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Théories statistique et thermodynamique des nombres 

B . L . JULIA 

Exposé dédié à Pierre Cartier qui, par son exceptionnelle ouverture d'es­
prit, a encouragé nombre de physiciens. 

Physicists must compute the eigenstates and the dynamics of complex 
quantum hamiltonian systems. They resort most of the time to approxi­
mations, it is therefore extremely useful to be able to check them on simple 
examples. We shall discuss a number of explicit number theoretical Hamil-
tonians that lead to statistical mechanical equilibrium partition functions, 
some of which have been extensively studied in the past. 

The Gibbs trick that ensures the extensivity of the entropy of a perfect 
classical gas of indistinguishable particles can be studied on two analogous 
examples of additive number theory. 

The high energy asymptotic behavior of the density of states is re­
lated to the Hagedorn temperature singularity, and this is realized in a 
number of multiplicative number theoretical models. A "thermodynamic 
limit" of continuous spectrum leads to a suggestive approximation for the 
grand-canonical partition function of the "logarithmic gas". Some ther-
modynamical properties can be studied analytically. 

A precise analogy is proposed between the two-dimensional lattice gas' 
(Ising model with magnetic field) partition function and a generalized 
Riemann zeta function of two complex variables. The overcritical tempe­
ratures must be treated differently. 

We shall conclude in emphasizing the role ghosts may play in the study 
of the Riemann hypothesis. 

1· Additive number theory and a remark on the indistingui-
shability of particles 

For a dictionary we refer the reader to our original papers [1], a general 
knowledge of statistical mechanics should suffice to read on. Let us consider 
the generating function for the number p(n) of unordered partitions of the 
integer η into a sum of integers. It is a classical result that it can be 
written : 

oo 

Σ 
n = 0 

o(n)qn = 
OO 

Π 1 / ( 1 - / ) ) · 
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More generally one can distinguish the number of terms of the partition 
and compute a two-variables generating function for it : 

oo 

π 1 / ( 1 - / / ) ) · 

Ξι converges for Re β > 0 where we have put q = e - / ? . It has a 
natural boundary at Re β = 0. Hardy and Ramanujan have estimated 
the singularity when β tends to 0 + , using the modular invariance of the 
Dedekind η function they could deduce the precise asymptotic behavior 
of p(n). Let us recall the elementary dominant terms : 

LogE\ ~ π 2 / ( 6 / ? ) 

corresponding to 

Logp(n) ~ πν/2η/3. 

Had we considered ordered partitions, the analysis would have simplified 
greatly. The generating function for one summand is : 

^1 .ordered = q/H - q) 

the full generating function for ordered partitions of η into Ν summands 
follows : 

^ 1 , ordered — Σ 
N=0 

(/«/(! -<?))" = ( ! -? ) / ( ! -<?( / + !)) 

it converges for Re β > Log(l + /). 
Let us now follow Gibbs and treat all partitions as if they had only 

unequal summands. The Gibbs approximation to the unordered generating 
function is obtained by dividing by JV! the term of order fN of the ordered 
generating function. We obtain : 

LogEf = / î / ( l - î ) 

so for / = 1 we find the correct location of the singularity at q — 1 but 
the wrong coefficient : 1 instead of π 2 / 6 . 
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*Let us remain in the realm of additive number theory and consider 
now sums of squares. Again the simplest case is that of ordered partitions 
(with sign!). If we do keep track of the number of terms we find for one 
summand : 

^2.ordered ~ θ(β) — 1 f 2 
oo 

Σ 
n=l 

or in Jacobi's notation 

^2,ordered — θ^(ζ = 0; q). 

Where Θ3 is given by the following series and product : 

03 = 1 + 2 Σ s " . os2nz = 
0 0 

n = l 

I - q2n)(l + 2q2n-1cos2z + q4n~2) 

It follows that the full generating function for the number of ordered 
partitions into a sum of squares is : 

·—'2, ordered — 1/(1 ~" f ^2.ordered)-

We may recall that if we define t = β/π, θ% is solution of the heat equation 

dt63 = π/4 δ2θΆ/δζ2 

with period π in the variable ζ and t — 0 initial condition : 

03(< - 0) - πδ(ζ). 

