@article{RCP25_1992__43__147_0, author = {Majid, Shahn}, title = {Anyonic {Groups}}, journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25}, note = {talk:8}, pages = {147--162}, publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur}, volume = {43}, year = {1992}, language = {en}, url = {http://archive.numdam.org/item/RCP25_1992__43__147_0/} }
TY - JOUR AU - Majid, Shahn TI - Anyonic Groups JO - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 N1 - talk:8 PY - 1992 SP - 147 EP - 162 VL - 43 PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur UR - http://archive.numdam.org/item/RCP25_1992__43__147_0/ LA - en ID - RCP25_1992__43__147_0 ER -
%0 Journal Article %A Majid, Shahn %T Anyonic Groups %J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 %Z talk:8 %D 1992 %P 147-162 %V 43 %I Institut de Recherche Mathématique Avancée - Université Louis Pasteur %U http://archive.numdam.org/item/RCP25_1992__43__147_0/ %G en %F RCP25_1992__43__147_0
Majid, Shahn. Anyonic Groups. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 43 (1992), Exposé no. 8, 16 p. http://archive.numdam.org/item/RCP25_1992__43__147_0/
[1] Superselection sectors with braid statistics and exchange algebras. Comm. Math. Phys. 125 (1989) 201-226. | MR | Zbl
, , and .[2] Index of subfactors and statistics of quantum fields. Comm. Math. Phys. 126 (1989) 217. | MR | Zbl
.[3] Braid statistics in local quantum theory. Rev. Math. Phys. 2 (1990) 251-353. | MR | Zbl
and .[4] Braided compact closed categories with applications to low dimensional topology. Adv. Math. 77 (1989) 156-182. | MR | Zbl
and .[5] Quasitriangular Hopf algebras and Yang-Baxter equations. Int. J. Modern Physics A 5 (1990) 1-91. | MR | Zbl
.[6] Braided monoidal categories. Mathematics Reports 86008, Macquarie University (1986). | Zbl
and .[7] Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103 (1991) 547-597. | MR | Zbl
and .[8] Reconstruction theorems and rational conformal field theories. Int. J. Mod. Phys. 6 (1991) 4359-4374. | MR | Zbl
.[9] Braided groups and algebraic quantum field theories. Lett. Math. Phys. 22 (1991) 167-176. | MR | Zbl
.[10] Examples of braided groups and braided matrices. J. Math. Phys. 32 (1991) 3246-3253. | MR | Zbl
.[11] Transmutation theory and rank for quantum braided groups. Preprint, DAMTP/91-10 (1991). | MR | Zbl
.[12] Cross products by braided groups and bosonization. To appear in J. Algebra. | MR | Zbl
.[13] Fractional Statistics and Anyon Superconductivity. World. Sci. (1990). | MR
, ed.[14] Quantum field theories of vortices and anyons. Comm. Math. Phys. 121 (1989) 177. | MR | Zbl
and .[15] Hopf algebras acting on semiprime algebras. Contemp. Math. 43 (1985) 49-61. | MR | Zbl
.[16] Hopf Algebras. Benjamin (1969). | MR | Zbl
.[17] Quantum groups. In A. Gleason, ed., Proceedings of the ICM, pages 798-820, Rhode Island, AMS (1987). | MR | Zbl
.[18] Algebraic aspects of the quantum Yang-Baxter equation. Leningrad Math. J. 2 (1991) 801-828. | MR | Zbl
.[19] Quantum groups and non - commutative geometry. Technical report, Centre de Recherches Math, Montreal (1988). | MR | Zbl
.[20] Tannakian categories. Number 900 in Lec. Notes in Math. Springer (1982). | Zbl
and .[21] Representation-theoretic rank and double Hopf algebras. Comm. Algebra 18 (1990) 3705-3712. | MR | Zbl
.[22] More examples of bicrossproduct and double cross product Hopf algebras. Isr. J. Math 72 (1990) 133-148. | MR | Zbl
.[23] Doubles of quasitriangular Hopf algebras. Comm. Algebra 19 (1991) 3061-3073. | MR | Zbl
.[24] Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130 (1990) 17-64. | MR | Zbl
.[25] Hopf algebras for physics at the Planck scale. J. Classical and Quantum Gravity 5 (1988) 1587-1606. | MR | Zbl
.[26] Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang-Baxter equations. J. Fund. Analysis 95 (1991) 291-319. | MR | Zbl
.[27] On the quasitriangular structures of a semisimple Hopf algebra. J. Algebra, 1991. | MR | Zbl
.