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SOME RESULTS ABOUT HOLONOMIC € - MODULES

By Jan-Erik BJORK

Introduction,

If X 1is a complex analytic manifold'and T*(X) its holomorphic
cotangent bundle (which is a new complex analytic manifold whose dimension is
2dim(X)) , then we find the sheaf €, of micro-local differential operators of
finite order. A coherent sheaf of left SX-modules has a support given by a
€ - conic complex analytic subset of f*(X) where § denote covector variables.,
The module is holonomic if its support is of dimemsion n = dim(X) . Since supp(M)
are involutive for any coherent SX-module an equivalent condition for 7 to be
holonomic is that supp(WO is Lagrangian which by definition means that the
fundamental 1 - form €&dx has a vanishing pull back to the dense open subset of

regular points of supp(7) .

If ﬁk is the sheaf of differential operators with holomorphic coeffi-~
cients and if 7 1is a coherent j&-—module then we get the extended RX-module

- *

EX ®1 a 1(%) where m: T (X)—=X is the projection. The characteristic variety
o (8,)
x

ss(N) equals supp(ﬂx ® ﬂ—1(%)) . In particular 7N 1is a holonomic j&-—module
if and only if its extended BX-module is holonomic,

Suppose now that 7 is a holonomic 8X-modu1e and take a point
(xo,go) = p €supp(”7) . The stalk Bx(p) contains ﬂk(xo) as a subring and hence
the SX(p)-module M(p) has an underlying ﬁk(xo)-module structure. We may ask
if the ﬁx(xo)-module WKP) is holonomic, This is not true in general. However

we can prove

Main Theorem If supp(WD has a generic position at p then 7N(p) is




a holonomic ﬁx(xo)—-module and if 7N is a holonomic sheaf of ﬁk— modules which
o
extends 7M(p) , i.e. the stalk n(x°) =Mm(p) as a left ﬁk(x ) ~module then

m == SX & ﬁ—1(ﬁ) in some open and conic neighborhood of p .

Remark., To say that supp(WO has a generic position at p means that the complex
line C*p is an isolated fiber in the €- conic set supp(ﬁ@fWﬂf1(xo) . The
conclusion in the Main Theorem is this : First M(p) is a holonomic ﬁk(xo)—
module and since ﬁk is a coherent sheaf of rings it follows that there exists
a unique holonomic sheaf 7 of j&-—modules defined in some small open neighborhood
of x° such that its stalk W(XO) equals the holonomic ﬂk(xo)-module mn(p) .
The main theorem asserts now that the extended 8X-module 8X ® ﬂ—1(ﬁ) equals
(or rather : Is isomorphic to) the given holonomic 8X-modu1e M in some small
conic neighborhood of p .

In [3] the main theorem was proved for regular holonomic modules.
Here we prove it in the general case, i.e. we need not the assumption that 7
"has regular singularieties" in the sense of [6]. Besides the proof is rather
different from that in [3]. Here we are going to use methods from Malgrange's
work [7] where the Main Theorem was proved when dim(X) = 1 and the proof below
has been inspired by various remarks and suggestions which also are due to
Malgrange. In fact, the Main Theorem was more or less implicit in Malgrange's

work [7].

Remarks, We are going to use various basic results about the sheaf €X - The
reader may consult [8] or [6] or [1 : Chapter 4] for relevant background. In

§ 2 we also discuss some consequences of the Main Theorem.

1. Proof of the Main Theorem.

Working lozally we can assume that ths base manifold X is Cn+1 where

*

(x,t) = (x1...xn,t) are the coordinates and then T (X) is the 2n+2 dimensional
t -5 = e e s Y .»
(x,t,E,7) pace where E (51 gn) and hence Tdt+§1dx1 + + §ndxn is

the fundamental 1 - form.,
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Let 1 be a holonomic 8X-—modu1e defined in some open and conic
neighborhood of p = (0,0,0,dt) . Assume that supp(”) has a generic position
at p which means that if A = supp(f?) and if Q is a small conic open
neighborhood of p then ﬂ?1(o,o)f7AfWQ is reduced to p = (0,0,0,Tdt) with
T#0 .

Before we enter the actual proof of the Main Theorem we need some

preliminary results of a geometric nature.