So for vanishing ß, Z2,0rdered ~ \ΙΈIß ; Ie* us apply Gibbs' trick again to 
find a lower bound for the generating function of the number of unordered 
partitions. 

LogE^ 

This suggests following [2] that the number P 2 ( n ) °f unordered partitions 
into sums of squares behaves asymptotically as e A n , we must just 
extremize the term of the series expansion of Ξ and fit the exponential 
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behavior of P2{n) so as to match that of the partition function. As a 
matter of fact E. Wright [3] has proved the asymptotic formula : 

Logp2(n) ~ 3 [ Γ ( 3 / 2 ) ( ( 3 / 2 ) / 2 ] 2 / 3 η 1 / 3 . 

Once more Gibbs' trick provides us with the right qualitative behavior at 
high temperature (β is the inverse temperature for physicists). 

It might be useful at this stage to recall [1] that the number of terms in 
a partition can be viewed as a number Ν of (quasi-)particles and that the 
Ξ generating functions are traces of e-ß(H~vN). i f is a free hamiltonian : 
a sum of harmonic oscillators of energies the allowed summands and 
f = β@μ is the "fugacity". In other words the Ξ'β are the equilibrium 
grand canonical partition functions. 

*In the rest of this paper we shall mostly consider multiplicative number 
theory. The bridge between the additive and multiplicative worlds is 
the Euler Gamma function. It was natural to consider the power series 
P(q) = Σαη$η in the additive case, it is equally natural to consider the 
Dirichlet series D(s) — Y^an/ns in the multiplicative case. The product 
T(s)D(s) is a Mellin transform of P, it is equal to : / 0 °° dßß8'1P{e^ß). 
This Mellin transform is a bisided Laplace transform exchanging s and the 
logarithm of β. We must warn the reader that s will be also interpreted 
as the inverse of a temperature i.e. another β below. 

Two examples are noteworthy : the case of the Riemann zeta function 
(aη = 1) and more generally the case of Hecke modular eigenforms whose 
Mellin transforms are multiplicative Dirichlet series that obey a functional 
equation and admit a peculiar Euler product decomposition. Explicitly 

ξ(β) = Ci i (*)*- ' / 2 r (* /2) = 1/2 
Λ OC 

Jo 
dtts'2-\e{t)-i) 

is symmetric with respect to s = 1/2 thanks to the modular covariance of 
Θ. 

If we were to apply the same transformation to the function # 3 of two 
variables we would have to consider the more complicated transformation 
rules under the modular group, for example 

e3(z/it,l/t) = yfte* /7Tte3(z,t) 

which mixes t and ζ variables. And the naive Mellin transform loses its 
appeal as one may have guessed from the form of the heat equation that 
is not adapted to it either. 
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2. Singularities of Laplace/Dirichlet transforms and Hagedorn 
catastrophes 

Let us now concentrate on some multiplicative models. The additive 
theory occured in physics whenever the energy spectra where the integers 
(in string theory for example) or squares as in free motion in a box. Energy 
is usually additive in first approximation and to accomodate multiplicative 
number theory one must assume that the spectrum is logarithmic. At 
present this is an assumption but nobody can prevent us from studying the 
statistical mechanical properties of such a system and its thermodynamics. 
We shall in fact bring a large chunk of theoretical physics technology to 
bear on important mathematical problems and conversely one hopes to 
learn from a century of analytical number theory to understand better 
several issues of modern physics like the quark-gluon plasma transition 
and the Hagedorn critical temperature. 

Instead of partitioning integers into sums of "things" let us now 
factorize them into primes, or into integers, or into generalized (Beurling) 
primes. Again the object to be computed is a generating function for these 
numbers of factorizations, and as we mentioned above the natural thing to 
construct is a Dirichlet series. Let us first consider ordered factorizations 
into primes. If there is only one factor we find : 

ZP(s) = l + 

where the sum is over primes. It follows that the full (grand-canonical) 
partition function for any number of prime factors is 

EP,ordered(sJ) = 1/(1 - f(ZP - 1)). 

