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LEVEL ONE KAC-MOODY CHARACTERS AND MODULAR INVARIANCE 

Claude ITZYKSON 

Service de Physique Théorique de Saclay. 
Institut de Recherche Fondamentale du Commissariat à l'Energie Atomique. 
91191 Gif-sur-Yvette Cedex. FRANCE 

1. In this work we continue our investigations 
on modular transformation properties of 
Kac-Moody characters and associated conformai 
theories. The A-D-E classification^1 ̂  obtained 
in the case of SU(2) might lead one to suspect 
that interesting phenomena happen when dealing 
with other groups. Here I shall limit myself to 
preliminary remarks pertaining to the group 
SU(N), specializing even to level one 
representations of its (untwisted) Kac-Moody or 
affine algebra. For reasons which are not 
totally clear, there is a striking parallel 
between level one representations for SU(N) (Lie 
algebra \ ~ x ) and level k representations of 
SU(2) for Ν = 2(k+2). A slight surprise is that 
modular invariance of the partition function on 
a torus allows a plethora of possibilities in 
the case of SU(N) indexed by divisors of Ν if Ν 
is odd or N/2 if Ν is even. 

I have attempted to give an elementary 
exposition for the benefit of those reader who -
like me - have a very hard time to decipher the 
literature. To a large extent the following 
presentation is therefore a paraphrase of 
existing work - mainly Kac •s bookt2] and the 
article by Gepner and Witten I shall also 
rely on considerations presented in a review on 
elementary integrable systens^^. The benefit of 
dealing with a special case is to be able to 
exhibit explicit expressions and to provide 
examples. 

We will accept the formula for characters and 
analyze it in some detail showing in particular 
that for SU(N) at level one the modular 
transformation properties simplify considerably. 
I do not know whether this simplification is 
well known and/or has already appeared in print. 

A specific property of SU(N), Ν > 3. is the 
existence of an automorphism of the Lie algebra 
which extends to a correspondence between 
representations and their complexe conjugates 
(in physical terms charge conjugation). This has 
the consequence that affine restricted 
characters attached to conjugate ground states 
(or highest weight states) are undistin-
guishable. Therefore to characterize the content 
of a conformai invariant codel it is not suf­
ficient to exhibit a modular invariant partition 
function on a torus. A way out will be discussed 
below. 

2. Let τ denote the ratio of two fundamental 
periods on a torus, τ - cu2/tj , Im τ > 0. We set 
q = exp 2iTTT , use c for the central charge, L c 

for the grading element of the Virasoro algebra 
generating dilatations in the plane or 
translations on the torus. The specialized 
characters give an expression for the trace 

X(T) = Tr q L° (2-1) 

69 



in an irreducible representation of the affine 
Lie algebra, here A*ij · The level k describes 
the central extension of the corresponding loop 
algebra, or the Schwinger term in the current 
algebra, im physicist's terminology. For SU(N) 
the quantities c, k, and Ν are related through 

(N2-l)k 
C = 

N+k 
(2-2) 

which reduces to c = N-l, the rank of . when 
k = 1 ,while c tends to N 2-l, the dimension of 
the algebra, when k tends to infinity. The 
integer Ν is therefore the Coxeter number of the 
simply laced Lie algebra A N - 1 . 

The character χ(τ) pertaining to an 
irreducible representation of the affine algebra 
Â .ij is a generating function for the number of 
linearly independent states corresponding to a 
given eigenvalue of L Q . These states can be 
organized into irreducible multiplet*s of A N 1 . 
In particular to the lowest eigenvalue of LQ , 
the conformai weight h, corresponds a unique 
irreducible representation of A N_ 1 , itself 
described by a Young tableau, or a highest 
weight. The characters of level k are those for 
which these representations correspond to Young 
tableaux with at most k columns (and N-l rows). 
Their number is 
Number of A<1> characters 

(N+k-1)Ï 
at level k = (2-3) 

k!(N-l)! * J J 

When k = 0 there exists a unique trivial 
character equal to unity, while for k - 1 we 
have Ν characters. Those are attached to 
representations of A N - 1 acting on anti-symmetric 
tensors with λ indices, where λ runs from zero 
(trivial representation of \-\ ) to N-l. 
Identifying λ and λ+Ν, we shall later on label 
these characters by the integer λ mod N. As was 
already indicated, distinct affine represen­
tations corresponding to λ and Ν-λ (distinct ex­
cept when Ν is even and λ = N/2) have identical 
number of states for each eigenvalue of L() and 

therefore equal character. 
In general, instead of Young tableaux 

specific to SU(N) we can use the language of 
roots and weights. Let V be a vector space of 
dimension equal to the rank r (here r = N-l) 
equiped with the Cartan Killing metric. Let a ( 1 )  

,..., a ( r> , be the fundamental linearly 
independent weight vectors. A positive weight is 
an integral linear combination of these vectors 
with non negative * coefficients. Therefore any 
strictly positive weight is of the form 
Ρ - £ + β with ρ positive and 

ριαί 1)!... + α ( Γ ) (2-Ό 

For a simply laced algebra, such as A N - 1 , the 
fundamental weigths a ( 1^ are dual to the 
fundamental roots a ( i^ 

? ( J ) = &*j Ki,j<r (2-5) 

and the symmetric Cartan matrix is 

* U = 2 < u - 5î<j> (2-6) 

while g i J stands for the inverse matrix 

g i J = Q,U) . a<J> g l k g k J = S 1 J (2-7) 

The normalization is such that the diagonal 
terms are gi j = et2

 i - 2 and the Cartan matrix has 
off-diagonal entries equal to zero or negative 
integers (here - 1 ) . 

Irreducible representations of the Lie 
algebra are indexed by strictly positive weights 
ρ and the corresponding quadratic Casimir 
invariant is p 2- Q2 in an appropriate 
normalization. Thus level k irreducible 
representations of A^iJ will be labelled by p, 
the strictly positive "weight characterizing the 
lowest irreducible representation of A N_ 1 , 
lowest in the sense that L Q assumes its lowest 
eigenvalue 

B 2 - f?2 
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Higher eigenvalues of L Q differ from h £ by a 
positive integer. The factor 2 occuring in the 
denominator is related to the convention the 
fundamental roots have square length equal to 2. 

