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ON THE STATISTICAL MECHANICS OF SURFACES 5 
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2 
Mathématiques, Ecole Polytechnique Fedérale, 
CH-1007 Lausanne, Suisse 
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0 # Introduction. 

The purpose of these notes is to report some recent results and speculations 
concerning the statistical mechanics of surfaces or interfaces and to try to convey 
an impression of the beauty of and interest in a mathematical theory of random sur
faces. 

Random surfaces and their statistical mechanics appear in many different phy
sical cc tUxts among which one might mention : 

(i) Crystal growth and the statistical mechanics of crystal surfaces in a 
solution. 

(ii) Interfaces between different phases of a physical system; (e.g. Bloch 
walls, or the liquid-vapor interface in water, etc.) 

(iii) Gauge theories; (the high temperature expansion expresses a lattice 
gauge theory as a theory of random surfaces; the low temperature expansion expresses 
a four-dimensional lattice gauge theory with discrete gauge group as a theory of 
two-dimensional vortex sheets.) 

(iv) Dual resonance models; (string theory in its Euclidean formulation can 
be formulated as a theory of random surfaces. It may be viewed as a generalization 
of Brownian motion, from random paths to random surfaces.) 

Needless to say that random surfaces appear in other problems of condensed 
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* Address after August 1982 : Theoretical Physics, ETH, CH-8049 Z u r i c h , Switzerland. 
** Work supported in part by N.S.F. Grant DMR 81 00 417. 
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matter physics, in geophysics (surfaces of mountains),... . 

In the following, we briefly review some rigorous results concerning random 
surfaces and interfaces. We discuss : 

1. The interface in the three-dimensional Ising- and rotator model [1]. 

2. The solid-on-solid model [2]. 

3. Self-avoiding random surfaces and string, theories [3]. 

4. Lattice gauge theories [4]. 

We refer to the literature quoted here and in the following for information 
concerning the physical situations described by these models, detailed statements 
of results and proofs. 

We have profitted from collaboration and/or discussions with M. Aizenraan, 
J. Bricmont, J.-L. Lebowitz and E. Seiler. 

1. The interface in the Ising- and rotator model. 

We start by recalling the definition of the Ising- and the rotator (classical 
XY-) model on a simple, (hyper) cubic lattice 2Z? , d > 3 : With each site j € 2Z^ 
we associate a spin , and 

1) = ± 1 in the Ising model; 

2) Sj 6 , in the rotator model, i.e. can be parametrized by an angle 
6j € [0,2TT) . 

We use the convention 

IS. = ± 1 , in the Ising model 
3  

8j = 0,TT , in the rotator model. 

Let A be some finite sublattice of ZZ^ , e.g. 

A - Aĵ  T - (j €2Z d : -T < j t < T, -L < J a < L , a « 2,...,d} 

The energy of a configuration S^ = { S . } . ^ of spins in A , given a fixed 
configuration S = {S.}. c of spins in the complement, A° , of A , is given A c J J^A 
by the Hamilton function 
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H, - - I s. - s . + w(s , | s ) , (1) 
(ij)c* 1 J A C 

where W is a boundary term defined by 

W(S.|S ) - - E S.-S. , (2) 
A AC (ij) 1 3 

ieA,j€A C 

and (ij) indicates that i and j are nearest neighbors. The equilibrium state 
for a spin system in A with Hamilton function given by (1), (2) and some 
fixed b.c. S , at inverse temperature fj , is defined to be 

AC 

, -BH.(S.|S ) 
duft(S |S ) = Z R .(S ) le A l l dS. , (3) 

A e ' A
 A

C j£A 3 

where dS is the counting measure on {-1,1} , in the Ising model, and the Lebesgue 
measure on , in the rotator model. Furthermore 

-BH.(S |S ) 
Z R .<S ) = / e A n d S . 

AC j€A J 

is the partition function. We shall impose the following kinds of boundary conditions: 

(+b.c.) Sj = +., for all j € A° 

(±b.c.) » + , for all j £ A° with J x > 0 

= - , for all j € A° with ^ < 0 

(step b.c.) Sj = + if j > 0 , or « 0 and j 2 > 0 

S. = - , otherwise. J 

Let A(S) be some continuous function depending only on finitely many . The 
equilibrium expection of A in the thermodynamic limit, for X b.c 
(X = +,±, step) , is given by 

M* L,T-*» P JL ,T 

The limit is known to exist for + b . c , but some limit can always be obtained by 
passing to subsequences. We define <(•)> by 
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<A(S)> ß = <A(-S)> x . 

The spontaneous magnetization, M(ß) , is given by 

M(ß) - <S.>ft . (5) 

It is known that for d j> 3 

M(ß) ^ 0 , for large enough ß . 

In two dimensions this remains true in the Ising model, but the two-dimensional 
rotator model does not exhibit spontaneous magnetization, except at ß « » , 
(a well-known theorem due to Mermin.) However, this model shows a Kosterlitz-Thouless 
transition, from a high temperature phase with exponentially decaying correlations 
to a low temperature phase where correlations have only power law decay. This has 
been rigorously established in [5]. This transition appears to be closely related 
to the roughening transition in the three-dimensional Ising model, (see Sect. 2 ) . 
It is essentially the same phenomenon as the roughening transition in the solid-on-
solid model described in the next section. 

Next, we define thermodynamic functions : 

(a) The free energy 

f(ß) = lim (TL d" 1)" 1log Z f l . (S ) (6) 
L , T — ß , A L , T A c 

which is independent of the b.c. that are imposed. 

(b) The surface tension (or surface free energy) 

V A ( + ) 

x(ß) = f ( U ( ß ) = lim lim L 1 dlog ' L'* (7) 
L + ~ T-H» ß » A L , T 

(c) The step free energy 

Zß,A ( ± ) 

o(ß) = f ( 2 ) ( ß ) = lim l i m L 2 dlog ' (8) 
L ~ T-~ Z ß , A L > T

( S T E P ) 

(k) 
Similarly, f (ß), k = 3,...,d-l , can be defined. 
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Theorem 1 « 

1) [6] In the d > 2 dimensional Ising model 

T ( B ) > o ~ M ( B ) > o , (i.e. B > & C . ) 

(See also Sect. 4.) 

2) [7] In the rotator model 

x ( B ) » 0 , for all B < °° and arbitrary d . 

3) [7] lf_ T ( B ) = 0 then there is no interface, in the sense that 

« . ) > M = 1/2 <(.)> 6 t + + 1/2 <(.)> B >. , 

(provided <(*)>« . is invariant under translations in directions perpendi- 
cular to the 1-direction.) 

