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There has recently been interest in the question of whether, in principle, one can 
construct, in the laboratory, a wormhole and use it for time-travel. Mathematically this 
may be taken to mean, among other things; Does there exist a compact 4-manifold 
M with everywhere non-singular Lorentz metric QL (which we shall assume 
time-orientable) such that 

(l)dM = S 3 U S1 xS2 

where U denotes disjoint union and 
(2) S 3 and S 1 χ S2 are spacelike with S 3 in the past of M and S 1 χ S2 in the 

future. 
The answer to this question is contained in a celebrated theorem of Geroch which 

implies that: 
There exist many such pairs (M, gi) but they all contain closed timelike 

curves. 
Because of these closed timelike curves these topology changing spacetimes were 

thought to be of limited interest. However, if the wormhole is to be used for time travel 
anyhow this objection hardly seems decisive. In this talk I want to describe a further, and 
I believe potentially more serious objection. Hawking and I have recently shown that: 

No spacetime interpolating between S 3 and S1 xS2 admits an 5L(2, C) spinor 
s tructure . 

In other words we cannot construct such a time-machine from ordinary matter made 
from fermions. However there do exist time orientable Lorentzian 4-manifolds admitting 
51/(2, C) spinors which interpolate between S3 and S1 x S2 JJ S1 x 5 2 , where jj denotes 
connected sum. In other words wormholes must be created or destroyed in pairs. More 
generally we can define a new Z2valued invariant Μ(Σ) where ιιΣ in a closed orientable 
but not necessarily connected 3-manifold such 

Μ(Σ) = 0 (1) 

if Σ is the boundary of some compact time-orientable 4-manifold M which admits 
5 L ( 2 , C ) spinors and such that Σ is spacelike and 

«(Σ) = 1 (2) 

otherwise. 
The invariant «(Σ) has the following properties: 
Theorem 1 Under disjoint union, U, 

«(Σι U Σ 2 ) = «(Σι) + « ( Σ 2 ) mod 2 (3) 
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Theorem 2 Under connected sum jf, 

«(Σι|Σ 2 ) = «(Σι) + Μ ( Σ 2 ) + 1 mod 2. (4 

These follow from: 
Theorem 3 

Μ ( Σ ) = άϊτηζ2{Η0(Σ; Z2) ® Η(Σ;12)} mod 2. (5) 

Theorem 3 gives: 
u(S3) = 1, (6) 

uiS1 χ S2) = 0 (7) 

and hence our result about creating wormholes in pairs. Theorem 3 also shows that one 
cannot "create a single 5 3 universe from nothing" or indeed one cannot have a transition 
between an odd number of S3 universes. 

To prove theorem 3 we need the following known propositions. 
P r o p 1 M admits a time-orientable Lorentz metric gi with dM spacelike iff M admits a 
non-vanishing vector field transverse to dM. 

A theorem of Hopf gives us 
P r o p 2 M admits a non-vanishing vector field transverse to dM iff χ(Μ) = 0, where 
χ(Μ) is the Euler characteristic. 
P r o p 3 (M^gi) admits an SL(2, C) spinor structure iff 

w2(M) = 0 (8) 

where w2 is the second Stiefel-Whitney class of M vanishes. 
To proceed we note that Equation (8) is equivalent to: 

x χ = 0 (9) 

V# G H2(M] Z2), where ^ denotes the cup product. Now the intersection form Q : 
i J 2 (Af , Σ;Ζ2) x H2(M, Σ;Ζ2) —» Z2 is non-degenerate. Working mod 2, symmetric forms 
may also be regarded as skew symmetric, thus since Q vanishes on the diagonal it may be 
regarded as a symplectic form on H2(M, Σ; Z2). It follows that d i m H 2 { M , Σ; Z2) must be 
even. 

The exact cohomology sequence (with Z2 coefficients) 

0 -> Η°(Σ) H°(M) -> Η\Μ,Σ) -> Η1 (Σ) -> Η1 (M) -> Η2(Μ,Σ) -> Η2(Μ) ->... 
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yields 

χ — s = dim W mod 2 

where 

6(Σ) = d i m Z 2 { F 0 ( E ; Z 2 ) θ #χ(Σ; Z 2 ) } (10) 

and VF is the image of H2(M, Σ) in i f 2 (Ai) under the last homomorphism. We therefore 
have: 

P r o p 4, If M is a spin-manifold then 

χ(Μ) = w(E) mod 2 ( H ) 

Combining Prop 4 with Prop 1 and 2 yields the proof of Theorem 3. 

Since giving the lecture Hawking and I have obtained a generalization of Theorem 3 to 
the case that the boundary Σ is not necessarily timelike. One can associate an invariant, 
k i n k ^ a , (/L)? the kink number of the Lorentz metric gi with respect to the boundary 
component Σ α . The kink number is a measure of how many times the light cone tips 
over on Σ α . Finkelstein and Misner defined it as follows. Give Σ α an orthonormal framing 
{ e ; } , i = 1,2,3 (it doesn't matter which one). Augment {β{} by adding to it the unit inward 
directed unit normal n. The normalization is done with respect to an arbitrary auxilliary 
Riemannian metric gn on M. The vector field V mentioned in Prop. 1 may be taken to 
be that eigenvector of g ι with respect to gn which has negative eigenvalue, normalized 
to unit length. However in the present case V is no longer everywhere transverse to dM. 
The restriction of V to each connected component Σ α of DM allows one to construct a 
map φα\ Σ α —> 5 3 given by the components of the vector field V in the frame (n, ej). The 
degree of this map is the kink number,kink(Σα,(/^)· The sum over connected components 
Σ α of the boundary dM is the total kink number kink(9M, (/£,)· 

Props 1 and 2 are now replaced by 

P r o p 5 For any Lorentz metric gL on M 

X(M) = kmk(dM,gL) (12) 

Props 3 and 4 remain unchanged. It follows that Theorem 3 is replaced by 

Theorem 4 - For a Lorentz spin manifold M boundary dM = Σ we have: 

kink(E,flfL) = d i m z 2 ( # 0 ( E ; Z 2 ) φ Z 2 )) mod 2 (13) 
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