It follows therefore that when τ is increased 
by unity 

X£(T+1) = exp 2iir|hE- |jj Χ £(τ) (2-9) 

Let us describe in more detail the roots and 
weights of SU(N). Consider in an N-dimensional 
space a set of Ν orthononnal vectors e ( μ ) 

e e = S Κμ,ιΌί (2-10) 
E( μ.) · E( ν ) μ ν ^ ' v 

Let e 
Ν 

= Σ 
μ=ι 

e ( μ ) and V be the (N-l) dimensional 

(metric) subspace orthogonal to e . The 
fundamental roots 

§ ( 1 ) " ^ ( 2 ) - ( K - i ) - § ( N - i ) - ( M ) 

(2-11) 

span V. The set of 
N(N-l) 

2 
positive roots are the 

vectors e ( μ ) - e ( v ) , 1 < μ < ν < Ν , easily 
expressed as linear combinations of the a ( i )'s 
with non negative coefficients. The Cartan 
matrix is therefore 

2 if li-jl = 0 
g ij= -1 if li-jl = 1 Ki,j<N-l (2-12) 

0 if li-jl > 1 

Let Ρ denote the orthogonal projection on V 
along e 

Ρ x - x ~ ~r §(e.x) (2-13) 

The fundamental weights are then 

ct( 1 ) - Ρ e α · 2 } = Ρ ( e + e ) 
(N-l) ί 2" 1 4) α = P(e + + e ) 

and 
g^= Inf{i,j} - Ki,j<N-l (2-15) Ν 

The fundamental roots generate over the 
integers Ζ the root lattice M and the 
fundamental weights its dual, the weight lattice 
M* . Every vector in the root lattice M has an 
even square length, and the root lattice is a 
sublattice of the weight lattice of index Ν 

M V M = Z/NZ (2-16) 

The sum of fundamental weigths, equal to half 
the sum over positive roots, reads 

N-l 
ρ = Σ α ( 1 ) = - Σ (e - e ) 

i=l ^ 1<μ<υ^Ν" (2-17) 
Ν 

We have also to indroduce the Weyl group W, a 
finite group of orthogonal transformations 
generated by r reflections. Seen in 
N-dimensional space this is the permutation 
group S N acting on the Ν vectors β ( μ ) , generated 
by the r transpositions § ( μ ) *-> § ( N + 1 ) . 
μ=1,..., N-l, and therefore in the subspace V by 
the N-l reflections, for i=lt... N-l 

χ 6 V χ χ·= χ - α ( 1 )(α ( 1 ). x) (2-18) 

If a vector χ G V is expanded on the weight 
basis as 

N - l 

χ = Σ χ α ^ ) 
i = l 

(2-19) 

the closure of a fundamental domain for W (a 
Weyl chamber) is characterized by 

(x ( i ). x) = xL> 0 Ki<N-l (2-20) 

The semi-direct product of W by the translations 
of the root lattice M is a Coxeter group 
generated by Ν reflections. Those include the 
(N-l) reflections in the hyperplanes orthogonal 
to the roots through the origin (equation (2-18)) 

71 



as well as the reflection in the hyperplane 
orthogonal to the vector 

(N-l) 
?,„,= " Σ α ( 1 )= e ( N ) - e ( 1 ) (2-21) 

the equation of the hyperplane being 

— ( Ν ) * 2 = 1 
(2-22) 

A characterisation of the vector - α ( N ) is that 
it is the largest positive root, in the sense 
that the sum of its components in the basis of 
fundamental roots is the largest possible. 

The closure of a fundamental domain Β for the 
Coxeter group (also called inhomogeneous Weyl 
group) is a simplex defined by the inequalities 

N-l 

X [ > 0 Σχ,<1 
_.Â=JL 

(2-23) 

The quotient of V by the translations of the 
root lattice M is a torus isomorphic to the 
Cartan torus of SU(N). By quôtienting further by 
W, we split this torus into NÎ (the order of W) 
pieces equivalent to B, each one having a unique 
intersection with a generic equivalence class in 
SU(N), generic in the sense that each matrix in 
this class has distinct eigenvalues. Non generic 
equivalence classes, with some subset of equal 
eigenvalues, intersect the boundary of B. 

With this information we return to the 
formula for conformai weights (2-8), and apply 
it to Â .lj at level one. We write for short 

h x ~ 2(N+1) 
(2-24) 

with λ running from 0 to N-l and α ( 0 ) = 0 by 
convention (therefore h Q= 0). For 1 < λ < N-l we 
find 

λ(Ν-λ) 

2 *< λ>. 2 = ( e ( 1 ) . . . . + e ( X ) ) • Σ < § ( μ ) - e ( V J ) 
1<μ<1>*3ί 

λ Ν 
= Σ Σ 1 = λ(Ν-λ) 
μ=1 ν=\+1 

and 
λ(Ν-λ) 

λ 2Ν 0 < λ < Ν-1 (2-25) 

In the transformation law for characters under 
the translation τ —» τ+l (equation (2-9)) there 

λ(Ν-λ) 
appears the exponential exp 2iir — ~ — which is 
invariant when λ is increased by a multiple of Ν 
as well as under the symmetry 

λ — Ν-λ (2-26) 

The latter is a consequence of the following 
automorphism (with square equal to unity). In 

N-dimensional space consider the map 

§ { μ ) ~ -§(Ν-μ+1) (2-27) 

Under this transformation, a combination of a 
symmetry and a permutation of the Weyl group, we 
have for the roots and weigths 

(2-28) 

This automorphism will leave (restricted) affine 
characters invariant and is reflected in an 
automorphism of the Cartan matrix (as well as 
its representative Dynkin diagramm) and of the 
root and weight lattices. We note here that the 
signature of the permutation μ Ν-μ+l is 

N(N-l) 
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3· A consistent Wess-Zumino-Witten model has a 
modular invariant partition function on a torus 
Z(T.r)of the form 

