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Observables in the Kontsevich Model 

P. Di Francesco * 

Service de Physique Théorique de Saclay **, 

F-91191 Gif sur Yvette Cedex, France 

Kontsevich introduced a hermitian random matrix model to compute 

the generating function of intersection numbers of the moduli space of 

(punctured) Riemann surfaces. He showed that this generating function 

is also a r-function for the Korteveg-de Vries (KdV) hierarchy of differential 

equations. This model is fundamentally different from the usual double 

scaling limit of random matrix models known to yield analogous r-functions. 

Our aim is to clarify the notion of ''observables" in both pictures, as related 

to KdV time evolutions. As a result we prove two conjectures by Kontsevich 

and Witten about the form of these observables, which involve polynomial 

matrix averages. 

* Conférence de la R.C.R No 25, LR.M.A. Strasbourg, 3-5 décembre 92. 

Laboratoire de la Direction des Sciences de la Matière du Commissariat à l'Energie 

Atomique. 

Ce texte reprend une prépublication du Service de Physique Théorique 

de Saclay de Décembre 1992 - SPhT 92/174 
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1. Introduction 

The matrix model formulation of two dimensional quantum gravity coupled to matter 

(with central charge c less than 1) enables to express the physical properties of the solutions 

in a very simple and elegant way [1]. Let us recall the original definition. One starts with a 

Ν χ Ν hermitian matrix model, with partition function : 

Z(V,N) = 1 dMexp-NtrV(M) (1.1) 

where dM = (2π)~Ν ^Ui<jdRe(Mij) dIm(MXJ) Π, <ΙΜτι is the Haar measure over 

hermitian matrices, and V some polynomial potential. Roughly speaking the Feynman 

diagrammatic expansion of (1.1) simulates all possible polygon decompositions of Riemann 

surfaces (i.e. gravitational fluctuations) while the precise form of the potential indicates 

which type of matter interactions are involved. The partition function (1.1) can be 

calculated explicitly using orthogonal polynomial techniques, but the main progress was to 

consistently define the so called double scaling limits of the orthogonal polynomial solution. 

On the one hand the large Ν limit was already known to concentrate on surfaces with 

spherical topology, wheras a large Ν expansion would give access order by order to surfaces 

with higher genera [2]. The idea is to combine a large Ν limit with a critical limit in which 

the parameters of the potential are tuned to make it (multi)critical as Ν grows. This has 

the advantage of capturing the whole genus expansion into a single asymptotic series of 

a rescaled variable χ (the renormalized cosmological constant), kept fixed while Ν is sent 

to infinity and the potential is taken to a (multi)critical value. The orthogonal polynomial 

solution becomes in this limit an ordinary differential equation for the double scaled string 

susceptibility u(x) = d\ log τ (χ), where log τ (χ) is the double scaled free energy : 

l og r (x ) = lim 
JV-+00 

V - > V * ; x fixed 

1 

IN2 
l o g Z ( V , i V ) (1.2) 

If instead of taking a special ra-critical potential V*n, we consider a linear combination of 

them for various m's with coefficients £ m , we end up with a function u(x, tt) = d'l log r (x , it). 

The double-scaled solution is then simply characterized by the fact that (i) τ{χ,ί%) is a 

r-fuiiction for the Korteveg-de Vries (KdV) hierarchy and (ii) r(:r, tt) satisfies an ordinary 

differential equation (the so called "string equation"). Upon introducing the differential 
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operator Q = d'2 + u(x, i,;), where d stands for dx, and the fractional powers of Q truncated 

to their differential piece Q[[l] 1 / 2 , the two above properties become : 

CO n+l/2 
Q\ 

(ii) p = Σ Λ + 1/2)ί,·<# 1/2 
[P,Q} = i 

(1.3) 

The string equation (ii) can be viewed as an interpolating equation of motion between 

the m-critical points t{ = δ1)7ηι which correspond to c = 1 — 3(2m — l ) 2 / ( 2 m + 1) conformai 

matter coupled to 2D quantum gravity. More generally (multi)critical (multi)matrix models 

are known to interpolate between conformai points with c < 1, the KdV flows (i) being 

replaced by generalized KdV flows and (ii) modified accordingly [3] (Q is now a differential 

operator of order p, for a model of /; — 1 matrices, and one considers all its fractional powers 

of the form Q^p where k is not a multiple of p). 