1.1. The hypersurface ﬂ(Af\Q) . Since A = supp(ﬁo has a generic position at p

and at the sane time is a conic Lagrangian it follows that for a suiable choice
of a conic neighborhood {2 of p there exists a polydise A centered at the

origin in the (x,t) - space such that the following holds

*
1.2. Lemma. mANQ) =S is a complex analytic hypersurface in and Af?Q::QF)TS
% reg
where Sreg is the regular part of S and TS is the conic Lagrangian
reg

defined in the whole of ﬂ_1(A) .
For a detailed proof we refer to [3: page 906]. It only requires the

Weierstrass preparation theorem and the fact that the conic Lagrangian A has a

generic position at p and at the same time it is a complex analytic set of pure

dimension n+1 .

*
Remark. The position of the hypersurface S is not arbitrary since TS has
reg

a generic position at p . In fact, we can choose S so that the equality in
Lemma 1.2. holds and at the same time S = ¢F1(o) where o(x,t) €6(a) is in
the Weierstrass form with respect to t . In fact, from [3: page 907] one finds

that if (x,t) €S 1is close to the origin then |t| << |x| so the projection

o

(x,t) »x is proper on S and so on.
-1 _* .
Finally, S can be chosen so that 7 (o,o)r1TS 15 reduced to the
reg

complex line ip. With S = ¢r1(0) as above this implies that if (x,t) Esreg
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*
is close to the origin then the corresponding point (x,t,dxw,aqybt) €Té
reg

after a normalisation gives (x,t,dxm/a@/ét,dt) and this point gets close to
(o,o,o,dt) . In other words, one has Ibqyéxvl << Iaqyétl for all 1 <v <n

as  (x,t) Esreg ~ (0,0) . See again [3] for this.,

1.3. The study of 7(p) .

We work at stalks for the moment and put Sp = 8X(o,o,o,dt) and
ﬂb = ﬁk(o,o) to simplify the notations., Let 7 Dbe a holonomic sheaf of 8X -
modules defined in a small conic neighborhood of p and assume that supp(WO

is in a generic position at p . Then we can prove

1.4. Lemma. 7(p) 1is a holonomic B_-module and the equality mp) = 8p6%9 (p)
o

holds,

The proof requires several steps., First we can find some good filtra-
tion ' of the holonomic sheaf 7 which is defined in a whole conic neighborhood
2. Now Fo//F_1 is a coherent sheaf of modules over the sheaf of rings

SX(O)/CX(—1) =06, (0).= The sheaf of holomorphic functions in T*(X) which
T (%)

are (g,T)—-homogenous of order zero,

We have supp(Fo,/F_1) = supp(7) and since supp(M) has a generic
position at p the geometric results above in particular show that the projection
(X,t,g,T)'*(x,t,T) is proper with finite fibers over AN - where A = supp(ﬁ@
and 0 is a suitable conic neighborhood of p = (0,0,0,dt) .

This implies that FO//F_1 is coherent as a sheaf of modules over

the subring ﬂ?1(@x) of 6 , (O) and passing to the stalk at p we get.
T (%)

1.5. Lemma. Fp(p)/T_1(p) is a finitely generated module over the local ring
ring {x,t} = @X(o,o) .

Next, we recall that w(ANQ) =S = @“1(0) where @(x,t) is in the
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Weierstrass form, i.e. o(x,t) = te+—w1(x)te—1 + eee + @e(x) can be assumed.
Now ¢ =0 on supp(FO//F_1) so the Nullstellen Satz implies that some power
of ¢ annhilates FO//F_1— at leadt if we stay in a small conic neighborhood
of p . In particular : 3 N with gy (Fo(p)/T_1(p)) = 0 and then Lemma 1.5.
even gives that Fo(p)/T_1(p) is a finitely generated module over the local

ring C{x} .

1.6. The ring G(p) .

Put G = S,X(o) m:zx(x,Dt) , i.e. it is the sheaf of micro-local dif-
ferential operators of order < 0 which only depend on x and Dt . We find the

stalk G(p) and now we can prove
1.7. Lemma. Fo(p) is a finitely generated G(p)-—module.

Proof, Since Fo(p)/T_1(p) is a finitely generated C{x}~-module this follows

after divisions in the ring Bx(p) . To be precise, we can choose a finite set

Uy eee U in Fo(p) whose images in Fo(p)/T_1(p) generate this C{x} - module.