Ζ(τ,τ) = Σ ̂  χ·(τ) X£.(T) (3-1) 

The sum runs over strictly positive weigths ρ 
and D ' pertaining to level k, ̂  ,̂ are non 
negative integers, and for normalization Λ ρ p= 1 

To investigate such invariant sesquilinear 
forms we need to know the behaviour of the 
characters under the generators 

Τ τ —» τ + 1 
S τ — -τ" 1 

(3-2) 

of the modular group. We know already this 
behaviour under Τ according to equations 
(2-8)-(2-9) and (2-25) · We also require the 
transformation under S which will follow from 
the explicit Kac-Weyl formula to be described 
below. It is interesting to guess first the 
result by invoking plausibility arguments. These 
are based on suggestions by Veriindet-5^ , which, 
as we shall check later are happily fulfilled in 

the present context. As before, we restrict 
ourselves to level one characters Χχ( τ) 
considered as even periodic functions of the 
index λ mod N t as suggested by the 
transformation under T. Assume that we have a 
linear transformation formula of the type 

Χ^-τ- 1) = Σ SXX.XX.(T) 
λ'mod Ν 

(3-3) 

Because of the symmetry λ «—» Ν-λ this would not 
define the matrix S x x , (assuming it exists). 
However characters can be extended to involve an 
argument χ ( a set of angles characterizing an 
equivalence class in SU(N)) in which case under 
the change of periods ω 1—» -ω χ , y 2—• -ω 2 , which 
does not affect τ, and corresponds to the square 
of the above operation, χ transformed as -x and 
Χ λ(τ,χ) into Χ λ( τ.~χ) = Χ Ν_ λ(τ,χ) . Thus 
extending appropriately (3~3) when χ is 
different from zero we should have 

( δ 2 ) λ , λ · - δ λ + λ · . 0 mod Ν (3-4) 

(^Μλ. χ. = &\ λ-eod Ν 

This is of course reminiscent of the finite 
Fourier transform as will be confirmed below. 

Verlinde's ideas apply to chiral conformai 
theories, with primary operator <Ρχ(ζ) and 
corresponding characters Χ λ(τ). It is of course 
understood in a situation like the one we are 
dealing with, that Φχ(ζ) carries internal 
indices such as tensor components for the SU(N) 
representation. For the time being we assume 
that λ runs over a finite set Λ. There is a 
distinguished value denoted λ = 0, corresponding 
to the weight h 0= 0, representing the identity 
operator. One then introduces linear operators 
on characters denoted Φ λ with the properties 

(i) φλΧ 0< τ) = *λ< τ) (3-5) 

(ii) The operators Φ λ generate an associative, 
commutative algebra such that the generators 
satisfy 

• λ * λ · = ^ Ν λ λ . λ " Φ λ Μ 

λ"6Λ 
(3-6) 

with non negative integral "structure constants'1  

Ν λ λ , λ " . Moreover Φ 0 is the identity in this 
algebra. It then follows by action on X 0(τ) that 

Φ λχ λ,(τ) = Σ Ν λ λ , λ Η Χ λ „ ( τ ) 
λ"6Λ 

(3-7) 

so that Φ λ is faithfully represented on the set 
of characters by the matrices Ν λ with matrix 
elements (Ν λ) λ,λ«Ξ Ν λ λ,λ- as is the 
multiplication by Φ λ on the algebra, 
(iii) Finally it is assumed that if under 
τ —• -τ"1the characters transform linearly as in 
(3-3) with λ and λ' runing over the set Λ, the 
same matrix S (which is now understood to have a 
square equal to unity) diagonalizes 
simultaneously the commuting matrices Ν λ. 

For the present application the set Λ is the 
set of integers mod Ν and by extending the 
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previous properties it will be more convenient 
to relax the condition of symmetry under 
λ —• Ν-λ so that S 2 instead of being the 
identity implements the conjugation 
automorphism. 

As shown by Verlinde, knowing the matrix S we 
can reconstruct the algebra and vice-versa. Here 
I will content myself with the observation that 
when dealing with level one characters of A^IJ 
it is easy to guess that the only sensible 
algebra is expected to be 

m 
Of course this will be verified later, but given 
that the index refers to antis^mmetrie tensors 
with λ indices, which other associative and 
commutative algebra could we think of in that 
case which does not involve arithmetic 
properties of N? Assuming this to be the case 
the corresponding matrix S is the (complex 
conjugate) matrix of finite Fourier transform up 
to a sign, acting here on even characters 

1 ( λλ'Ν 
S x x . H F ^ - e x p ^ i r — j (3-9) 

To summarize, the modular transformation 
properties of level one A^Lj characters are 
expected to be 

A ( Ν-λ ) 
Τ Χλ(τ+1) = exp 2 1 ^ - ^ — - — J χ λ(τ) 

S Χ λ ( - τ Μ = — ^ exp -2ÎTT — χ χ, (τ) 
\η λ 1 mod Ν Ν 

(3-ιο) 

We will need some classical properties of the 
matrix of finite Fourier transform F which we 
will collect here without proof. Since Fu- I, 
its eigenvalues are ±1 or ±i. The precise set of 
eigenvalues is then obtained as follows. 
Consider the sequence starting with a ^ 1 and 
continued indefinitely with period U by setting 

a 2= -1 , a 3= i , a.L- 1 , a^= -i, so that a^= -1, 
etc... The first Ν terms in this sequence are 
the Ν eigenvalues of pt Nl , where the 
superscripts recalls that we are dealing with 
integers mod N, In particular the determinant of 
FCn 3 is given by 

det F [ 2 ' + 1 ] = (-i)' 
ι > o 3 - i i 

det = - i ' 

One observes a strong similarity between the 
transformation formulas (3*10) for A^Lj and 
those pertaining to A* 1 5 characters3 at level 
k, such that Ν = 2(k+2), of course Ν is then 
even. The latter characters are also indexed by 
an integer λ mod Ν but are odd under λ Ν-λ. 
To distinguish them from the preceding ones we 
write Χ λ(τ) for the A { 1 } characters which obey 