We define the roughening temperature T = B D * as the smallest temperature 
K K for which <(•)>„ A = 1/2 <(-)> D ^ + 1/2 <(*)> 0 • It was first proven by Çobrushin Bt± P j + P>~ 

[8] (see also [9,10] for simplifications and extentions) that B R is finite for 
the Ising model in three or more dimensions, i.e. the Ising model in d >̂  3 dimen
sions has non-translation-invariant* equilibrium states at sufficiently low tempera
tures. In two dimensions, all equilibrium states of the Ising model are convex com
binations of <(•)>« a n d <(*)> Q 9 hence translation-invariant. This result is 
due to Aizenman [11]. 

It is conjectured that 

B R > B C , in d = 3 ; 
(9) 

B „ - B , in d > 4 . 
R c — 

A theoretical argument for the truth of this conjecture is described in the next 
section. 

Next, we introduce some order parameters for the roughening transition in the 
Ising model. (Our discussion serves mainly as a preparation for the considerations 
in Sect. 4.) A convenient order parameter to locate the interface is 

D(B,n) = <S / tfx-S, - *\> > ( 1 Q) (n f0) (-n-1,0) B , ± 

where j" = (J2»#*'»3cj) » a n <* 
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D(B) - lim D(B,n) . (11) 
n-xt> 

For B < B R , 

D ( B ) = M(8) 2 > 0 

Moreover, 

D ( B ) -»- -1 , as 6 -»• » , 

in dimension d > 3 . We conjecture that for all B > 6 
R 

D ( B ) < M ( B ) 2 , 

in fact, that D ( B,n) is negative, for n large enough. (We are not aware of any 
proof of this very plausible conjecture.) We define 

B R = inf{B:D(g) < M ( B ) 2 } > B R (12) 

Another convenient "order parameter" for the roughening transition might be 
the step free energy, o ( B ) , defined in (c) above. For B < B £ , 

o ( B ) = 0 . 

In dimension d _> 3 

lim B _ 1 o ( B ) = -2 . 
B-M» 

It is conjectured that 

o ( B ) = 0 , for B < B R 

(13) 
o ( B ) > 0 , for B > B R 

We set 

B R = inf ( B:o ( B ) > 0} (14) 

Theorem 2. 

B c(d=3) < 8 R , B R , B R ( d = 3 ) < B c(d=2) . 

For B R and B R this result was proven by van Bejeren [12], for 8̂ ' it has recent
ly been established in [13]. The expected result would be 
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B c(d=3) < B R(d=3) < 6 c(d=2) (15) 

B C - B R , d > 4 . 

Next, we sketch a suitable notion of an interface in an Ising model : We 
notice that if ± b.c. are imposed at the boundary of A. T then there is a 

o L., 1 + 

(Peierls) contour E T decomposing AT T into two disjoint subsets, A. T and 
L +

 L » A

 + o L.,1 

A. _ , such that (T,0) 6 A. , S. = + if j 6 A T T borders E_ , S. = - if 
j € A^ ^ borders E^ and 

3E L = 3A L T 0 {x: X l = - 1/2} . 

o 
We define the interface E to consist of the union of E and all closed contours 

Li o *•! 
which are * connected with E . 

Li 

In two dimensions, the interface, E , has finite width, uniformly in L , 
Li 

and has long wave length fluctuations on a scale of A. , provided the temperature 
is small enough, ( B > B ) . This result is due to Gallavotti [14]. 

c 

In d _> 3 dimensions the conjectured behaviour of the interface is as follows: 

For d = 3 and B > B „ , or for d > 4 and all B > B • the interface E T 

R — c L 
is well localized near {x:x^ = - 1/2} and very rigid and thin, uniformly in L ; 
D ( B,n) is negative, for n large enough - presumably for all n J> 1 . (For rigorous 
results valid at large B see [8,9,10,12].) 

For d = 3 and B < B „ (but B close to B 0 ) the interface E T still has 
R R L 

finite width but fluctuates on a logarithmic scale. (A theoretical argument support
ing this claim is reviewed in the next section.) As B is decreased, some of the 
following phenomena may occur : Interlacing chains of - spins will start to perco
late into A and, as a consequence, the interface grows many handles. In addition, 
short wave length fluctuations may cause a lot of wrinkles on the interface. Hence 
the interface fattens. When B approaches B C , the interface might approach some 
self-similar surface, and below B C it will become "space-filling". Unfortunately, 
there are no rigorous results, except for very large B • (See also [13] for some 
speculations.) 

We now turn to the discussion of the rotator model : By Theorem 1, parts 2) 
and 3 ) , the rotator model never r/.hibits an interface. 
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Docs tikis mean thai all equilibrium states are translation-invariant ? Before attempt
ing to answer this question we quote a result that characterizes the translation-
invariant equilibrium states of the Ising- and the rotator models. For the rotator 
model, define <(*)> Q Q by 

< A ( s ) > ß , e * <A(R ( e ) s )> ß ^ + , (16) 

where R(6) rotates each spin through an angle 9 . If M(ß) • 0 (i.e. 
ß < ß ) the states <(-)> 0 n coincide with <(-)> D ^ , for all 9 € [0,27T). 

C P,U P,+ 
Indeed, for ß < ß , <( #)> Q is the unique translation-invariant equilibrium 

c P,+ 

state. This result is valid in the Ising- and the rotator model [15]. 

Theorem 3. 
Let ß > ß be such that the free energy is continuously differentiable at 1) ° ß. J Then 
1) [16] In the Ising model, every translation invariant equilibrium state is 

a convex combination of <(•)>„ . and <(*)> 0   ß,+ p,-

2) [7] In the rotator model, every translation-invariant equilibrium state  
has a representation 

/ d P ( e ) < ( - ) > ß Q , (17) 

where p is some probability measure. 

We now return to the question as to whether all equilibrium states of the rota
tor model are translation-invariant. The physical reason why there are no interfaces 
in the rotator model, as remarked, is quite obvious : One might wish to measure the 
profile of an interface in the rotator model in terms of 

D L T ( ß , n ) = / S ^ - S ^ ^ d u ^ b.c.) . 

But 

L ^ D L , T ( ß ' N ) - <V<5)- s(-n-i,S)V . 

^ Since f(ß) is concave, this condition is satisfied for almost all values of ß . 
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for all £ and n ; (sec [7] for a precise statement.) Thus, the interface becomes 

very wide (fat.) Since the model has a continuous symmetry, this is no surprise : 

In order to fulfil ± b.c., it suffices to turn the spins upside down extremely 

slowly as one moves from j «= (T,<5) down to j _ •= (-T,5) . Interfaces (Bloch walls) 

are not among the "topologically stable" defects of this model. 

The role of Bloch walls (Peierls contours) or interfaces in the Ising model is 

really played, in the rotator model, by another type of "topologically stable 

defects", the vortices. They are characterized by an integer winding number of the 

spin configuration, and, since the spin takes values in the unit circle, must have 

co-dimension 2. The easiest way of describing vortex configurations in the rotator 

model proceeds by applying a duality transformation, i.e. Fourier transformation in 

the angular variables (see [5,17] , and refs. given there.) 