The KdV flows (i) and their generalizations enable therefore to move in the space of 

c < 1 matter coupled to 2D gravity, along RG trajectories. The latter are obtained in 

ordinary conformai theory by adding to the action perturbations by relevant operators, it 

is therefore tempting to identify the "dressed" operators of the conformai theory coupled 

to gravity as dual to the "KdV times" t l . More precisely, the insertion of a dressed operator 

φ m in a correlator will be generated by differentiation w.r.t. t r n : <9tm(...) = (</>m---)- This 

definition of observables was successfully applied to one and more matrix models [4] and 

shown to confirm predictions from the continuum theory such as KPZ scaling dimensions 

of dressed operators [5], Liouville correlators [6], etc... Going back to the original matrix 

model for a while, we see.that these observables correspond to the insertion of very 

specific polynomials V*n(M) into the defining integral. On the other hand, such polynomial 

insertions correspond in the Feynman expansion to the insertion of sources with vertices 

of a well defined order, or in the dual picture to the creation of microscopic holes in the 

(discretized) Riemann surface. In fact, the properties (i) and (ii) can be rephrased into 

equations of motion (or loop equations) for these so called loop operators, and take the form 

of Virasoro constraints [7] Lrnr = 0, m > — 1, Lrn certain Virasoro generators constructed 

in terms of bilinears of tl and dt%. The simplest of those observables is the "puncture" 

operator dual to ίο = the renormalized cosmological constant. 

Meanwhile after introducing topological gravity [8] and uncovering its relations to KdV 

hierarchies [9], Witten conjectured that the one matrix model partition function r(x,U) 
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could also be interpreted as the generating function for intersection numbers of the moduli 

space of (punctured) Riemann surfaces [10]. These intersection numbers (σ^°..σρρ) have 

a precise definition as integrals over a compactification of the moduli space of Riemann 

surfaces of genus g with η marked points of exterior powers of the first Chern class of the 

line bundle defined by the cotangent spaces at these points. We will not emphasize the 

topological aspect of this model here and refer the reader to ref. [10] for more details. 

M. Kontsevich made this statement even deeper by introducing yet another matrix model 

of a very different nature [11], enabling to compute these intersection numbers directly. By 

interpreting his cell decomposition of the moduli space of (punctured) Riemann surfaces 

in terms of "fat graphs" he was able to write directly an ad-hoc hermitian matrix model 

whose connected partition function is exactly the generating function for the intersection 

numbers. Let Λ = diag(Xi, X 2 , X n ) be a real diagonal matrix, the partition function 

reads : 

ΞΝ(Α) = 
f (IY exp tr(iY3/6 - AY'2/2) 

J (IY exp -tr(AY2/2) 
(1.4) 

Kontsevich established that when expressed in the variables ' 

i J = - ( 2 j - l ) ! ! t r ( A - 2 ^ 1 ) (1.5) 

this function is an asymptotic series whose truncation to terms of degree less than Ν is a 

universal polynomial of the i.'s. It admits a universal Ν —* 00, limit Ξ(ί.), whose connected 

piece l o g ^ ( i . ) is equal to the generating function F(tm) for intersection numbers : 

F(t.) = Σ Π 
3 

J.713 

η 
[σ0 ...σρ') (1.6) 

Using this correspondence, Witten was able to show using topological arguments [12] that 

Ξ(ί.) satisfies the properties (i) and (ii) of (1.3), and is therefore equivalent to r (x , t t ) 

(x — to) 1 . Some generalizations of the Kontsevich model were also introduced and shown 

to satisfy generalized KdV time evolutions [11] [15]. Their topological interpretation was 

given in [16]. 