Τ χ λ(τ+1) - exp 21π^1 _ ij £ χ ( τ ) 

- , -ι % - i V λ λ ' ~ 
s Χ λ ( " τ 1 ) = 7 = 2L exp 2iTT — χ λ , ( τ ) 

VIN A'mod Ν Ν 

Χ Ν_ λ(τ) = χ λ(τ) 
(3-12) 

c i l Here the central is given by - — = — - —, i.e. 
2h 2N ο 

3k 
c = in agreement with equation (2-2) for 

SU(2) level k. The two sets of formula (3-10) 

and (3-12) should agree when we set Ν = 2 in 
(3-10) and Ν = 6 in (3~12) corresponding both to 
A} 1) level 1, with X 0 (τ) Ξ χχ (τ) and 
Χί(τ) = χ 2 (τ). Both transformation laws read 

( 2 1 π 1 
T (Xb(T*l» _ e x p 'W ° fa M) 

0 exp 2ιττ — v 1 ' 

(3-13) 

The corresponding algebra has of course two 
elements Φ 0= I the identity and Φ such that 
Φ 2= I. 
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A. It is not a priori obvious that acting on 
even character the formulas (3~10) generate a 
representation of the modular group. Before 
giving a proof of their validity we shall indeed 
check that (ST) 3 acts as the identity as 
required. From 

1 Α·(Ν-λ·-2λ) „ . » 
(ST) x x.= - e x p 2 1 π [ — ^-J 

so that understanding sums over integers mod Ν 
we find 

(ST)xX.= — — exp -2iTT îti χ 
N 3 / 2 8 

Σ e x p ^ H > 2 (Ν-λ 2-2λ) +\ (Ν-λ1 - 2 λ 2 )+λ' (Ν-λ' - 2 λ χ ) ] 

(<*-ΐ) 

The intermediate sum over λ χ reads 

— 2- exp λ. Ν-λ. - 2 λ , - 2 λ · ) 
ΝίΝλ, 2Ν 1 1 2 

1 2iir( Ν^2 = — exp λ_ +λ'- — σ Μ 

where 
1 V 2i1ïY €\2 ,, % 

with £ = 0 if Ν is even and € = 1 if Ν is odd. 
We compute crN successively in these two cases. 

(i) Ν even, € = 0 . We extend the sum (4-2) from 
λ 1 mod Ν to Χχ mod 2N at the price of a factor 
1/2, and obtain a Gauss sum, the trace of 

[ 2 N ] e 

F L . Thus 

ι ν λ 2 

σ Ν = Δ~> exp -2ίττ — 
2NÎN λ mod 2Ν 2 Ν 

1 [2Ν]' 1-i iir 
- — Tr F - = exp - — 

>l2 \[2 
from the sequence of eigenvalues given above. 

(ii) Ν odd, € = 1 . In this case 

! V ( 2 λ - 1 ) 2 

a„= — 2-, exp -2iir — 
\IN λ mod ρ H p 

Again if λ is increased by ρ the exponent is 
invariant. Thus 

1 y 2iTT 
σΗ- —: Ζ- exp - τ — χ* 

* NÎ87 χ «od 4p 4 p 

x=l mod 2 

Γ4ΡΓ 
On the other hand, from the properties of F 

NJ2 exp - — = - — Ζ- exp - 7 χ 2 

4 ^ χ mod 4p *Ρ 

- NÎ2 σ Ν+ Σ exp -2iir — 
Nl5p χ mod kp HP 

χΞΟ mod 2 

The second sum on the r.h.s. is 

1 V y 2 1 V v 2 

— exp-2iir — = — Z- βχρ-21π ^ 0 " 
2Nlp y mod 2ρ Ρ vjp" y m o d ρ Ρ 

The last statement comes from ρ = 2N Ξ 2 mod 4 

and the properties of the Fourier transform. In 
conclusion for any of Ν even or odd 

σκ= e x P - ~ (4-3) 

Returning to the computation of (ST) 3 we have 
thus 

(ST) 3
X X, = exp[- ψ 

jj-Σ exp ~^λ 2(Κ-λ 2 - 2 λ)*λ'(Ν-λ ί)^λ 2 +λ <- ^ 2 

1 V 2±π 
= - exp λ, (λ-λ' ) - 6λ λ , . 

λ 2 

(4-4) 

We conclude therefore that on even characters 
(to ensure S 2~ I) the transformation laws (3-10) 
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define a representation of the modular group (a 
unitary one) and will allow a discussion at 
possible invariant partition functions. Belore 
doing that, let us now make sure that (3~10) is 
in agreement with the explicit expression for 
characters. 

5. The character formula is related to an 
elementary problem in classical and quantum 
mechanics, for a free particle bouncing 
elastically in a simplicical box Β described by 
the inequalities (2-23), the box Β lying in the 
subspace V. Since the reflections in the walls 
of Β generate a tiling of V, we find for the 
free motion in Β an integrable system both 
classically and quantum mechanically. Closed 
orbits are obtained by folding in Β straight 
segments joining points equivalent under a 
translation of the root lattice M. In a 
appropriate scale, the square of weight vectors 
are the energy levels. The characters are given 
by ratios of the heat kernel relative to Β and 
the latter is expressed in terms of 3-functions. 

Explicitly consider the heat kernel on the 
torus V/M. With Ret > 0 and χ £ V it is defined 
through 

Σ exp -TTt (Ύ+χ)2= χ 
y e m iîli 

t * N
1 / 2 ( 5 - D 

exp - — q̂  + 2iir g.χ 
g G M # 1 

exhibiting the equivalence between a sum over 
closed orbits (hence the invariance under 
χ —• χ • M) and a sum over energy levels, as a 
result of Poisson's formula. This motivates the 
definition of the 0-function pertaining to the 
Lie algebra A N 1 through the substitutions 

τ 
t —> κ — κ positive integer, Im τ > 0 

x Ρ 
χ —• — • — ρ Ε M* 

Τ Κ 
(5-2) 

and an overall multiplication by a factor 
x 2 

exp -iir κ — τ 

Θ* (x.τ) = Σ exp iir ΤΚΓΎ*-) • 2iir κίτ-π-) .χ ! 
' Ε " ye M I Γ κ ) Γ κ ) " 

Ν-1 ν 2 

(1 \ 1 * 
- — 2 exp - i n κ — χ 

Σ exp -iiT - β + 2iir α. |— • —Ι 

(5-3) 

If Ύ belongs to the lattice M, we have 

3 C . R ( x + r ï . T ) ~ exp [-iir ΚΤΊΓ2-21τγ KT.XJ ^ Ί Β( Χ § Τ) 
(5-Ό 

where the prefactor in the second equality is 
independent of ρ. 