A Gibbs approximation to the unordered prime factorization is 

T:G _ pf(ZP-i) 

The exact analog of Ξρ in the unordered case is nothing but the 
Riemann zeta function (R(S) for / = 1 and its 2-variables generalization 
proposed in [1] in the general case : 

u - j P, unordered = Ξ Α = 5>-/Ω(η) 
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where the sum is over integers and Ω(η) is the total number of prime 
factors (with multiplicity) in the factorization of n. 

Finally the number of ordered factorizations into integers and its Gibbs 
approximation are obvious whereas the unordered case is more interesting : 

^Log — Σ 
k,n 

rkF(n,k)n-s = T{ 1/(1 - fn~s). 

F(n, k) is the number of factorizations of η into k integer factors. The 
suffix Log stands for logarithmic gas, see [4]. 

Beurling considered an arbitrary increasing sequence of positive num­
bers as generalized primes. He then took their products and studied the 
relative densities of these two sets of real numbers in the spirit of the 
prime number theorem which estimates the density of ordinary primes. If 
we take primes p'n = ρηβ~μ (R becomes Ξ# ; if we take pn = η it becomes 

^Logif = Ι)· 

*The theory of Dirichlet series differs from that of power series in 
the possibility for the line of convergence not to contain any singular 
point, in fact the rightmost singularity can be a finite distance away from 
it. However in the case of positive coefficients this line does contain a 
singularity on the real axis. We may interpret D(s) = Σ<ιη/Ίι3 as the 
Laplace transform of a density of states p(E) = Σ an6(E — Logn). 

In the case of power series one has Abel's theorem and one can de­
duce from the convergence on the boundary convergence in some neigh­
borhoods. The converse requires a so-called tauberian condition. When a 
Dirichlet series diverges on the real axis at the convergence abscissa, the 
nature of the divergence of the series at s — 0 determines the s-behavior as 
one comes down to the convergence abscissa. In other words the behavior 
of the integrated density of states N(E) = Σι09η<Ε ö n at infinity deter­
mines the rightmost singularity in s (s = β = 1/T in standard physics 
conventions). Again the converse requires an additional assumption like 
regularity on the rest of the axis of convergence (Ikehara see [5]); note 
that typically the abscissa of convergence will be strictly positive ( 1 in 
the case of the zeta function) and we are not exactly in the framework of 
Abel's theorem. 

We refer to [6] for more analogs of the theorems of Abel and Tauber 
in the theory of Dirichlet series. We shall indeed be interested in the 
integrated density of states N(E) = Σΐορη<Εαηι ^ s derivative is the 
density of states. With a mild additional assumption (Hardy, Littlewood 
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and Karamata) one can show that the divergence D(s) ~ (s — l ) r at the 
abscissa of convergence (1 for definiteness) implies the asymptotic behavior 

p(E')e-E dEf ~ Erlr\ 

at infinity. Let us note that a lot of work went into estimating the error 
in these estimates (actually this does not permit the evaluation of p(E) 
itself) and that in the case of non necessarily positive real ar

ns the absence 
of singularity on the real axis at the abscissa of convergence implies a lower 
bound on the oscillations of N(E) which takes both signs [6]. 

*The case r = 1 is well known in physics in situations where the full 
spectrum is exponentially dense at infinity. It was studied in detail by 
Hagedorn and is thought to occur in the spectrum of hadronic resonances 
for example. In this situation the microcanonical Gibbs state cannot 
correspond to a canonical temperature higher than a critical value ßu 
defined by 

p(E) ~eß»E 

at infinity, β Η was taken to be one above, so its inverse the "Hagedorn 
temperature" is also equal to one there. 