The obvious question in view of this equivalence is what about the observables? We 

just clarified their interpretation in the (double scaled) one matrix model as dual to the 

KdV times. Their topological counterpart is given by the first Chern class of the line 

1 See also [13] and [14] for alternative proofs. 
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bundle of the cotangent spaces at marked points. But Witten noticed on a few examples 

that the disconnected partition function Ξ(ί.) could also give rise to interesting objects by 

differentiation w.r.t. KdV times. In a number of cases, he found that the action of some 

differential polynomials of the KdV times R(dtm) on Ξ(ί.) could be rewritten as a kind of 

polynomial expectation value in the form : 

fdaA(Y)P(Y) exp tr(iY3/6) 
]άμΑ(Υ) 

=< Ρ (Y) > (1.7) 

where Ρ (Y) is a certain polynomial of traces of odd powers of Y (odd traces for short), and 

(1μ\(Υ) = (1Yexp — tr(AY2/2) is the natural Gaussian measure of the problem. This led 

him to the conjecture that there exists a general mapping R —> Ρ defined on C[<9t0, 9 t 1 ? . . . ] . 

Let us first discuss a few implications of this fact. First of all if the mapping can be made 

explicit, this gives in principle a straightforward way of computing any intersection number 

using also (1.6). Another important consequence is the definition of yet another kind of 

observables in the topological model. Those are very much like the ones of the one matrix 

model before the double scaling limit, and correspond to the insertion of vertices with a 

well defined number of legs in the Feynman diagrammatic expansion of Ξ(ί.). The explicit 

mapping R —> Ρ yields rules for computing correlations of such observables. 

The rest of the lecture will be dedicated to the proof of this conjecture and the explicit 

construction of the mapping R —* Ρ (see also [17] for a more detailed version). We will need 

a few definitions and preliminaries, and will first prove a weaker statement on Gaussian 

polynomial averages (sect.2), due to Kontsevich, who proved it by topological arguments. 

It involves the construction of another mapping defined on polynomials P(Y) of odd traces 

of y , by taking the average over the Gaussian measure άμ,\(Υ). The result is that as a 

function of t. this average is still polynomial : 

(P(Y)) = 
jdMY)P(Y) 

jdßK(Y) = Q(t.) (1.8) 

We will compute the mapping Ρ —> Q explicitly in a purely algebraic way, and be naturally 

led to introduce a new set of polynomials which generalize the ordinary Schur polynomials. 

These polynomials will be used in sect.3 to describe the Witten mapping R —> P. The 

essence of these proofs is extremely simple and relies mainly on comparisons between 

integrals over ΛΓ + 1 χ Ν + 1 matrices and over Ν χ Ν matrices. 
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2. The Kontsevich mapping 

In this section, we construct the Kontsevich mapping Ρ —> Q explicitly, where 

^ ( Λ - 1 ) = (P(Y)). 

The main tool for working with matrix models is the formula of integration over 

the "angular variables" Ϊ7, when one diagonalizes the hermitian matrix integration 

variable Y = UyU\ with y = diag(yi) ..,yn). The Haar measure decomposes into 

dY = ( 2 π ) - 7 ν 2 / 2 Π % dU Δ ( Γ ) 2 , where Δ(Υ) = Ui>j(yi ~ Vj) i s t h e Vandermonde 

determinant of Y. The Harish-Chandra-Itzykson-Zuber formula [18] reads, for any two 

diagonal matrices χ and y : 

/ dU exp tr(UxlI^y) oc 
A(x)A(y) 

(2.1) 

up to an irrelevant numerical factor depending on Ν only (in the following we omit most of 

these cumbersome factors and use the symbol oc to indicate their presence). This formula 

happens to be a simple case of the Duistermaat-Heckman integration formula [19] : (2.1) 

expresses nothing but the fact that the semi-classical approximation to the integral is 

exact (the classical solutions for the potential tr(UxU^y) are just permutations, and the 

inverse Vandermonde determinants arise from the Gaussian integral) 2. This result enables 

to restrict most of the interesting matrix integrals to integrals over eigenvalues. Let us use 

it to rewrite the Gaussian integral : 

Ζ Ν = f (1μκ{Υ) oc / Δ ( Λ ) Π Vi + y j r 

yi - y j 
• Σ λ, ν; .'2 (2.2] 

where we dropped the determinant symbol by noticing the antisymmetry of the prefactor. 