Let 

8 2 

r 0(6) := exp[BcosG] (or := E exp[- —(6+2™) ] , 
B n € Z 2 

the Villain approximation.) Let f 0(n) denote the n*"*
1 Fourier coefficient of 

P 
r ' . Tike equilibrium state of the rotator is given by the measure 
p 

dy Q (e) = z " 1 n r 0 ( e . - e . ) n de. (18) 
(ij) 6 1 J j J 

The Fourier coefficients of y are thus given by 
P 

- Z " 1

( J J )

; P ( n i J ) J 6<«n).,0 * ( 1 9 ) 

where ij is the oriented bond pointing from i to j , 

(ón) . E E it. , and n, = -n , 
J b3j ^ ~ b 

The factor II $/gn\ ^ arises by integrating the factors exp[i6. (6n). ] over 6. , 

for all j . It imposes the constraint 

On = 0 

which is solved (Poincaré1s lemma) by 

n r Sm , 

where m : p > m^C 71 is defined on oriented unit squares (pi aquet tes ) , p f ̂  , We 
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may write 

m = a € 7L , p c 

d ^ 

where c is the oriented (d~2)-cell in GZ ) dual to p . 

In the Villain approximation, 

r g(n) = exp[- -~ n 2] 

Applying now the Poisson summation formula, we conclude that the Villain approxima
tion to the rotator model is isomorphic to a model whose equilibrium state is given 
by 

iU> a 
dp (a) = Z n ( Z e ° C)du (a) , 

where du^ is a Gaussian measure on the space of norbits , , [a] » where [a] is 
the equivalence class {a + Z X i) t a n d X : c ' X i £ ® is a function defined 

d * ' -1 on (d-3)-cells, c 1 , of CZ ) The inverse covariance of du_ is M d . 

It follows from the (gauge invariance) properties of du^ that all configurations 
d * 

tp - {<p £ 2 Z : c c : C 2 ) } must satisfy the. constraint c 

6<p « 0 . 

This shows that the connected components of each configuration tp can be interpreted 
as closed, (d-2)-dimensional vortices with integer winding numbers prescribed by 
( < P C ) . (Back in the rotator model <p corresponds to vortices in the spin field.) 
By choosing appropriate, non-translation-invariant boundary conditions one can force 
an open vortex into the system which extends to the boundary (where it is "closed 
off" by the b.c.) and plays the role of an interface, Z , in the Ising model. This 
vortex might cause a breakdown of translation invariance in the thermodynamic limit. 
In the pext section we sketch theoretical arguments supporting the following 

Conjecture. [7] 

1) In d <̂  3 dimensions, all equilibrium states of the rotator model are 
translation-invariant and are given by formula (17) of Theorem 3. 

2) In d > 5 dimensions, the rotator model has non-transiation-invariant 
equilibrium states for all 8 > 0 

c 
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3) In d c 4 dimensions there exists an inverse temperature B D > B such 
K c that for p, > ft there exist non-translation invariant equilibrium states while for R 

B < fcR all states are of the form (17). 

The idea behind this conjecture is that in dimension d jC 3 vortices have 
dimension 0 or 1 and are therefore unstable against long wave length fluctuations, 
no matter how large B is. (For d • 3 , results analogous to the ones of Galla-
votti [14] should hold.) For d = 4 , vortices are two-dimensional. They are there
fore likely to be rigid for very large B » but are expected to have logarithmic 
fluctuations above a roughening temperature; see Sect. 2. Finally, vortices of di
mension > 3 are expected to have finite fluctuations, as long as B > B ; 

— c 
(Sect. 2.) 

2- The solid-on-solid model. 

In this section we review some recent rigorous results on an approximate, stati 
tical theory of (lattice) surfaces, like the interface in the Ising model, the vor
tex sheets in the four-dimensional rotator model or the electric flux "world sheets" 
in a lattice gauge theory. We also show that the same approximation yields an unin
teresting theory of one- or three- and higher dimensional objects : One dimensional 
objects (strings) fluctuate on a scale of /L , as expected on the basis of the cen
tral limit theorem, while three-dimensional objects ("bags") have uniformly bounded 
fluctuations. See Theorem 4, below. 

The approximation considered in this section involves the following elements : 

1) Only surfaces (or strings, or bags) which are graphs of functions are admit
ted as elements of the statistical ensemble, E 

2) The statistical weight of a surface is a local functional of the surface, 
e.g. its area. 

Specifically, the models which we consider are defined as follows : As our 
parameter space we choose some finite, rectangular array of sites, A , in the lat
tice 2Z^ , d = 1,2,3,... ; (the interesting case is d » 2.) Each (hyper-) surface 
in our statistical ensemble E = E^ is given by the graph of a function, ^ , 
assigning to each site j € A an m-tuple of integers, - ($*,...,(fr1?) interpreted 

J J «3 
as the coordinates ("heights") of the (hyper-) surface in the directions transverse 
to the parameter directions, in such a way that ( j 1 , , j ^ , <J>!,... , are the 
coordinates of the center of a d-cell in the surface described by <^ . We assume, 
temporarily, that 
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4 j = 0 , for j ? A , ( 0 b.c.). 

The statistical weight, wg($j\) » °* t n e surface described by $ is defined by 

where the "action" ^($ ) is given by the total d-dimensional volume of <j>A (or 
an approximation thereof), in particular A(<£^) is the area of the surface when 
d = 2 , and the partition function, Z , is chosen such that 

P , A 

I V V - 1 • 
A 

For m •= 1 , 

A(4> ) = |A| + Z U.-*.,| , ( 2 1 ) A J J 

where the sum ranges over all nearest neighbor pairs. The factor exp(~BJ A|) can 
be absorbed in a redefinition of Z„ _ . The model so obtained is called the solid-

B,A 
on-solid (s-o-s) model [2]. It describes the statistical mechanics of the interface 
of a limiting, d~dimensional Ising model with ± b.c. which is obtained by letting 
the nearest neighbor couplings in the Indirection tend to 0 0 while keeping them 
fixed in the other directions. 

When m > 1 it is difficult to analyze the models with actions given by the 
d+ro 

volume of d-dimensional hypersurfaces in TL ; (see Sect. 3.) We shall consider, 
instead, e.g. the small fluctuation approximation to the volume, given by 

A(|.) « |A| + \ I (•.-•. f ) 2 , (22) A l ( j j f ) j j 

but approximate actions like 

|A| + i I I (23) 
(jj*) J 1 

can be analyzed, too. 