All of the above multiplicative models do exhibit this type of singularity 
or simple generalizations thereof. The Riemann zeta function's pole at 
s = 1 is known to be exactly that. Let us now consider the Dirichlet series 
Z p , it diverges logarithmically at s = 1, this is the singularity of LOÇ(R 
as one may check from the Euler product formula and an expansion of the 
logarithm. This corresponds to the integrated density of states 

Np(E) = n(eE) ~ eE/E 

according to the prime number theorem for the number of primes less than 
eE. There are fewer primes than integers, but if one counts factorizations 
of integers into integers one finds an exponential divergence at s — 1 ! Let 
us expand LogEiog at / = 1 and near s — 1. Its singularity is the same as 
that of (R. Alternatively we can recover this singularity from the Gibbs' 
trick 

LogEG

Log(f = 1) = C R - 1 ~ 1 / ( 5 - 1 ) . 
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*We shall now replace the discrete sum by an integral to estimate ^Log 
at large temperatures, the idea is to consider that near the Hagedorn 
temperature the partition function is dominated by large energies which 
are practically continuous. Let us introduce a parameter ν and replace 
the energies Logn of the oscillators by Log(l + (n — l)/v). The model has 
ν = 1, but we shall develop the partition function in l/v. The spectrum is 
discrete for the finite volume situation, but we shall let υ tend to infinity 
in such a way that the spectrum becomes continuous. Indeed the spacing 
becomes 

Logil + (n + l)/v) - Log(l + n/v) = Log{\ + l/(v + η)) ~ l/(v + n) 

and tends to zero when ν or η is large; we may remark that this 
approximation is slightly better than a naive thermodynamic type limit 
where one would have kept only the lowest order terms in v. Hence the 
density of oscillator levels reads : 

„ose ( T ? \ _ Ε 

If we take υ large, the system becomes extensive and we can think of ν as 
a volume. We then find for the pressure Ρ : 

P~(l/vs)Log~iog(sJ) 

where the subscript ν stands for the replacement of the true energy levels 
by their interpolating form in the grand canonical partition function. In 
the large volume limit : 

LogElog = 
JO 

dEp°Cv{E)Log(\-fe-°E) 

and it follows after integrating by parts and transforming the boundary 
term that 

P = fT 
0 

Œ'(e-E' -e-E')/(l-fe-E') 

for σ = Re(s) > 1 and | / |< 1 and after changing variables E' = sE , 
Τ — 1/s and r — (s — l)/s — 1 — T. Ρ becomes a Laplace transform to be 
found p. 145 in [7]. We deduce : 

Ρ = / T { 1 / ( 1 - T ) F G ( 1 , 1 - Γ; 2 - Γ; / ) - (idemT = 0 )} 
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where the Gauss hypergeometric series FG is doubly degenerate and is 
a special case of the incomplete Beta function. We have obtained the 
equation of state in the thermodynamic limit of the Log gas. 

FG has a logarithmic singularity at / = 1. One can show that this 
logarithm is cancelled in Ρ by the Τ = 0 term. On the other hand let us 
now investigate the blow up at Τ = 1. We expect it to be more serious 
than for the Riemann gas. In fact we find a pole 1/(1 — T ) again but in 
the pressure instead of in the partition function. It can be extracted from 
the series expansion 

oo 

= Σ / " ( l - T ) / ( l - T + n) 

its residue is / which corresponds to ~ e ^ " 1 T> near Τ = 1. For / ~ 1 
we find 

Ρ/Τ ~ 1/(1 -T) + Log{l-f) 4 
OO 

Σ 
n = l 

fn/(l-T + n) 

hence 

Ρ / Τ ~ 1 / ( 1 - T ) - ( l - T ) Σ . / ( η 2 + n ( l - Τ ) ) . 

This is precisely the singularity obtained by the other methods. 
We can finally study the thermodynamics of this approximate Log 

gas. Some of the computations can be carried out analytically thanks 
to our [8,9] deep knowledge of the hypergeometric functions. Firstly one 
can compute the density of particles as a function of temperature and 
fugacity. This can be greatly simplified by using three facts : the fact 
that the derivative of the pressure with respect to the fugacity is again a 
combination of hypergeometric series, the Gauss contiguous relations and 
the degeneracy conditions. One can express the density in terms of the 
pressure itself. 

P = T2 

oo 

Σ fn/n(n-T) 

and assuming the Legendre transforms are regular one has : 

V/N = δμ/ΘΡ | r 
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so one finds 

N/V(f,T) = P ( / , T ) - TLog(l - /). 