Returning to the definition (5~3) w ^ may 
perform the second sum in two steps, by writing 
q = p'+ κ Ύ, where Ύ runs over M and p* over the 
finite abelian group Μ*/ΚΜ, with the result that 

χ 2 | N-l 
Θ. (χ,τ) - exp -ίιτ κ — f— 2 χ 

(5-5) 

Σ e x p [ 2 i . ^ ] ^ . £ - 7 ) 
p' G M /km 1 J V J 

By quotienting further by the Weyl group W, we 
are led to the expression for the heat kernel 
for the Dirichlet problem in B, through the 
definition of the antisymmetrized θ-function 
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Θ / (χ,τ) = Σ G (w) Θκ fw
 χ,τ) (5-6) 

' Ε wGW ' R K } 

where G (w) = ±1 is the signature of the 
permutation w G W. Since both M and M* are 
invariant under W, it follows that 

X.T)= θ Α ^ (X,T)=G(W) Θ κ
Α
ρ(χ,τ) (5-7) 

This property implies that when dealing with Θ A 

the weight ρ can be restricted to the set of 
strictly positive weights up to a translation in 
KM. Said otherwise, we can restrict ourselves to 
weights ρ such that ρ/κ belongs to the interior 
of the box B. Write ρ in the basis of 
fundamental weights 

N-l 

ρ = Σ ρ α^) (5-8) 
i=l 

with integral components p 1 . The above 
conditions mean pL> 0 for any i as well as 
N-l 

Σ p A< κ . This requires the integer κ to be 
i-1 
larger or equal to N, For κ = Ν the only 

N-l Σ Ε 
α ( 1) (and — is then the 

i=l N 

"center" of the box). In general we set 

κ = Ν • k k non negative integer (5-9) 

where k is the level. Correspondingly 

Pi= 1 • PJ . p[> 0. 

The number of possible weights at level k is 
therefore the number of distinct solutions of 
N-l 
Σ pj< k with non negative integral pj. Define 
i = l 

Ν 

Py> 0 such that Σ p|= k. The required number 
i=l 

is then the coefficient of z k in the Taylor 

expansion of (l-z)~ K around the origin, namely 
^"j^**) as claimed in equation (2-3). Clearly 
this is also the number of Young tableaux with 
at most k columns and N-l lines. 

The "unspecialized" character pertaining to 
the representation of the affine algebra A^l\ of 
level k and highest weight ρ is then given the 

ratio 

X K _(X.T) = (5-10) 

The meaning of this character is that, in the 
corresponding representation, it is the trace 

* k . E t e ' T > = T r k . E
e x P 2 i i r T[ Lo" ffj * 8 · * (5-11) 

where the operators Η form a basis of generators 
for a maximal commuting Cartan subalgebra in 
A N 1 appropriately normalized, i.e. such that 
2iTT Η.Ύ is unity for any Ύ G M. Combining the 
definition (5-6) with the transformation law 
(5*5). w e find 

r χ 2 ] N-l 

^ î k . E ( x . T ) - exp -iir(k*N) £ j 2 

(k+N) 2 

(k) 

(5-12) 

The function Ψ(ρ.γ) is the antisymmetric sum 

ιΜρ,γ) = Σ G(w) exp 2iTr ρ ."γ (5-13) 
w€W 

and is interpreted as the un-normalized wave 
function corresponding to the weight (momentum) 
ρ for the particle in B. In equation (5"12) the 

(k) 
symbol Σ means that p' runs over weights of 

P' 
level k, meaning that P ' / ^ + N ) lies in B. 
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In the denominator of the cheracter formula 

k ~ 0 ana ρ £ * I*1 -fc ' - x l i L i A ' 
transformation lonnaia \j ^ } reduces to a 
single term with ρ = g' = 9 and a coefficient 

N(N-l) 
ψίρ. - 1 = Σ G(w) exp 21π = N l / 2 i 2 

I NJ w€W N 

(5-14) 

To prove this identity we write ψ^ρ, ^ as an 

Ν χ Ν determinant using cartesian components 
with 2 given by equation (2-17) 

*( e. JU = d e t j e x p ^ p i L ^ ^ j | 1 < u , y < N 

(5-15) 

N*l 
When Ν is odd, — μ runs over a complete set 
of residues mod Ν when μ runs from 1 to N. Thus 

Ν 
the above determinant is N 2 times the 

[N] 
determinant of the finite Fourier transform F 

N(N-l) 
given by (3-11) as (-i)*= i 2 if Ν = 2£*1. 

N+l 
When Ν is even μ runs over the set of 

2 
residues mod Ν + 1/2 when μ runs from 1 to N. 

N i / 2 
The above determinant is times the 

i 
[N] 

determinant of F . If Ν = 2t+2 the latter is 
-i1 . Putting these factors together produces 
again (5-1*0 « As a consequence we have 

N(N-l) 
N x 2 i N-l 

VP(S.T) = expj-iïr — J i 2 ( i ) — 
(5-16) 

and for the characters at level k 

N(N-l) 
f * Ί ~2— 1 

(N+k) 2 

00 

(5-17) 

The matrix which implements the transformation 

(xtr) —• —j must have its fourth power 

equal to unity (its square transforms (χ,τ) into 

i-x.T)). 
In the limit χ —• 0 t both numerator 

and denominator tend to zero in equation (5-10). 