We let <(*^ >g ft d e n o t e t t i e expectation defined by (20), with A(<^) as in 
(21) or (22), (23). [We shall usually think of the s-o-s model corresponding to 
(21), but most results described in the following remain valid for the models with 
actions (22), (23), as follows from the analysis in [5].] Let F($) be an arbitrary 
continuous, y>olyiiomial ly hounded function of , where (jj1) ^re nearest 
neighbor pairs belonging to some finite subset of 7lA . On this class of functions 
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a themodynami c limit 

<F> 8 - lim <F> , 

K. S* 72^ , as j ^ 0 0 , can be constructed by a compactness argument; (for the action 
in (22) it exists by correlation inequalities [18] t and, in all cases, it exists 
for large enough values of 0 .) We have 

Theorem 4. 

Consider the models deJEined__in (20) - (23). Then 

1) For^ d = 1 t 

<(• ~% ) 2> 0 - c.(&)|x| , as |x| « . 
O X p i ~~ 

2) For d - 2 , 

<ao\)2>B < c2(B> , 

uniformly in x , provided B is large enough. When B is small enough, 

c_(B) lbg|x| < <(i "4 )2>0 < c,(B) logjxj (24) 3 o x p H 

3) For d > 3 , 

< ( V * x ) 2 > 8 -< C 5 ( 6 ) ' 

for all 8 • 
a 

Remarks, 

(1) Part 1) is a standard consequence of the central limit theorem : The ran-
dom variables <}>.--<}>., , where (j j ' ) ranges over the bonds (nearest neighbor pairs) 

j J 
of TL , are independently distributed! 

The first half of part 2) follows from a standard low-temperature (Peierls 
contour) expansion, (as observed in [19].) The deepest result is the lower bound in 
(24) which was established in [5] by a rather difficult analysis. The upper hound in 
(24) and part 3) are standard consequences of infrared bounds [20] which are applica-
b 1 e, because the functions exp(~P> j <{> | ) and exp(~ ^ <t> ) are of positive type. 
Part 3) has recently been noticed in [13]. 
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(2) The model vith d «= 2 , m «= 1 and Л (ф ̂ ) f»i ven by the r.s. of (22) it; 
dual to the Villain approximation of the two-dimensional rotator model; вес Sect. l t 

(18), (19), etc. The behaviour described in part 2) of Theorem 4 is ̂  in this case, 
related to the Kosterlitz-Thouless transition [5]. 

(3) The transition described in part 2) is a model of the roughening transition: 
For large 6 typical lattice surfaces are rigid, i.e. have uniformly bounded fluc
tuations. When В drops below some critical value, B R » then typical surfaces are 
rough and exhibit logarithmic fluctuations. This is the universal behavior of conti
nuum surfaces. A roughening transition occurs only in ensembles of lattice surfaces, 
because the lattice breaks the continuous group of translations transverse to the 
surface. At high temperatures, this symmetry is restored, i.e. "enhanced at large 
distances." in the models considered above, [5,21]; (see also [22].) 

Next, we sketch a few ideas in the proofs of parts 2) and 3) of Theorem 4. 
For simplicity we consider the action (22) with m = 1 , but the results hold in 
general [5]. We start with the lower bound in (24). 

~1 Let du Q А(ф) be the Gaussian measure with mean 0 and covariance (-BA.) , p ,Л Л 
where Ад is the finite difference approximation of the Laplacean with 0 Dirichlet 
data at the boundary of Л . The equilibrium state of our model can be rewritten 
as follows : 

- П (1+2 Z cos(2irq^.))dy0 А(ф) . (25) 
j€A q.=l J J 9 

There are three basic steps in the proofs [5] of the lower bound in (24). 

1° The first step is a combinatorial identity : Let p denote an arbitrary 
2 

function on TL of finite support with values in 2тг TL ; p is called a "charge 
density". We say that p is neutral iff Z p. = 0 . Let ф(р) = Z ф-р. 

j J j J 3 

It is proven in [5] by means of an inductive construction extending over all distance n 2 scales of 2 , n = 0,1,2,... , that, for all Л о TL , 

CO 
П (1+2 Z cos(2irq^.)) » Z е.. П (1+К(р)со5ф(р)) , (26) 
j€A q^l J J W6F A

 N p€W 

where Рд is a finite family of collections, N , of neutral charge densities, p , 
with the property that two densities, p and p 1 ф p , in each N have disjoint 
supports which are so far separated that cos ф(р) and cos ф(р ?) are'aliiost intte-
pendent'! Furthermore, > 0 for all W £ Г . The constant K(p) i r. an entropy 
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factor which can be bounded by exp(cA(p)) , where 

CD 
A(p) - I (An(p)-1) , 

n=o 
n n and A (p) is the number of 2 x 2 squares needed to cover the support of p n 

2° The second step consists of a "block spin integration" which allows us to 
extract "self-energies" of the densities, p , providing convergence factors which 
compensate the constants K(p) . In the simplest case (namely for the partition 
function) it results in the following identity : For all W € , 

J H (l+K(p)cos <|>(p))duQ A(4>) 
P e W _ (27) 
= J n (l+e" 6 E ( p )K(p)cos <|>(p))duR . ( * ) , 

p€W B' A 

where E(p) » const. I p.(-A.).* p. is related to the electrostatic energy of the 
• • X Jill I 

charge density p , and the renormalized charge densities, p , are still neutral 
but have "magnified" supports. 

A key estimate consists in showing that 

E (p) > cA(p) , 

for some e > 0 . Thus, for large B , 

, x - -BE ( p ) „ r . -B/2 £ n d ( p ) „ -z (p) - e K(p) <: e « 1 , 

where d(p) is the diameter of the support of p • Thus, for large 8 » 

dw (<J>) E T 1 I ck. n (l+z(p)cos <j>(cO)dyQ A(<l>) , (28) ren. B,A N e F ^ N p € N g,A 

is a positive measure which is, formally, invariant under the continuous symmetry 

<j>. -> <j> .+c , (29) 
J J 

where c is an arbitrary real constant; for 

cos <j>(p) = cos[((j)+c) (p) ] , 

as I c p , = 0 , by the neutrality of p ; moreover dy (<{>) is clearly formally J B» A 
invariant under the symmetry (29) , except that the b.c. imposed on du (<$>) break 

B y A (29). 
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3° Since, for large B , the measure dw given by (28) is positive and 

iron • 
formally invariant under the continuous group of symmetries (29) which, however, is 
always broken by the b.c. imposed at 3A , we may apply a Mermin-type argument to 
conclude that 

lim Jdw (* >|$(k)| 2 > (30) 

2 ik * 
for all k 4 0 . Here cf>(k) = (2TT) I (J^e1 " J . From this one can deduce the 

j€ TL2 3 

lower bound in (24), (by Fourier transformation.) 