If we then use that T_m(p) = D;m Fo(p) for all m>1 one can prove that

Fo(p) = G(p)u1 + eee + G(p)us using a division with bounds in the ring 8X(p) .

See [8] and also [1: Chapter 4] for such divisions with bounds in the stalk of ey -
So far we have not removed "micro-local terms" since negative powers

of Dt do not belong to ﬁx(o,o) = ﬁb . However, at this stage we can use methods

from [7] and obtain
1.8. Lemma. Fo(p) is a finitely generated C{x,t}-module.

Proof. We have Fo(p) = G(p)u1 + eee + G(p)us . This sum is in general not direct,
i.e. Fo(p) need not be a free G(p)-—module. However, using a finite set u1... u
of generators from Lemma 1.7. we can express the action by the element t on

the left RP(O)-module Fo(p) and find that tuj:=P1’j(x,Dt)u1—%...-+st(x,Dt)uS
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where P = (ij(X’Dt) is some G(p) - valued matrix.

Recall that G(p) = the stalk of the sheaf ex(o) ﬂBX(X,Dt) and it 1is
filtered when we use G(-m) = 8X(—m)f18X(x,Dt) for m>1 . In particular we find
G(p)/ﬁ(—1)(p)i5 {X} . Consider the corresponding principal symbols of the elements
ij(X’Dt) which form the matrix OO(P)(X) whose entries belong to C{x} .

Now one has
Sublemma 1. The scalar matrix GO(P)(O) is nilpotent.

Proof of Sublemma 1. We have the Weierstrass polyonmial @(x,t) which gives

@N Fo(p)C:F_1(p) for some N2>1 . With ¢ = te+@1(x)te-14-...4-@e(x) it follows
that teNEéfﬁ(—1)(p)g + m Fo(p) where m 1is the maximal ideal in the local ring
{x} , i.e. it uses only that $V(O) =0 for all v.
Passing to the matrix  which sxpresses the action by t on the left
BP(O)-module Fo(p) we find that PeNEECIG(—1)(p)g + szo(p) and this implies
that oO(P)eN has all its entries in m and hence the scalar matrix which arises

if x = 0 is nilpotent,

Proof continued. Let us now introduce the free G(p) -module F::G(p)s169...€>ﬁ(p)es

and define te = P¢ and in general, if g(x,t) = I gv(x)tVVEC{x,t} we put
v >0
g(x,t)e = = gv(x)¥ylg. We claim that this gives an C{x,t} -module structure
vZz0

on F . To prove it is suffices to show that whenever g(x,t)€ {x,t} then
A . . . . .
z gv(x)P converges in the ring of G(p)-—valued matrices. This convergence is
an easy consequence of Sublemma 1 and the existence of certain norms from (81].
To be precise, using the norms from [8] (see also IBj ¢ page /ﬁ3|) we can define
a Banach algebra norm over some subring of G{p) such that all the entries of ¢
- . s PNe
have a finite H ”-—norm and in addition ” ” << 1 can be assumed thanks to

Sublemma 1.

Summing up, F has a natural C{x,t}-—module structure., By the mapping which

sends ej-+uj for 1<j<s we see that F-*WKp) is C{x,t}-—linear and surjective,



- 55 —

So if we can prove that F 1is a finitely generated C{x,t}-—module then Lemma 1.8.
follows,

To prove this we consider F/(X1F4-...4-XHF) which first becomes a
free module of rank s over the ring G(p)r1€(t,Dt) = The ring of germs of micro-
local differential operators which only depend on Dt and have order <O .
Observe that t operates as above, i.e. te = P& where GO(P)(O) is nilpotent.
Using Malgrange's result from [7]
we conclude that E/(X1F+-...4-an) is a free {t}-—module of rank s and if

Hy eos HS are chosen in F so that their images give a free basis we get

1

F = C{t}H1&>...€9C{t}Hﬁ + mF  where mF = X1F4-...4-XHF . Repeating the recursion

formulas from [7] we can then prove that F = C{x,t}e1€B...EBC{x,t}eS .

