

by -#P(L ) the closure of the space of polynomials under the norm 

(7) ||f||pjk = (||f||P + ||Lf||P + ... + j|Lkf||P ) 1/P 

Given aeE 1, we denote by D f the derivative of the polynomial f along 
a(t) ~ /^or(s)ds 1 _ 

0 D / ( w ) = l i m g ^ 0 f(f(w+sa)-f(w)) 

One checks quite easily that D^{.,p} is the constant q(a,p), the bili
near form corresponding to q . Therefore the derivative of a polynomial 
is again a polynomial of lower degree. We have the very important formula 

(8) PJ3 = e t / 2 D P, , LD = D L + *D v / t or a t ' a a 2 a 
and 
(9) T(f,f) = Z (D f ) 2 

2 n d 

for any orthonormal basis of L (ffi ,E ) consisting of elements of E f * 
The following statement corresponds exactly to the boundedness of the 
Riesz transforms in l d in section I : 
THEOREM 2. Let f be a polynomial, or more generally belong to ̂ ( L ) . 
Then we have a norm equivalence in every L p()i), l<p<oo 

(10) \\jnr^)\\ |jCf|| . 
p p 

The proof is quite technical, resting on Littlewood-Paley inequalities 
and properties (8), (9)* The probability of a mistake in it seems to be 
small, but not 0 • However, a completely different proof by Muckenhoupt 
[1] confirms the result in dimension 1. 

We are going to extend this result to higher order gradients. This 
extension is quite superficial, since we 111 use the weakening of (10) 
which consists in using Lf instead of Of on the right side ( Cf=-VLf, 
and V is bounded from to itself ) *. and only the < half of the equi
valence. The reason for this weakening is the difficulty in handling 
the commutator of D and 0, while that of D and L is so simple (8). 

Q 2 a d We denote by ) a fixed basis of L ~ ( E + f E ) as above. Given m~ 
(n v,.. • ,n n )elNk we denote by D the operator D ...D , and we define 

* 1 (9) n t 

for any polynomial f 

(11) r 0(f,f).f 2 , r i(f,f) = F ( f . f ) ^ ( V > 2 > r k(f ff)=I^ M f l lk ( D m f ) 2 

THEOREM 3 . |k/fk(f ,f)|| p cp||f||p fe ( f polynomial, l<p<oo , ke JN ) . 
1. Hermite conjugate expansions. TAMS 139, 1969, p. 243-260. 
2. We'll see below that these functions don't depend on the basis. 
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PROOF. Consider a system of Rademacher functions r (t) .'indexed byl"^ 
and set f =D f. We apply theorem 2 to the function g, =L -y r (t)f , m m k me x m m 
with I a finite set of IN : 

IK £ n (D e 6 t ) 2 ) 1 / 2 f § o ||I,gt||P 
n p ^ ^ 

and we integrate in t. On the right side, we have E [ / l 2
m e j r m(t)Lf m| pdtj, 

which ( according to Khinchin fs inequality ) is equivalent to 
||( h (Lf )2)1/2jjp ^ Q n t h e o t h e r h a n d 

, according to (8) we have 
k-1 Lf -I) Lf+ —-~~D f, and we can dominate the right side by m m 2 m ' t 3 J 

c || £ ( ^ f , Lf+ ^If)|| P 

* - - p 
On the left side, denote by G the mapping f t-~> (D^ f) n €jj from poly
nomials, to sequences of polynomials. Then what we n have is 
E[/ lis t r (t)Gf j p dt ] . Since Khinchin 1 s inequality is also valid L J " mel m m" 0% J ° 

2 2 
in a Hilbert space, this is equivalent to ||( ̂ m e j llG^mll ) |P • Letting 

k 6 l* p 

now I increase to 1' , we get that 

^ r k ^ l ( f ' f ) H p % c p l l v T k(Lf^f,Lf+ % L f 7 i|p 

Theorem 3 follows at once by induction on k • 

As a consequence, we get the finiteness of r^(f ,f) a.e., hence the 
possibility of defining rfcCf,g)= \{r f e(f+g ff+g)-r k(f ff)-r k(g fg))• 

The following result implies at once, by induction on k, the fol
lowing results : i f f is a polynomial, r k(f,f) doesn't depend on the 
choice of the basis ) , and is also a polynomial. 

THEOREM 4. Let f be a polynomial. Then we have 

T k + 1(f,f) = Lr k(f,f)-2r k(f fLf)-kr k(f,f) 
PROOF. We have I<(D mf) 2) = 2Dmf Ll^f + r(D mf,D mf) 

= 2D f D Lf + k(D f ) 2 + T(D f ,D f) . m m v m . v m • m 7 

k k Sum on mel, a finite subset of IN , and let I increase to I . Then 
E T (D f ) 2 increases to 1-, (f,f), and the convergence takes place in mel m k ^ 
IA since the limit belongs to L^ ( theorem 3 ) . To prove theorem 4, 
since L is a closed operator, we need only show that the right side 
converges in L"^ Now 

kL T (D fV converges in L 1 to kl. (f ,f) ( theorem 3 ) mel m 3 = k ' 
I T D f D Lf converges in L^ to 1-, (f ,Lf) mel m m -J = k v ' J 

( here use polarization to get monotone convergence ) • Finally 
£ T r(D f,D f) = L' T (D D f ) 2 increases to I\ ,(f,f) mel m ' m mel ,n X QL^YI J k+l v f y 

Theorem 4- follows. 
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With the help of the preceding results, we can prove completely a 

statement which was stated in [4] as a reasonable conjecture : 

THEOREM 5. Let f and g belong to -£ 2 p(L k) (l<p<oo). Then their product 

fg belongs to 

COROLLARY. Let T be n , ,^ p(L k) . Then T is an algebra! 
p,K -

PROOF. This can be reduced to a problem on polynomials : show that 

llfsllpfk ^
 c

p , k
 i f H f kp.k = 1 9 HgIÎ2p,k ^ 1 # B y Polarization, we may 

reduce to f=g • Since everything is trivial at level 0, we use induction. 

Assume 
if ||f || 2 p, k % 1 , then for all i^k ||r ±Cf,f)|| p^ - ± <? c p ^ . 

We prove that the same property holds at level k+1. The new inequali

ties to prove are that, if ||f|| .̂+1 < 1 

ll rk +i
( f' f>Hp,o * Cp,k +1,0 

which is precisely theorem 3, and also that 

||Lr.(f ,f )|| , . < c , ̂  . 11 i v ' y , ,p,k-i = p,k+l,i 

which follows from the induction hypothesis and theorem 4- : 

Lr ±(f,f) = 2r i(f,Lf) + ir ±(f,f) + r i + ]_(f,f) . 
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