However dividing first both quantities by Ψ(£,χ) 
one finds finite limits. This defines the 
restricted character as 

l i n x - o P £ ^ . Ε ( * · τ ) ^ ( £ . χ ) ( 5 - ΐ 8 ) 

ϋ*χ—0© * £ (χ.τ)/Μί(9,χ) 

For any weight ρ 

dim[p] = lim —-—=— - positive roots 
x _«0 * ( β . * ) 5 * · 9 

(5-19) 

is the dimension of the representation labelled 
by ρ (for ρ strictly positive) and extended as 
an antisymmetric function over the weight 
lattice, a celebrated result due to Weyl. 
Consequently 

Σ exp 1τγ(^Ν)τ(Ύ + - —) dim[p+ (k*N)nr] Ύ 6 M I k*NJ 
X k r ( t ) =1 

Σ exp iir Ν Τ ( Ύ + -1 dim[g+N Ύ ] ' 

(5-20) 
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P a r e n t h e t i c a l l y we note the f a c t o r i z a t i o n 

formula of Dyson and Macdonald, r e l a t i n g the 

denominator i n (5~20) to the Dedekind function 

oo 

η(τ) = exp ίττ — Π (1-exp 2i~- η τ) (5-21) 
1 2J n=l 

in the form 

[t1(t)]n2"1= Σ exp iTT Ν τ(Ύ+-) dim[e+N Ύ ] 

Ύ Ε M [ I N J J 

(5-22) 

The power of η is of course the dimension of the 

Lie algebra A N 1 . It is nice to check that the 
standard transformation law 

i s i n agreement with (5~22) and (5*l6) s i n c e 

lin, . . - l i m χ * - 2 x 
*(ρ.χ) *(ρ.χ) [τ) 

lim 

N(N-l) 

The first factor on the r.h.s. is τ 

where the exponent is (minus) the number of 
positive roots. Altogether the prefactor 
involves (i / x ) 1 / 2 to a power Ν(N-l) • N-l = N 2-l 
the dimension of the algebra. It is also readily 
seen that under τ —» τ+lboth sides of equation 

(N2-l) 
(5_22) are multiplied by a factor exp 2ίττ———. 
As a consequence the ratio of the right to the 
left hand side of this equation is a modular 
invariant analytic function of τ in the half 
plane Im τ > 0 (since η(τ) never vanishes for 
Im τ > 0 ) . Since it is bounded when τ — » ioo (in 

fact tends to unity) it is a constant equal to 
one, as one readily checks. This yields a simple 
analytic proof of this identity. 

Taking (5~22) into account we can rewrite the 
character formula in the alternative form 

Σ exp [ίττ ——(p+{k+N)*Y)2 ]d±m[->+ (k+N)T] 
Ύ € M I k + N J 

Χ ^ ( τ ) = = · 
η ( τ ) » 2 - 1 

(5-2*) 

And under τ —• -τ" 1 we have 

{ . i ) N ( N - l ) / 2 00 . i 

X k d(T)= Ζ- ψ β , — X k , {- -) 

(5-25) 

This transformation must of course agree with 
the invariance of χ under the automorphism which 
replaces ρ by its conjugate (and leaves g 
invariant). 

6. Every root has an even square length, and if 
Ύ G M and ρ G M* the scalar product Ύ.ρ is an 
integer. As a consequence, for any integer κ 

κ( B N 2 P 2 

— Ύ • — Ξ — mod Ζ Ύ G M ρ 6 M 
2[- κ] 2κ ~ 

(6-1) 

From equations (5*3) &n<* (5-6) it follows 
therefore that 

f B 21 
0 J (χ,τ+1) = exp iTT — Θ £ (χ,τ) (6-2) 

Thus the behaviour of characters under a shift 
τ —» T+l is readily found to be 

f 2 2 92) 
X, (r+l)=exp 2ίττ — - χ, (τ)(6-3) 

* 2. 2(k+N) 2N k , E 
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The exponent can be rearranged in the form 
h - ̂ 7- with 

ι e 2 - e 2 

* V 2 (k+N) 
k k 

0 = 1 2 ^ = (N2-l) 
* N(k*N) k+N 

(6-4) 

where we have used the fact that 

. . Σ f i -
μ=ι 

2 _ Ν(Ν 2 -1)  

12 (6-5) 

Equation (6-4) agrees with the statements made 

in section 2. When k=l we find as claimed c=N-l 
λ(Ν-λ) 

and hu= . 
λ 2N 

It is worth to check the action of the 
automorphism (2-28) on characters. Let χ —» χ be 
this automorphism. Clearly £ = £ and 

Θ A ~(χ,τ) = Θ } (χ,τ). We can write 

(6-6) 

where ω 06 W is the element in the Weyl group 
corresponding to the permutation § ( μ )*-+ § ( Ν _ μ < > 1 )  

of signature (-1) N ( N" 1 ) / 2, with square equal to 
unity. In other words 

Θ Α~(χ,τ) = (-ΐ)*<Ν-ΐ) /2 © α ( } 
κ , £ ~ *· · Ε. 

χ - ( χ , τ ) = χ _(-χ,τ) 
k , 2. ' Ε 

(6-7) 

The last relation is the expected one and shows 
the invariance of the character when x=0. 

7· In order to fully justify formula (3~10) for 
the action of the modular group on characters at 
level one, it remains to restrict the general 
inversion property (5~25) to the special case 
where ρ and p' belong to the set of weights of 
level one of the form 

(7-1) 

with α ( 0 ) = 0 by convention. This requires the 
computation of 

/ Î M Γ (ΒΛ«λ>Μβ.ΑΐΛ,>) 
(N+l) 

(7-2) 

Let us look first at Ψ 0 0 which we cast in the 
form of an NxN determinant similar to the one 
discussed in investigating the denominator of 
the character formula 

ψ 0 0=det^exp 2±ττ 

Ν*1 Ν*1 

Ν*1 
1 < μ, 1> < Ν 

(7-3) 

As compared to (5*15) the difference lies in the 
denominator (N+l) instead of N. 