Next, we comment on the proof of the upper bound in (24) and part 3) of Theo
rem 4. Part 3) was previously proven in [13]. Here we sketch a slightly different 
argument which gives a stronger result. For technical convenience we interpret the 
state <(•)>£ as a limit of finite volume states ^ with periodic b.c. . 
[In order to define the periodic b.c. state, one replaces the counting measure on 
{<J>. € 2Z) by exp(-c4>.) * the counting measure. One first takes A / Z and subse
quently eNi 0 .] As explained in [20], the upper bound in (24) and part 3) follow 
from estimates of the form 

<exp(e E h . O •).)> A < exp[c(B)e2|| h|| l] , (31) j j a j t>,A — z 
9 

* 2 th with e small enough, (e|| h\\ ^ _< , for some > 0.) Here 3^ is the a 
component of the finite difference gradient, and h is an arbitrary real—valued 
function on A . Inequality (31) is proven by using a transfer matrix in the 
a-direction of the lattice. As explained in [20], the transfer matrix formalism 
reduces the problem to estimating the quadratic form with integral kernel 

fx -Ffx-x') eh(x-x f) B e e , 

where 

' e|x| , or 
F (x) -< 

B 2 

from above in terms of the quadratic form with integral kernel exp[-F (x-xf)] 
B 

This is accomplished by using Fourier transformation : For F (x) * BJx| , the reft 
quired bound follows by noticing the inequality 

i K k H c t o V r M < e c ( B ) c 2 h 2 [ k 2 ^ ] - 1 , 

2 
for |eh| < 6/2 . For F (x) - (B/2)x , one uses 
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2 2 
|cxp[~(l/2ß)(k+ich)2]| < e

C h , U cxp[-(l/2p,)k2] , 

for arbitrary z and h . 

From these inequalities (31) follows. The upper bound in (24) and part 3) of 
2 

Theorem 4 follow from (31) by expanding to second order in e , dividing by € 

and taking e to 0 . 

In dimension d j> 3 > we expect that a result much stronger than part 3) of 

Theorem 4 holds. For all ß > Q , 

l < W e l < c ( * ) e - m ( B ) W , (32) 

for some constants c(ß) < 0 0 and m(3) > 0 . This would imply that all correlations 

between distant pieces of three- or higher dimensional random hypersurfaces decay 

exponentially. For d « 3 , (m = 1) and the action A(cj>̂ ) given by (22), the 

bound (32) has recently been proven by Göpfert and Mack in [23] • 

Next, we review some results on surface (or step) free energies in the solid-

on-solid models : Let Z . be the usual partition function of the model with 0 b.c. 

p » ^ 
defined in (20). Let Z (£) , £ £ 7L , be the partition function of the same model, 

P >A 
but with b.c. 

|j = t , for j A , j 1 > 0 *< 

(33) 

f. - 0 , for j g A , jx < 0 J 

We set 

T,(|;ß) = liin log(Zfl ./Z Q (f)) (34) 

We note that T^(£=l;ß) (m = 1) is expected to behave qualitatively similarly as  

the step free energy, o ( ß ) , of the (d+l)-dimensional Ising model. We consider, for 

simplicity, only the case m = 1 , assume that £ ^ 0 and that the action is given 

by (21) or (22). We then have 

Theorem 5. 

1) t 1 ( C ; ß ) = 0 , for all £ . 

2) T 2 <C;ß) > 0 , for large^ ß } 
I for all f, f 0 . 

T?(r.; g) = 0 , for smal 1 R J 
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3 ^ IgI_tho models with action pi very by (22) and d > 3 , 

i d(C;0) > O , for all £ > 0 , £ ^ 0 . 

Remarks. 

Part 1) is trivial. The inequality in part 2) is a consequence of a standard 

low temperature expansion; e.g. [19]. The equation in part 2) follows from the re

sults of Sects. 6 and 7 of [5]. Part 3) follows from the results of Gopfert and Mack 

[23] (d = 3) and correlation inequalities [18], (d « 3 d > 3) . For results 

related to the ones in [23] but established earlier see also [24]. 

We believe that Theorem 5 can be extended to all m > 1 and all actions 

(21) - (23) , but not all cases have been worked out. 

Finally, some recent results in [5,25] suggest that the continuum limits of 

t* i e two-dimensional models studied in this section are given by massless Gaussian 

measures, for 8 < 8 R and for arbitrary m = 1,2,3,... . (This is trivial for 

d = 1 .) In the next section, we study random surfaces with more complicated conti

nuum limits. 

3. Self avoiding random surfaces and string theories. 

In this section we restrict our discussion to two-dimensional random surfaces 

embedded in a lattice (or embedded in E^) , d ~ 3,4,... . We propose to con

sider statistical theories of such surfaces which are geometrically more natural than 

the ones studied in the last section, but which are seemingly almost as simple as 

the 8-o-s models. Our discussion is sketchy; (some details appear elsewhere.) 

The models considered in Sect. 2 have a serious defect : All random surfaces 

admitted in the ensembles introduced in Sect. 2 are required to be graphs of funct

ions. It is natural to study more general ensembles of lattice surfaces and their 

continuum limits. If one admits lattice surfaces which may pass through each plaquet

te (unit square) of 5Z°* an arbitrary number of times one cannot construct a mathe

matically meaningful statistical theory : The number of such surfaces of a given 

area - i.e. containing a given number of plaquettes counted with multiplicités -

grows faster than exponentially in the area; see e.g. [26]. 

There are at least three ensembles of lattice surfaces which are physically 

natural : 
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a) Branched random surfaces arising in plaquette percolation models [27] . 
(They consist of arbitrary connected arrays of "occupied" plaquettes, each plaquette 
in being either "empty" or "occupied" once. The weight of such a surface, E , 

A(£) 
is given by p , 0 < p < 1 , A(Z) » § plaquettes belonging to Z .) 

d s a 
b) Let y be a closed curve in 2Z , and let E ^ # * be the class of all 

"self-avoiding" connected lattice surfaces bounded by y t i.e. surfaces, Z c Ti^ , 
with the property that each link b £ E , b y , belongs to precisely two plaquet
tes of Z and each b £ y to precisely one plaquette of Z 

c) Let Y be a closed curve in 2Z^ , and let E be the class of all connected 
Y d 

surfaces bounded by Y which pass through each plaquette of 7L at most once. 

The ensemble E described in c) occurs naturally in the study of interface?: 
s a • (see Sect. 1 ) , while the ensemble E * * introduced in b) and the one introduced 
Y 

in a) (which we denote by ^ p e r c ) arise in models which are limits of gauge theo
ries^ see Sect. 4, and [27,28]. For a somewhat detailed discussion of plaquette-
(and general d-cell) percolation see [27] - we limit our review to a discussion of 
s • a. 

E # * and E^ f ensembles which are also studied in connection with string theories. 