1.9. Proof of Lemma 1.4.

Armed with Lemma 1.8. we can prove Lemma l.4. rather easily., First we

show that de) is a finitely generated j%-—module. To see this we study the

= e < < . .
elements va/bt vaeﬁx(o) when 1<v< n . Each R, Ppreserves Fo Now
Lemma 1.8. means that Fo(p) is a noetherian €{x,t}-module and this implies
that we can find RX(O)-valued sections Sv(x,t,DX,Dt) of the forme

m m—1 .
= >> = r
5, = R, + r1(x,t)Rv toeee rm(x,t) with some m >> 0 such that S,u; =0 for

all v and all 1<j<s .

t

Miultiplying each Sv by D" to the left we find differential operators

m m—1
Qv = DV + Q1’v(x,t,Dt)DV 4—...4-Qm(x,t,Dt)-where DV = DXv are used - and
here Qvuj = 0 for all pairs v and J .

Let us then take an element R in 8p « By succesive divisions in the
ring 8p we can write R = R1Q1-+...-+RnQn + P where the remainder term P is
given as a finite sum of the forme T Pa(x,t,Dt)Dz . Here T extends over a finite
set of milti-indices, i.e. 0 <o <m hold for all 1<v<n with the integer

m as above.
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Also, P (x,t,Dt) are micro-local differential operators which only
o

depend on x,t and Dy .
Now 77?(13) = Spu1 + ooet Spus and using the divisions above we get

mp) = 5 ? 8P(x,t,Dt)(Dzuj) . Finally, consider some R(x,t,Dt) €8p(x,t,Dt) and

expand it with respect to DJC . One part is a finite sum where the D_ -~ powers

t

are >-mn and the remainder belongs to SP(—mn) ﬂﬂp(x,t,Dt) « If we call it R!
we have R'(x,t,Dt)DzEFLp(O) for all « as above,

Now 8p(0)uj € C{x,t}H1 +eee + C{x,t}HSC,ﬁoH1 +ese+HH  where H ... H  were

found from Lemma 1.8.

We conclude that the ﬁo—module W((p) is generated by the finite set

{n

...HS} and {D;VDiuj:1§j§s:O*_<v<mn and !oz|<mn}.

The_holonomicity of 7(p) . Since M(p) 1is a finitely generated B -module it

1

is holonomic if each cyclic ,Bo—submodule is holonomic. Let us take some
uEFO(p) E'/'/I(p) and prove that ,Bou is ,Bo—holonomic. Exactly as above we find

an n- tuple of _BO —elements Q. .o Qn where

1

m m-1 .
Qv = DV + Q1,V(X’t’Dt)Dv + ooee + Qv,m(x’t’Dt) - here Qv,j(x’t’Dt) GﬁO(J) ,

ie, their orders with respect to Dt are _fj , and Q1u = eee = Qnu =0 .

In addition we have the Weierstrass polynomial cp(x,t) which gave
N
P Fo(p)CF_,l(p) and hence (cpNDt) Fo(p)CFo(p) and since Fo(p) is a finitely

generated C{x,t} -module it follows that

clx,thu+ (cpNDt)c{x,t}u+ (cpNDt)ZC{x,t}u + oeee

is stationary. This gives some differential operator of the form

N N -1
R(x,t,Dt) = (g Dt)w+r1 (x,t) (o Dt)w Foeee +rw(x,t)

such that Ru = 0 .
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Now it is easy to chech that the cyclic ﬁo—module defined by .,290/
B/ [0, +«ee +8Q + 5 k]

is holonomic =  The quotient module ﬁou is holonomic too.

5

o
holonomic, Put M = 8p ®j} 77Z(p) which becomes a finitely generated 8p—modu1e,

o}
i,e, this uses only that 77((13) is a finitely generated ,,Bo—module. By

The mapping W((p)—‘&p ®, M(p) . We have proved that the ﬁo—module m(p) is

u~1®u (1 = the identity in F/p) we get a left ﬁo~1inear mapping from the

B - module mp) into M,

Claim. The mapping M(p) M is surjective.

To prove this we use that any holonomic ﬁo-module is cyclic so we can find
u€M(p) such that N(p) = I)‘ou = ﬁO/L where L = {Q Eﬁo :Qu = 0} . Now Bp is
a flat j}o—module =M = SP/EOL and the surjectivity amounts to prove that
£ = ﬁo+8pL . To prove it we first find an n- tuple Q,] cee Qn in the left ideal
L where QV = D\n: + Qv’1(x,t,Dt)D$-1 + oeee + Qv,m(x’t’Dt) with ord (Qv,j)fj for
all v and j . To be precise, they are found as in the beginning of § 1.9.