N(N+1) 
V o = (-l) 2 (N +l)«/^det{-I— βχρ21* 

(N.l)' 
1 < μ, ν < Ν 

The last determinant is the (0,0) ninor of the 
[N+1J 

finite Fourier transform F 

_J>1] 
(N*l) 

ab 
— exp 2iTr 0 < a, b < Ν 

Its (0,0) minor is equal to its determinant 
(namely i [-i]<»*i> (i*.2)/2) times the (0,0) 

element of its inverse (nanely (N+l) ). Thus 

N(N+1) N-l (N*1)(N*2) 

ψ 0 0=(-l) 2 (N.l) 2 i{-i) 
N-l N(N-l) 

(N+l) 2 i 2 

(7-4) 

To compute Ψ λ 0= Ψ 0 χ ̂ Ο Γ λ = 1.··«.Ν we consider 
the ratio 
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2- €{ω)βχρ 2iir (g + α ( λ>). — Γ  

*λ,ο ω G W Ν > 1 

V o = « β 

Ζ G(co)exp 2ίπ g. — 
ω G W Ν + 1 

This is interpreted as the character of the 
representation of SU{N) on antisymmetric tensors 
with λ indices, evaluated on the diagonal matrix 
with entries 

1 Γ 2iir μ] exp 2ίττ = -exp - 1 < μ < Ν [ N*1J [ N+l J 

In turn this is equal to ( - 1 ) λ Σ χ where Σ λ is 
the λ-th elementary symmetric function of the Ν 

Γ μ 1 
quantities exp -2ίττ given by 

[ N+l] 

ζ κ - Σ 1 ζ Ν - 1
+ . . . * ( - 1 ) λ Σ λ ζ Ν- λ^... +(-1) ΝΣ Ν= 

Ν 
Π fz-exp -2ίπ )= Ζ

Ν + ζ Ν" 1 +. . . +1 
μ=1 I I N*l]J 

showing that (-1) λΣ λ =1 and 

(7-5) 

Finally the quantity 

*λ.λ· *λ,λ· 
V o ~ V o 

is similarly the same SU(N) character evaluated 
now on the diagonal matrix with entries 

( f 2iï*J. 21» λ' ι 
-exp (1 ) 1 < μ < λ' 

, I Ν*1 "*ι "Ί 
exp 21·» · < I N-l J r 2 1 21-RA' Ι 

-exp — λ' < μ < Ν [ N*l (W->1)NJ 
e x p | ^ (λ'.1-μ)| 1 < μ < λ' 

- -exp -21»^— \ 
I Ν 1 Ι [21* 1 

βΧΡ — (λ'-μ) λ'< μ < Κ 

Up to the prefactor |-exp ' 2 ± Ί Τ ^ ~ | these are 

again the (N+l)-th roots of unity except 1. 

Therefore 

— : = = exp-2iTT 1 < λ, λ'< N-l 
V o V o N 

(7-6) 

Combining these expressions we get 

N-l N(N-l) 

*λ.λ·β(Ν*1) 2 i 2 exp|-2iTT^- 0 < λ,λ'< N-l 

(7-7) 

Inserting this result in (5~25) and recalling 
all properties proved before, we reach the 
conclusion that we have fully justified formula 
(3-10) for the eodular transformations of A**J 

characters at level k=l. From this follows the 
Verlinde algebra (3~8) in this case. 

8. We turn to the classification of modular 
invariant partition functions of the form (3*1) 

for a W-Z-W model based on SU(N) at level one. 
With λ standing for an integer mod Ν such a 
partition function assumes the form 

Ζ(τ,τ) Σ ^ λ, χ·(τ) χ λ(τ) (8-1) 
A.A'mod Ν 

where the normalization is such that 

V o - 1 (8-2) 

and the coefficients Ηχ λ, are non negative 
integers. Eventhough Χ λ(τ) = Χ κ_λ(τ), we extend the 
summation in λ,λ' over all integers mod N. This 
means that we do distinguish the sectors λ and Ν-λ 
with equal restricted characters but corresponding 
to inequivalent Kac-Moody representations. 

It is immediate from (3~10) that the two 
combinations 

Ζ Ν η(τ.τ) = Σ Χχ(τ)Χλ(τ) (8-3) 
λ mod Ν 

ZKIL(TE?) = Σ Χχ(τ)ΧΝ_λ(τ) (8-4) 
λ mod Ν 
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fulfil all critera. They are of course numerically 
equal as partition functions on the torus but 
their operator content is distinct, as explained 
above. The notation for the indices will be 
justified in the sequel. We shall show that for Ν 
an odd prime they are the only possibilities 
satisfying the requirements of conformai 

invariance. We study now the constraints on the 
matrix For a matrix element λ, to be 
different from zero it follows from invariance 
under Τ in (3_10) that the indices must satisfy 

λ(Ν-λ) Ξ λ1(Ν-λ') mod 2Ν (8-5) 

If Ν is even this implies λ = A'mod 2 and is 
therefore equivalent to 

λ 2Ξ λ' 2 mod 2N Ν even (8-6a) 

If Ν is odd, since λ(Ν-λ) Ξ λ'(Ν-λ') Ξ 0 mod 2, 

condition (8-5) is equivalent to 

λ 2Ξ λ' 2 mod Ν Ν odd (8-6b) 

Ν We put η = Ν if Ν is odd and η = — if Ν is even. 2 
For each divisor of η define the-NxN matrix Ω$ as 
follows. Let α be the greatest common divisor of δ 
and η/δ, denoted α = (δ, η/δ), so that a 2 divides η 
and therefore N. Note that when Ν is even so is 
Ν/α 2. There exist integers ρ and σ such that 

η δ ρ — - σ - = 1 α& α (8-7) 

Set 
η ε ω = ρ — + σ — αδ α mod Ν/α2 (8-8) 

From ω2-1 - ^ρσ — we have 
α 2 

ω 2^ 1 mod 2Ν/α2 if Ν is even (8-9a) 
α^Ξ 1 mod Ν/α 2 if Ν is odd (8~9b) 

The matrix elements ( Ω δ ) λ λ, vanish unless λ and 
λ' are both multiples of α in which case 

Σ δ χ . . ω Χ . ζ Ν / α ccU. αίλ' (8-10) 
Κ mod α 

Note that Ω$ is symmetric. In particular if 
δ=η, a=l a possible choice of ω is 2n+l Ξ 1 nod Ν 
and Q is the unit matrix 

α 

(8-11) 

Exchanging the roles of δ and η/δ changes ω(δ) 
into ω(η/δ) = -ω(δ) mod Ν/α 2. In particular 

(8-12) 

These two matrices lead to the two invariants 
(8-3) and (8-4). In general so does ̂  as we show 
now. 