Let E^ = E S " a " , or E . Each surface Z £ E^ is assigned the statistical 
Y Y Y Y 

weight 

wj (Z/ Y) = Z. (Y)""1-exp[-B(A(Z)-»-px(^))] , (35) 

where x(£) counts the number of handles of Z (Euler characteristic), B > 0 , 
p _> 0 ; (A(Z) , the area of Z , counts the number of plaquettes in Z .) 

It is an elementary combinatorial exercise to show that for each d and each 
Y 

Za = 1 i* exp[-B(A(Z)+yX(E))3 < °° » ( 3 6 ) 

Z £ E r 

Y 

for B large enough,-^while 

Z (Y) diverges, (37) 

for B small enough. 

One can argue that there is some value, 6 q , of 6 which only depends on d 
(and possibly on M )» but is independent of y such that (36) holds for all 
B > 0 , while (37) holds for all B < B . o o 

As a field theorist one is thon interested in the question whether ?> is i 
r > 
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critical point, in the sense that there is some divergent correlation length, as 
B ̂  B q . This question can be investigated by considering, for example, the "string 
tension" 

a(B,M) = -lim A(Y)"" 1 log Z F T (y) , ( 3 8 ) 
d(y)-~> B f M 

where y is a square loop in a coordinate plane, A(y) the minimal area enclosed 
by Y * flnd d(y) its diameter. In a statistical mechanics context, e.g. in the 
s-o-s model, the string tension is interpreted as the surface tension. The point 
8 Q is a critical point if 

a ( B , M ) ^ * 0 , as B > * 8 . ( 3 9 ) 
o 

More refined methods to analyze the vicinity of B Q would involve the study of 
"correlations". We sketch one example; (but see [27] for a more detailed discussion): 
Let y,y1 be two non-intersecting loops, and define 

Z (y,y f) H E exp[-8(A(E)+yX(E))] 
6 ' y i e e #

n f 

yUy 
Z connected 

We define a "glue ball mass" 

m(B,») = lim - ~ log Z_ ((y, Y:) , ( 4 0 ) 
a B,M a 

where y f is the loop that corresponds to a translation of y f in the direction a 
of a lattice axis by a distance a . 

If B Q is a critical point in the sense of ( 3 9 ) one expects that 

m(B,|i)\iO , as B \ d 8 0 • (41) 

A more subtle question concerns the behaviour of the dimensionless quantity 
2 

m (B,y) /a(8fp) t as B N j 8 Q • In [23] a model is studied in which the analogue of 
this quantity tends to 0 , as B \ B Q • 

Finally, we want to ask whether the three models introduced in this section 
exhibit roughening. This question can be studied, for example as follows : We choose 
a square loop, y , of diameter d(y) lying in a coordinate plane and define the 
probability 

P(d|y) - Za (yf1 l exp[-B(A(E)ni X(E))] , < 4 2> 
Y 

i\(Y. ,0)>d 
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where d(L,0) is the maximal distance of the set I D u from the origin, and v 

is a (d-2)-dimensional plane perpendicular to the curve Y and containing the 
origin. We consider 

P(d) - lim P(d|y) . (43) 
d(y)+« 

It is easy to show that for B sufficiently large 

P(d) < e ~ c ( B ) d , (AA) 

for some constant c(B) > 0 . 

The question then is whether there exists some value ^ of 8 , with 

B R > B o , (A5) 

such that for 3 < B < B D 

P(d) = 1 , for all d < » 

On the basis of results concerning the Ising model in three dimensions [6,13] and 
the s-o-s model [5] (see Sects. 1,2) one would conjecture that the percolation model 
of branched surfaces exhibits a roughening transition. 

(If B Q is a critical point it might also be possible that (44) is valid for 
all B < B , with c(B)XjO , as B\i B •) o ^ o 

Once all these preliminary questions (see (39) - (45)) - which actually seem 
to be very hard ones - are out of the way one can address the most interesting one : 
What are the continuum limits of these lattice models of random surfaces ? So far, 
there has not been much theoretical progress on these questions. 

Until now, there is only one convincing attempt at constructing a continuum 
theory of random surfaces, the one by Polyakov [29], clarified in [30], Presumably, 
this theory, too, can be obtained as a continuum limit of some "lattice theory" : 
It is essentially the continuum limit of discrete, imaginary-time quantum gravity 
of piecewise linear, simplicial (two-dimensional) surfaces; a straightforward, 
functional integral version of Regge calculus. Polyakov's theory is certainly very 
fascinating, but (as the remark above indicates) its relation to the physics of 
interfaces in statistical mechanics or to gauge theory is mysterious. In contrast, 
the other models, a ) , b) and c ) , discussed in this section and the s-o-s model 
discussed in Sect. 2 are related to gauge theory and to the physics of interfaces, 
respectively, in a definite way : They are obtained as limiting models, as some para
meter tends to O or ™ . See Sects. 2 and 4. Polyakov 's theory is interned to 
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represent a correct mathematical formulation of string theories, (dual resonance 
model s. ) 

4. Lattice gauge theories. 

There are (at least) two ways in which random geometrical objects, such as-
random loops or random surfaces, arise in the analysis of lattice gauge theories 
(in the imaginary time description.) 

1) Sheets of chromo-electric flux. 

Lattice gauge theories can be reformulated as gases of random geometrical 
objects in different ways : The best known such reformulation results from the strong  
coupling (high temperature) expansion which represents a lattice gauge theory as a 
gas of closed random surfaces - closed sheets of chromo-electric flux - which inter
act by hard core exclusion [31]. (For a somewhat different description of chromo-
electric flux sheets, see also [32].) 

2) Defect gas description of lattice gauge theory 

We first consider a pure lattice gauge with a discrete gauge group on a 
d-dimensional lattice (or a Higgs theory with a non-trivial, discrete unbroken sub
group.) In such a theory, gauge field configurations can be characterized in terms 
of frustrated plaquettes, i.e. unit squares, where the curvature is non-vanishing. 
As a consequence of an integral form of the Bianchi identities, frustrated plaquettes 
form (d-2)-dimensional, closed surfaces which one calls (by an abuse of this name) 
vortices. They are labelled by group elements. The original lattice gauge theory 
can now be reformulated as a gas of vortices interacting by geometrical constraints. 
At weak coupling (low temperature) the vortices have small effective activities and 
form a dilute gas. This observation is the starting point for the low temperature 
analysis of lattice gauge theories : Vortices play the role of the Peierls contours 
in the Ising model and can be used to construct an analogue of the Peierls argument 
(or a contour expansion) which permits one to control the qualitative features of 
such lattice gauge theories at weak coupling, in three or more dimensions. See [21]. 
The upshot of this analysis is that gauge theories with discrete gauge groups exhi
bit deconfining transitions in dimension >. 3 . 