On the other hand this integral is easily computed by direct integration : 

ΖN oc det(A) - 1 / 2 Δ ( Λ ) 
Δ ( Λ 2 ) 

(2.3) 

Consider now the Ν + 1 χ TV + 1 version of (2.2), this amounts to introducing additional 

eigenvalues y and λ to Y and Λ respectively and we compute : 

ZN 
det(λ - Λ) = λ ~ 1 / 2 det 

1 - λ Λ " 1 

1 + λ Λ " 1 

dy 
(2π)!/2 

•e det v - Y s 

y + Y ' 
(2.4) 

I thank J.-B. Zuber for explaining this unpublished result to me. 
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Let us take a closer look to the integrand of (2.4). It involves the determinant : 

M y ) = det y-Y 
y + Y 

= exp — 2 
oo 

A;=0 

r2k-ltr{Y2k+i)/(2k + 1) = Σ ν - ' (2.5) 

where ρ η ι denote the Schur polynomials of the odd variables : 

02i+lOO = -
2 

2i + 1 
tr(Y2i+1) (2.6) 

Prn = Σ 
" 2 j + l > ° 

Π 0 ? 
(2.7) 

j odd J 

Therefore (2.4) gives us some expressions for the Gaussian averages of these polynomials. 

But due to the divergence of the y integral, we need to perform some analytic continuation. 

To avoid this difficulty, let us compute directly as a function of the formal variable y the 

following Gaussian average over Y : 

</y(?y)) = l - 2 
Ν 

Σ-
1=1 

Vi 

y + y τ 
π 
7/i 

Vi + Vi 

Vt - y-j 
(2.8) 

where we performed a decomposition of / defined in (2.5) into fractions with simple poles 

at y = —yl. Integrating over the angular variables, we are left with 

(fY(y)) = 1 + 2 
OO 

Σ 
m= 1 

'-y)-ni 

Ν 

Σ f 'hi 
ι A * \ 1/2 

2-K' {-l)l-lyTe-Kyi/2 

Δ ( Λ ) Ζ Ν ( Λ ) 
(2.9) 

where we denoted by Xt — diag{x\,.., X i - i , X i + i , X N ) f ° r a n y diagonal matrix X. 

Note that we singled out the integration over y ι and that the integration over the 

other y's just recombined to yield Ζ^_γ(Κ%). Using the one dimensional integral 

Jdz/(2n)1/2z2rne-Xz2/2 = X^n'1/2{2m - 1)!!, we get : 

</y(î/)) = l + 2 
oo 

Σ< 
τη—1 

-l)N-l(2m-l)\\y-'lm 

Ν 

Σ κ'" Π Κ - λ , 
λ 4 + Xj 

(2.10) 

We now use the decomposition of f\-i(X) into fractions with single poles at λ = —λ; to 

identify for m > 1 : 

pUa-1) = 2 ( - l ) Σ Π λν - λ . 

A, + Λ, 
(2.11) 
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and finally : 

</y(y)> = 

OG 

Σ 
k=0 

y-k(i>k(Y)) = i + 
OG 

Σ 
711— 1 

y-2m(- L ) m (2m- - l Jüp^CA" 1 ) (2.12) 

So we get the first elements of the mapping Ρ —> Q, namely 

(0 < P 2 m + l ( n > = 0 

( « ) M ) = ( - l ) w ( 2 m - 1)!! p ^ A " 1 ) 
(2.13) 

To proceed, we need to consider more complicated polynomials, like products of p m ' s , 

known to generate the space of polynomials of odd variables 0.'s. One can think of 

performing an average of the form (2.8), but in the presence of a "spectator" insertion of 

Pk(X)- Actually, it is easy to see that it is more useful to consider : 

(fY(y)pk(e.(Y) + o.(y))) (2.14) 

If one decomposes / into fractions with single poles at y = —iji as in (2.8), then we see that 

the "spectator" pk{ßXY) + θ. (y)) = ΡκΧ0ΧΥι)) + Ο (y + yx) can be replaced with ρ*>(0.(^)) 

if we retain only terms y~k, k > 0 in the formal y expansion. Therefore, we can go through 

the previous steps, with the only modification : 