By divisions in SP = 8P = SPQ1 +oene +8an + Dzep(x,t,Dt) where
|Q/| <mn 1inh Y . Since SPQJ.EflpL for all j the inclusion 8PCJ90+6PL follows
if we can prove that F,p(x,t,Dt) E‘Bo + L . To see this we take some R(x,t,Dt)
and expand it with respect to Dy » A finite sum occurs with non-negative powers

of D and it belongs already to “Bo . 50 we can assume that R = I rv(x,t)D:c_V

t
with v>1 inside % .

Now we use that 7(p) is a left 8p—modu1e and that D, is invertible
as an element in the ring F’,p . Since M(p) = J}Ou we find for each v>1 some
Q, €0, with D:C-vu= Q,u. Observe here that D;Vu € Fo(p) (or at last to some

Fm(p)) when the 7(p) - element uGFm(p)) hold for all v ., It means that we can

find a fixed integer m so that all QVG_&O(I) , 1.€. a bound exists on these
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germs of differential operators.
Now another "division with bounds" is available - (see for example
Bj : page 140-141| for the technique) and it shows that I rv(x,t)ov can be
arranged so that it converges in the ring ﬁb . Call this j%-—element Q.
To get R€8PL+,BO it only remains to see that R—QEEPL . First
it is obvious that Ru = Qu by the preceeding construction. To be precise, our
choice of Q first implies that (R—Q%AETLV(p) for all v>1 and then
n F_v(p) = 0 is used.

V=1
It remains only to prove

Sublemma 8PL = {R ES? t+Ru = 0 in the given left 8P-modu1e Eplx} =& .

Proof, Using the flatness of Bp over ﬂb one easily gets that £C:6PL+~8p(—m)
for all m>1 . Now we use that the left ideal 8PL in the ring Sp is closed,

ie. L= nNnfelL+e(-m].

Summing up, we have proved that 7(p) is a holonomic j%-—module and the canonical
mapping WKp)-*&prﬁhWKp) is surjective. It remains to prove that it 1is injective.
o

We postpone the proof of the injectiveness until § 1.14 below.

1.10. The holonomic j&-—modglg.

Since £& is a coherent sheaf of rings there exists a unique" germ of
a holonomic sheaf N" of left ﬁ&-—modules which is defined in some polydise A

centered at the origin and the stalk 7(o,0) is the holonomic ﬁb-module mp) .

g with
reg

We can arrange this polydisc A so that mANQ) =T

SCA as in Lemma 1.2. Now we can prove

o
1.11. Lemma w(ss(n))cs .
0
Here SS(7) is the part of the characteristic variety of % which is outside the

zero=-section,
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Proof of Lemma 1.11. Recall that S = ¢T1(o) . We have 7 = pu where m(p) = Bu
was found as above and the proof of Lemma 1.9. has shown that there exist diffe-

rential operators Q. ... Qn such that Qvu =0 for all v . Shrinking A 1if

1
necessary we can take QVKEF(A,ﬁk) here. In addition we find some RGEF(A,ﬁk)
where o(R)(x,t,E,T) is of the form (cpNT)m with some m>1 , i.e. it follows
from the proof of the holonomicity of %(p) .

If (x,t)<§A-q;1(O) and if (x,t,E,T) €SS(7D(:0(R)_1(O) we see that
T =0 . Next, o(Qv)(x,t,g,T) =0 on S5(7) and if o(Qv)(x,t,g,c) = 0 we see tha
that € =0 . This hold for all v = E=0 on 7 '(A-8)NSS(N) which gives
Lemma 1.11.

1.12. The module ’% . Put 7 = 8X @21 n’1(ﬁ) which now is a holonomic SX-module

(5

defined in ﬂ?1(A) and supp (%) = 55(7) . The stalk 7(p) = 8p6§ﬁ(o,o) =

8p @b, M(p) = M . We have seen that WKp)‘*&p gb, M(p) 1is surjective. This cano-

o o
nical mapping is even left 8p-ligear - it was not stated explicitly before but

can be proved by similar methods as in the proof of Lemma 1.9.