Clearly, in theories with continuous gauge groups, vortices (as defined above) 
are not likely to provide us with a useful notion, although vortices of a somewhat 
different type appear to play an important role in a confinement mechanism in gauge 
theories with gauge groups containing a non-trivial, discrete center. As an example 
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of a gauge theory where vortices are not a useful notion we consider the compact 
U(]) lattice model (compact QED.) This gauge theory permanently confines electric 
charge in two and three dimensions [23], but exhibits a deconfining transition in 
four or more dimensions [33,21]. Vortices are not among the "topologically stable 
defects" of the U(l) model and cannot be used to explain those facts* (This cir
cumstance is analogous to the one that the interface is unstable in the rotator 
model; see Sect. 1.) The topologically stable defects of the U(l) model which are 
dilute at weak coupling are its magnetic excitations : Monopoles in three dimensions, 
monopole lines (magnetic currents) in four dimensions, etc. In the continuum limit, 
such excitations are labelled by first Chem classes of the field configurations at 

2 ^ ^ 
infinity (identified with S x JR. .) Thus they have dimension d-3 and carry an 
integer magnetic charge. The corresponding magnetic excitations of the U(l) model 
on the lattice can be exhibited by applying a duality transformation (Fourier trans
formation in the gauge field variables) and a Poisson summation formula, (as explained 
at the end of Sect. 1 for the rotator model.) The interactions between different 
magnetic excitations have long range. This makes the analysis of these models, at 
weak coupling, interesting and mathematically non-trivial; see [21,23,33]. 

In the U(l) model, confinement breaks down if the magnetic excitations are 
bound in finite, neutral clusters which form a dilute gas, thus causing only small 
(infrared-ii_relevant) corrections to Gaussian "spin wave" theory. This only happens 
in four or more dimensions. 

In a non-abelian, pure gauge theory, e.g. one with gauge group SU(n) , there 
are two kinds of topological excitations, vortices, of co-dimension 2, and instantons, 
of co-dimension 4. Vortices are labelled by elements of the center of the gauge 
group, instantons by elements of ^(G) • 0 n e c a n argue that, in four or more dimen
sions, it is the statistical mechanics of the instanton gas which determines whether, 
at long distances, the theory is in a perturbative or non-perturbative phase. In 
four dimensions, it is most likely that the instanton gas is always in a plasma  
phase, instantons are not stably bound in neutral clusters, the infrared behaviour 
is non-perturbative. However, in five or more dimensions, instantons form closed 
surfaces of dimension d-4 , and a simple energy-entropy argument suggests that, at 
weak coupling, the effective activity of an instanton decreases exponentially in its 
volume (» length for d = 5 , . . . ) . One is thus led to predict that non-abelian models 
exhibit a deconfining transition to a perturbative phase at weak coupling, in five  
or more dimensions. (In contrast to abelian gauge theories or ones with discrete 
gauge group, there are, however, no rigorous results for non-abelian lattice gauge 
theories at weak coupling, yet!) 

Next, we briefly summarize some recent, rigorous results concerning random 
geometrical objects in lattice gauge theories and serine limiting models of such theo-
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As our lattice we choose 2Z^ , lhe gauge group is assumed to be compact and 
is denoted by G . The gauge field, « {g } , is a map from oriented pairs of 

d x y 

nearest neighbors, xy , m 7L to elements, g , of G such that xy 

-1 
yx xy 

Formally 

^ « ) « -
g v„ = P(e ) , for all xy . (46) 
xy 

The Euclidean functional measure (vacuum functional) of a lattice gauge theory is 
defined by 

dn ( g ) = lim Z 1 e n dg , (47) 
3 A/*2Z d B ' A xycA X y 

where A is a rectangular array of sites, dg is the Haar measure on G , for all 
2 

xy , M g ^ ) is the (Euclidean) lattice action for the model in A , 8 *= 1/e is 
the inverse square coupling ("inverse temperature"), and Z . is the usual parti-

d 
tion function (making d^ 0 a probability measure.) Given a loop y in 2Z , we let 

P 

g Y - n *D g (48) 
xycry 

denote the ordered product of gauge fields along y , (i.e. the holonomy operator 
associated with y .) We define the (Wegner-) Wilson loop observable by 

W X(Y) - X(g y) . 

where x * s some (irreducible) character of G . 

We shall consider the following examples of lattice actions : 

(1) A(g ) = - E Re x o(g 3 p) , < 5 0> 
pczA 

where p ranges over the plaquettes (unit squares) of A , 3p is the oriented 
boundary of p , and x q is a faithful character of G , (e .g. the one of the funda
mental representation for G = SU(n).) 

(2) A(g ) = - T, 6 e (g ) , (5D 
pcA 

where 6 is the (Kronecker) 5- function on G concentrated at the unit element, e, e 
and G is assumed to be discrete in this example. 
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\A t ; be a (d-2)-dimensional surface in the dual lattice, ( 2Z^)* , with boundary 
cO (a closed, (d-3)-dimensional surface.) We define a disorder operator, 0^(31) , 
where z is an element of the center of G , as follows : 

D (3Z) = exp[-e(A(g.z r)-A(g))] , (52) z 

where 
g~ *z if p is dual to a d-2 cell in Z ; 3p 

( ^ z z > 8 p * < 

g_ , otherwise. 3p 
V 

In order to analyze the behaviour of chromoelectric flux sheets we study expectation 
values like 

n n 
< n W (Y.)D (3Z)>ft = J n W (y.)D (3Z)duft(g) , (53) 
j=l X J z 0 j=l X J 2 B 

n - 1,2 , 3 , . . . . In particular, the roughening transition for electric flux sheets 
can be analyzed in terms of <W (y)D (3Z)> 

X z p 
We also introduce bulk- and surface thermodynamic functions, (see Sect. 1, 

( 6 ) - ( 8 ) ; Sect. 3 , ( 3 8 ) for related definitions) : 

(a) The free energy : 

f(B) = lim (TL d~ 1)~ 1log Z 
L,T+~ * 5 , AL fT 

(b) The string tension : 

a(B, X) = lim - ~ log<W (yT)> , 
L-x» L X L B 

where is a square loop in the 1-2 coordinate plane of diameter L . [The 
string tension corresponds to the surface tension, x(B) 9 in spin systems. In 
three-dimensional 7L^ models they are related by a duality transformation.] 