(fY(y)Prn(0.(Y)+e.(y)))<o = 2 

oo 

Σ 
771= 1 

{-y)-m 

Ν 

'Σ I dyl{ 
Λι x l / 2 

2π 

A(A)ZN(A) 
(2.15) 

where the subscript < 0 indicates that we truncate the y expansion to negative powers 

only. We use the result (2.13) to compute (pk(0XYl))) = (k - l)\\(-l)k/2ph/2(A~l), with 

the convention that (k — 1)!! = 0 when A; is odd. Performing the integration over ytl we get 

a generalization of (2.10) : 

2 
oo 

Σ 
ΊΠ— 1 

- l ) N - 1 ( 2 m - l ) ! ! y - 2 m ( A ; - l ) ! ! ( - l ) f c / 2 

Ν 

Σ 
i = l 

\r"'R /2(A.) Π \i — λ 7 

Xt + λ,. 
(2.16) 

We recognize the general term of the series generated by expanding the decomposition of 

/a- 1 (^)j>/ c /2(^. ( Λ - 1 ) + θ. ( λ - 1 ) ) into rational fractions with single poles at λ = — λ;. If we 
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introduce a generating function (for ζ > y) : 

ί'γ(ζ,ν) = Σ rmp,nœ (Y) + θ (y)) det y-Y 
y+r 

(2.17) ζ - y 

ζ + y 
.et 

(y-Y)(Z-Y) 

{y+ï){z + ï) 

Σ 
7/1,71 6 2 

« - W y - n V > m , n ( y ) 

then the result takes the simple form : 

W {ψιη niy)) — 0 if m or η is odd 

(ii) (<P2mMY)) = ( - l ) m + n ( 2 m - l)!!(2n - 1)!! ^ . « ( Λ " 1 ) 
(2.18) 

Strictly speaking, we only proved it for m, n > 1, as we concentrated on the negative power 

expansion in y . But from the definition (2.17) it is easy to see that </?m,o = ψτη = Pm if 

m > 0, 0 if m < 0, that φ τ η , - η = 0 for η > 0, and that φ - τ η , η = 2 (—l) m <5 m , n for m, η > 0. 

Then if we define ( - 2 m - 1)!! ξ ( - l ) m / ( 2 m - 1)!! for m > 0, (2.18) holds for any m, η G Ζ . 

In view of the above, it is clear that the general Kontsevich mapping will follow from an 

analogous treatment of the Gaussian average over Y of 

/ y ( s i , . . , 2p ) = π 
y — 7ι 

Za + Zfc 
det 

7̂  

π 
a=l 

y - Y 

ζ,. + Υ Σ 
m i , . . , m p G Z 

Π 
α 

ψτηι,..,τηρ (Υ) (2.19) 

understood as a formal series of the variables za in a domain where, say, z\ > z<± > .. > zp. 

The polynomials ( / ? 7 r l l ) . i j m ( 7 ) generalize the Schur polynomials, and generate the whole 

set of polynomials of the odd variables 0m(Y). Actually a basis is formed by the φ*s with 

ordered indices m\ > m<i > .. > mp > 1, ρ > 0. After some algebra one gets the Gaussian 

averages of these basis elements, defining the Kontsevich map 3 : 

(Ό (φτη1,..,τη , Q 0 ) = 0 if at least one of the ml is odd 

(«) ^2mu..,2mv{Y)) = f [ ( - l ) m i ( 2 m , - 1)!! φτηι,..,τηρ(Λ-1) 

1=1 

(2.20) 

3 See [17] for a detailed proof. An inductive proof can also be made along the lines of the case 

ρ — 2 treated above, involving a "spectator" insertion of φπιι,..,τη7,(θ,(Υ) + θ.(υ)) into the Gaussian 

average of jv(y). 
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The <£>'s are easily computed from the definition (2.19), which can be recast into the 

following recursive formula (by convention, the ψ with no index is the constant 1) : 

φητΐ,..,τηρ,τη — ^ ] ψιη-s ( Π ) ^ m i + r i » - -> m p + r p 
s>0 r l 5 . . , r p > 0 \ i = i / 

r j_ + . . -j-rp = s 

(2.21) 

where ar = (— l ) r (2 — δΓβ) are the coefficients of the expansion (1 — y)j(1 + y) = E r > o a ^ r ' 

and φτη = Pm if m > 0, and vanishes for m < 0. We list below the first few tp's with positive 

ordered indices. 