Hence the left €p—-linear and surjective mapping M(p) = %(p) exists.
By coherence = W?lﬁ'* n Iﬁ' is surjective in a small conic neighborhood [o
of p . Shrinking A and 2 we can take 1 =Q and the surjectivity implies
that supp(%) N < supp(M) NQ . In particular supp(®) has a generic position
at p . At the same time we already know that the conic Lagrangian supp(%o = 55(7N)
satisfies m(SS(N)) © S and then a geometric result gives
1.13. Letma 55 (7) CAOQ:OOE .

reg

See again [3] for this general result, to be precise we are using [3. Lemma 5.1.2

page 928 ].

1.14. Proof that M(p) - M 1is injective., Using the holonomic j&f-module N and

its extended holonomic SX-module ‘% it amounts to prove that the mapping from
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7(0,0) H'ﬁ(p) is injective, So take u €N(o,0) and assume that 1Q§uo =0 1in
the stalk '%(p) . Using the inclusion in Lemma 1.13., and the generic position

at p = 1 some small polydisc AO centered at the origin in Cn+1 such that

1 ® ﬂ?1(u0) is zero in ‘% on the whole of ﬂr1(Ao)f7§%(ﬂ) . It means that
é%(j&uo)r]ﬂ?1(Ao) is empty and hence BHu_ is a connection in side A . In
particular, its stalk at the origin contains an element which is annihilated

by Dt . This gives a contradiction since Dt is a bijective operator on ﬂ(o,o) =

left EP-module WKp) . In other words, use that D;1 exists in the ring 8p .

2. Some consequences of the Main Theorem.

n+1

We have proved that if X = C and p = (0,0,0,dt) and if M is

a holonomic 8X-modu1e whose support has a generic position at p then

m= 8X ® ﬂ—1(W) holds in some conic neighborhood 2 of p where 7 is a holo-
[e]
nomic ﬁk-—module defined in some polydisc A . Here we also have SS(7)NQ=ANQ

where A = supp(?7) . The holonomic f&-—module N is quite special, For example,

¥ * ) )
5 lJTA(A) = a conic Lagrangian

reg

its characteristic variety is contained in T

of ﬂ?1(A) .

Remark. Observe that the zero~section can appear, i.e. the support of the ‘ﬁX—
module 7 in the Main Theorem can be the whole polydisc, Already a 1 - dimensional
case illustrates this phenomenon, i.e. consider the case when X = ¢’ and here
S(t,Dt)/ﬁ(t,Dt)(t-aD;1) is holonomic and we assume that the complex scalar o
is not an integer. The holonomic jg-module WKp) cannot be supported by the
origin for then any cyclic generator of it is annihilated by some power of t
which is impossible,

We can use the Main Theorem to get a new proof of the existence of
regular holonomic modules, i.e. if 7 1is a holonomic SX-module and if

)

o
m = 8X @% M is its extended 8;-module one can use quantized contact
X

transformations and assume that supp(7) has a generic position at a preassigned
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point of its support and use the Main Theorem to find the unique EX-submodule

WQ of Wf which is regular holonomic and satisfies Wi = WF . See [3] and
eg €g

also [2] for this.

Tn addition we can extend results from [4] to the irregular case.

Finally we mention that the Main Theorem suggests the study of holono-

*
mic ﬁk-—modules N whose characteristic varieties are reduced to TS and
reg

a (possibly empty) union with the zero-section where the conormal variety

*
T has a generic position at (0,0,0,dt) . This leads to a delicate study.

re

For gxample, it is not true that any such hypersurface works and one may ask to
what extent the £&-—modu1e N is "determined by monodromy of its solution complex
and so on. In fact, we may ask if the Main Theorem eventually leads to a structure
theory for holonomic BX-module with irregular singularities. This is a very
ambitious program. See Malgrange's work for the 1 -dimensional classification

of holonomic € -modules which need not be regular,

Tn the regular case one has the Riemann Hilbert Correspondence and

it suggests that we try to determine all perverse sheaves which are related to

special holonomic j&-—modules arising from the Main Theorem. For example, let S

¥

be a hypersurface in X so that TS = supp(WO for some holonomic 8X-modu1e.
reg

Here we take X = Cn+1 and assume as above that supp(WO has a generic position

at (o0,0,0,dt) . Then we try to "classify" all these holonomic 8X-modules which
in addition have R.S. (i.e. "regular singularities in the sense of [6]). Already

an answer when n =1 , i.e., dim(X) = 2 would be interesting.
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