The multiples of α can be written in the form 

αίλ λ «= r — • s£ 
ο 

(8-13) 

δ η Since ω-1 = 2σ — and ω+1 = 2ρ — we find α αδ 

ω = (ω-1 + 1 ) r ̂ - + (ω+1-1 ) s6 = r ~ - s£+2 (crr+ps) — & δ α 
= Γ Ξ. - ss mod Ν/α (8-14) 

ο 

which shows that among the multiples of α, δ is 
the smallest which changes sign under 
multiplication by ω, mod Ν/α (of course -η = η mod 
N). Furthermore 

(αι\ +εΝ/α) 2-λ 2 = (ω 2 -1)λ 2
+ 2ζω — Ν * ξ 2 — Ν (8-15) 

α α 2 

In view of the fact that a 2 divides λ 2 and using 
equations (8-9a) and (8-9b) this proves that 
(ω\+£Ν/α)2 is equal to λ 2 mod 2N if Ν is even and 
mod Ν if Ν is odd. Thus Ω δ commutes with T. As for 
commutation with S we find readily that 

1 Γ 2ίτωλλ ,1 , -«xp - αίλ αίλ* 
(Ν/α)* L Ν 

0 otherwise 
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A slight generalization to Ν odd of a proof given 
in référencerai and ^epe^te^ ι^.ΓΛ] shows that 
conversely any element of the commutant of S and Τ 
is a linear combination of the matrices Q§. Since 
the matrix elements of Ω δ are non negative 
integers and (^s)oo= * ^ t follows that any 
partition function of the form 
Z N ζ ( τ , τ ) = Σ χ (τ) λ(ίγ) λ λ,χ λ,(τ) 

λ , λ 1 mod Ν 

= Σ Σ x I ( T ) ^ x ^ N / a ( T ) 
λ,λ'mod Ν ζ mod α 
αίλ,αΐλ' 

(8-17) 

fulfils all positivity, integrality and invariance 
criteria. It is correctly normalized. Thus we have 
at least <p(n) WZW-SU(N) models at level one, where 
<p(n) is Euler's function counting the number of 
divisors of n. 

It would seem that a priori one could envisage 
more general superpositions of the form 

Ζ(τ.τ) = Σ c 5 Z N δ(τ βτ) (8-18) 
6ln 

If one can prove that all coefficients c s have to 
be non negative integers, by looking at the 
coefficient of XQ(T)X0(T) which reads Σ c$ and 

6 
which has to equal, 1 it would follow that all c s 

have to vanish except one, showing that (8-17) is 
the most general solution. This can be readily 
ascertained for the first few values of Ν and I 
conjecture that it is generally true. In 
particular it is true of Ν prime where the only 
solutions are (8-3) and (8-4) (when N=2 they 
coincide). A general proof is still lacking but 
should not be too difficult. 

As a first non-trivial example consider the 
case of SU(9) at level 1 with central charge c = 8. 

Beyond the two invariants (8-3) and (8-4) 

corresponding to 6 = 9 and 6 = 1 respectively we 
have an extra possibility with 6 = 3 such that 

Ζ 9 ι 3(τ,ί) = Ιχ0(τ)+χ3(τ)+χ6(τ)ΐ2 (8-19) 

Numerically Χ 3(τ)=χ 6(τ). Let us set 

Ψ(τ)=Χ0 (τ) +χ 3 (τ)*χ6 (τ)«χ^ (τ)*2χ3 (τ) (8-20) 

It is easy to check from the general formulas 
(3-10) that 

Γ 2iirl 
ψ(τ+1) = exp - ψ(τ) 

1 3 J (8-21) 

Ψί-τ-1) = ψ(τ) 

It follows that (τ) is a modular invariant and 
therefore a rational function of the classical 
modular invariant J(T). From equation (5-24) Ψ(τ) 
holomorphic in the upper half plane Imr > 0 

behaves for τ —> •!<» as q υ = q~1 ' J and 
therefore is bounded at infinity. One readily 
verifies that ψ 3-j is of order q for q —• 0 and 
therefore 

^(T) = j(T) (8-22) 

If we explicit the formula (5"24) in the present 
case we find 

Χ 0(τ) - q-1/3[i>80q+1376q 2^...] 

X 3( T) = X 6(T)=q - 1 / 3 [ 8 4 q * 1 3 7 4 q 2 + . . . ] 

Hence 
* ( T ) = q - i n 0 2 4 8 q • 4 l24q 2 * . . . ] (8-24) 

and 
^ 3(T )=j(T )=q- 1[l+744q • 196.884q 2*... ] 

It is interesting to find an interpretation of 
J(T) 1 / 3 in terms of SU(9) while it is usually 
related to the theory of the exceptional group Eg. 
One could of course multiply the examples. 

9- Our analysis of level one SU(N) models 
although very elementary is not even complete. It 
would remain to prove the conjecture stated in the 
previous paragraph, to show that the corresponding 
invariants defined on the torus lead to consistent 
short distance expansions and to provide an 
interpretation in terms of various "twists" 
explaining the particular structure occurring in 
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the expressions (8-17). On the other hand the 
analysis at higher levels is by no means trivial. 
We are currently investigating models based on 
rank two Lie algebras. A 2, B 2 and G 2. One purpose 
of this work is to get a better understanding of 
the implications of conformai and modular 
invariance, an other is to see if this could 
illuminate the A-D-E classification found in the 
case Aj . 
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