We define an expectation 

<(•)>* - lim <(-)W(yT)> /<W(yT)>ft • (54) 

One can also define the analogue of 
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(c) The step free energy : 

, <w ( Y ; ) > f t 

0 ( 6 ) = lim - — log <W^Y~y>T • 

where the loop y^ differs from by a step of height 1 in the middle of two 
opposite sides- The functions a(B,x) and o(B) serve to describe the thermodynamics 
of chrorao-electric flux. In particular, 0 ( 6 ) is of interest in studies of the 
roughening transition of flux sheets [ 4 3 . It is natural to also introduce functions 
describing the thermodynamics of "magnetic flux" (vortex sheets), or more generally 
the thermodynamics of the gas of stable ("topological") excitations, like the magne
tic excitations in the U(l) model,... . As an example, we define a thermodynamic 
function for vortex sheets : Let A be some rectangular array of sites centered at 

d * 
0 , and I a (d-2)-dimensional coordinate plane in GZ ) .We let ft denote the 
set of plaquettes on 3A which are dual to some d-2 cell in Z . We consider the 
following boundary conditions on 3A : 

(0 b.c.) g^ = e (the unit element in G) , for all p c 3A ; 
dp 

(twisted b.c.) 

!

e , p c 3A , p # ft 

z , p £ ft , for some z in the center of G . 

Let Z° , <(*)>o . be the partition function and the expectation with 0 b.c. on P,A p,A 
z z 

3A , and Z , <(•)> . the corresponding quantities with twisted b.c. .We 
P > A P »A 

define 

(d) The magnetic "string" tension 

z z 

<p(0,z) = lim i o g(-liA) . 

L . T - TL Z J f A 

One will introduce analogous functions associated with other excitations of dimension 
> 1 , in particular with the stable ones, (like the magnetic current lines in the 
four-dimensional U(l) model.) Point-like excitations are studied in terms of "topo
logical susceptibilities" and sum rules (like the Stillinger-Lovett sum rule for 
the gas of magnetic monopoles in the three-dimensional U(l) model.) 

These quantities will be studied in more detail elsewhere. 
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Next, we summarize some recent results. 

Theorem 6. 

1) [27] Let G = TL^ , let djj^ be given by eq. (47) with an action A(g^) defined 
as in (51). (This is the n-states Potts lattice gauge theory.) Then there exists an 
analytic interpolation in n (of thermodynamic functions and correlations) in a 
neighborhood of the positive realaxis with the property that the model corresponding 
to the limit n 1 is the plaquette percolation model of branched random surfaces 
defined in Sect. 3, a ) , (ensemble E )  * — — 1 perc. 

2) [28] Let G = SU(n) , and renormalize the gauge fields such that 

g g = g g = n H . xy xy yx xy 

Then, for 8 small enough, there exists an analytic interpolation in n wi. j 
property that the n > 0 limit yields the model of selfavoiding random surfaces 

• . s. a. 
defined in Sect. 3, b) (ensemble ') , in particular 

lim n~ i Y i<W (y)> = Z (y) , 
n*o Ao ' 

where Z (Y) is defined in (36). 

This result motivates the definition and analysis of the models introduced in 
Sect. 3. 

Next, we discuss some results which are related to the ones in Sect. 1. They 
are based on the correlation inequalities in [7] which are only known to hold for 
abelian gauge groups and an action ^(&^) given by expression (50) , (i.e. the 
Wilson action.) The analogue of Theorem 3 is the statement that if the free energy 
f (8) is continuously differentiable at some value 6 = 8 then there exists only 

o one translation invariant state, <(•)> , for B = B [7]. Thus non-uniqueness p o — — o 
of the vacuum functional in an (abelian) lattice gauge theory only occurs at a first 
order transition. A result analogous to Theorem 1 is 

Theorem 7. [7] 

1) If_ a(8tx) = 0 t and <(-)>g is invariant under translations in the 1-2 plane 
then 

« . » x

6 - « . » B , 

(i.e. the electric flux sheet is completely rough.) 
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2) U ip(e.z) = 0 , and ... Uicn 

« • » ; = < ( . » B . 

(i.e. the vortex sheet is rough or "fat".) 

3) In the U(l) models, 

tp(6,z) = 0 , for all 8 , 

(i.e. U(l)-vortices are always fat. This is the analogue of the results for the rota
tor model described in Sect. 1.) 

4) [6] In the three-dimensional 7L^ model 

a ( B ) > 0 ~ <p(B) = 0 . D 

Next, we would have to discuss roughening transitions in lattice gauge theories. 
The electric flux sheet bounded by an (infinitely extended) Wilson loop may, a priori, 
undergo a roughening transition which does not coincide with a deconfining transition 
[32,4]. That transition can be described by the following "order parameter" : 

D ( B,n) E <Dz(3L)>£ , z * e , (55) 

where 1 is a (d-2)-diraensional, rectangular array of sites with sides of length 
2n which is centered at the origin and is perpendicular to the plane containing 
the Wilson loop. In the three-dimensional TL^ model the parameter D(0,n) defined 
in (55) is dual to the parameter D ( B,n) introduced in Sect. 1, (10). For small B 

one expects that the phase of D(S,n) approaches the value arg z (the phase of 
the central element z ) exponentially fast, as n > 0 0 . This can presumably be 
proven by a fairly straightforward extension of the arguments in [8,10]. The beha
viour of the function D ( B ,n)-D(8,°°) is a measure for the fluctuations of the 
infinite flux sheet in directions perpendicular to the plane of the Wilson loop. 

^ e roughening transition is characterized by the circumstance that, for all 

B > e R , 

arg D(3,n) - 0 , for all n , (56) 

while, for B < B R , 
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Urn arg U(p,,n) i 0 . 1 } (57) 

(Here e^ « V^B^ is the coupling constant at which the roughening transition occurs.) 

It follows from Theorem 7 that, in abelian lattice gauge theories f 

a(B„x o) = 0 s r g f>(B,n) «= 0 , for all n , 

i.e. 
B c > 6 R , (58) 

where B c is the point at which the deconfining transition occurs 

It is expected that the roughening transition can also be characterized by the 
vanishing of the step free energy, o(B) , i.e. 

o(B) > 0 , for 8 < 8 R , 
(59) 

o(&) = 0 , for B > B R -

However, there are no rigorous results about roughening transitions known, yet. 

Besides chromo-electric flux sheets there can exist other two-dimensional 
"topological" excitations, like vortex sheets, exhibiting a roughening transition. 
Such a transition should only occur in a phase characterized by a non-vanishing sur
face free energy of the excitations in question, (the analogue of the string- or sur
face tension. Recall that, in the four-dimensional U(l) model , tp(B,z) = 0 

z implies that <(•)>« <(•)> 0 is translation invariant!) One expects that in the P P 
confinement phase of a (lattice) gauge theory only the string tension is non-vanish
ing, i.e. only the chromo-electric flux sheet may exhibit a roughening transition, 
while other two-dimensional defects, e.g. the vortex sheets in four-dimensional 
theories, are rough or "fat" throughout that phase. 

Heuristically, roughening transitions in lattice gauge theories can be describe 
in terms of the models studied in Sect. 2, like the s-o-s model, but there is no 
rigorous justification of such approximate theories, yet. 

1) This characterization has been developed in collaboration with E. Seiler. 
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