One finds for example that the fugacity tends to one only for infinite 
density ! Then one may check the validity of one thermodynamic inequality 
ensuring stability of the system 

d(N/V)/dP \T> 0 

But the explicit computation of the entropy and of the specific heat is 
more subtle. 

3· 2-variables generalized Riemann zeta function and Lee-
Yang theorem 

Let us now return to the study of the function Ξ β ( / , s) and take stock 
of the features seen so far. Ξ # ( 1 , 1 / Γ ) has a symmetry with respect to the 
inversion Τ" — 1 = 1/(T — 1) up to a factor (ξ is truly symmetric). The 
Riemann hypothesis states that all the zeros of ξ lie on the invariant circle 
of the complex Τ plane. It is natural to recall that the 2-dimensional square 
Ising model has a Kramers-Wannier "duality" symmetry of the same type 
for the following transformation of the product of the coupling constant 
of nearest neighbours by the temperature 

sinh2K/T = l/sinh2K'/T'. 

Furthermore Fisher [10] has shown that the zeroes of the corresponding 
canonical partition function all lie on the invariant set | sinh2K/T \ — 1. 
One even knows [11] that this duality can be proved using a Poisson 
summation formula as in the case of the functional equation above. In 
fact this result of Fisher presents some analogy with the Lee-Yang theorem 

[12]· 
The Lee-Yang theorem is of a much wider applicability and states 

that for "ferromagnetic interactions" (and positive temperature) the Ising 
model partition function in the presence of a magnetic field can only vanish 
if the latter is pure imaginary. The magnetic field is the analog of our 
chemical potential μ. Let us see whether the analog statement is true 
for the Riemann gas. In other words is it true that Ξ# vanishes only for 
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I / | = 1? Upon my request G. Tenenbaum produced a beautiful formula 
inspired by the works of [13] : 

oo π 
n = l 

CR(ns)p»(» 

where the polynomials Pn are defined by the Moebius relations : 

r = ΣηΡη. 
η IRA 

One finds the well known singularity exponent at s = 1 

Pi=f 

and 

2P 2 = f - / 

3Ρ 3 = f - f 

4P4 = f4-f2 

5P 5 = / 5 - / 

m = f-f-f2 + f 

and so on. We refer to [14] for a detailed analysis. But the danger for real 
(positive) temperature comes from the poles at s = 1/n if RePn < 0. It 
must be emphasized that we are above the Hagedorn temperature there. 
We find that for small f all inverse squarefree numbers are zeroes of order 
f of Ξ# (as a function of s) if they have an odd number of factors. This 
suffices to ruin the analogy. 

In the case of the logarithmic gas the pressure reads : 

P/T2 = 
oo 

Σ 
n = l 

fn/n(n - T) 
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defined for complex / in the unit disc but real Τ comprised between 0 and 
1. A zero of the partition function would correspond to a singularity of the 
pressure so we must study the analytic continuation in the temperature. 
Again the integer temperatures will be singularities. 

4. Prospects 

We would like to conclude by elaborating on the connection between the 
zeroes of generating ("partition") functions and the asymptotic behavior 
of the density of states. In fact the general connection is between the 
singularities and the integrated density of states as we have seen in section 
2. Yet in a multiplicative setting one can take the inverse of a partition 
function and exchange the role of the poles and zeroes while having related 
densities of states. In [1] we have realized that the Riemann hypothesis 
can be rephrased by saying that the critical temperature of fermionic 
(or bosonic) ghost oscillators (i.e. with fugacity —1) is equal to 2. In 
the fermionic case it is the statement that 1/CR should have abscissa of 
convergence 1/2 and not 1. There are sophisticated zero-free regions of 

but it is not known whether the abscissa of convergence of its inverse 
is strictly less than 1 or not. The introduction of ghosts is exceptional 
in physics but one may try to find a symmetry that would explain the 
cancellations required for the Riemann hypothesis to be true. 

Another path to be explored is motivated by the occurrence of the 
hypergeometric function in the thermodynamic limit of the logarithmic 
gas. The Riemann zeta function does not obey any known differential 
equation of finite order, how about its 2-variable generalization Ξ β ? 
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