φι = θ[ΐΐ] 

φ2 = Ö[i2] 

^ 3 = % 3 ] + c / [ 3 i ] 

^ 2 , 1 = # [ 1 3 ] - 2 ö [ 3 i ] 

^ 4 = 0[i4j + ö [ ! i 3 i ] 

<£>3,1 = 20[i4] - % i 3 i ] 

¥>5 = Ö[i5] + 0[χ2 3 ΐ ] + 0 [ 5 i ] 

(£>4?1 = 30[χ5] - 2ö [ 5 i ] 

^ 3 , 2 = 2ö[i5] - Ö[i2 3 i] + 20[ 5 i ] 

V>6 = Ö[16] + Ö[1331] + Ö[ll5l] + 0[ 32] 

¥>5,1 = 4Ö[16] + 0[i3 3i] - 0[ii 5i] - 20[32] 

φ^2 = 50[i6] - 0[i3 3i] + 2<9[32] 

^ 3 , 2 , 1 = 20[χ6] - 0[i3 3 i ] + 2 ( 9 [ 1 i 5 i ] - 4 0[ 32] 

Table I : the φ polynomials up to degree 8 . The notation 0 [ i ^ i 3 ^ 3 . . . ( 2 / c + 1 ) ^ + 1 . . ] is a short 

hand for ^ ^ . . - ^ j . . . . 
VV- ^3! ^2fc+l ! 

3. The Wit ten mapping 

We want to investigate the mapping R —» P, where, hopefully for any polynomial P(#£ # ) 

one can find a polynomial Ρ of odd traces of Y , such that R(dt)S(t.) = < C -POO 2 > , where 

the double bracket denotes the weighted average (1.7). Starting from the partition function 

Ξ ( Λ _ 1 ) (this notation is just to recall that the i.'s are themselves normalised odd traces 
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of Λ 1 , and indicates that Ξ is also a function of the odd variables θ·):) \ \ (Λ one can 

generate differentiations w.r.t. odd traces of Λ - 1 by just expanding : 

Ξ ( λ _ 1 Θ Λ - 1 ) = exp 
oc 

Σ 
.1=0 

2j + l Ofhj, , 
Ξ ί Λ - 1 ) = 

oo 

Σ· 
k=0 

rk

Pk(d.) Ξ (3.1) 

where λ - 1 Θ Λ - 1 = dicuj(X~1, \~[λ^"1,..), and the r.h.s. is a formal power series of 

λ " 1 , which is the generating function of the Schur polynomials of the odd derivatives 

<?2j+i — — (2/2.7 + l ) ^ 2 i + i acting on Ξ, as a function of the infinitely many variables 

#2j+i . To evaluate this action in terms of matrix averages, we will have to compare 

S i v - f i ^ - 1 0 Λ - 1 ) to Ξ τ ν ( Λ - 1 ) . To get the most general action on Ξ of polynomials of 

derivatives w.r.t. 0.'s, we can just add ρ eigenvalues λ ι , . . , λ ρ to Λ, and expand Ξ as a 

formal series of A " 1 . By analogy with the situation of previous section, it is very natural to 

consider the generating function : 

π λ , - - λ- · 
λ - ' + λ - ' 

Τ) fc / 

Ξ ί λ Τ ^ θ - Θ λ ^ θ Λ - 1 ) = Σ 
Ρ 

π λ , : " " φ, ,„ .„(3 . ) Ξ ( Λ - ' ) (3.2) 

where the polynomials φ are now considered as functions of the odd differentials c?2j+i 

(substituted for the odd traces é^j+i of (2.19)), and the function is expanded in the domain 

λ ] - 1 > .. > λ" 1 · The reexpression of (3.2) as matrix averages is achieved through the 

following formula, where we decompose Λ - 1 = A~[l θ Λ ^ 1 , with Λι = diag(X[, ..,XP) and 

Λ 2 = diag(Xp+1, ...,XN+p) : 

Π V - T 1 Ξ ί '+^ ( Λ Γ 1 ® Λ 2 - χ ) = / fi « K , « * 
I< î<J<P ' J

 fc=i (3.3) 

n 2 i ( A m - A n ) + y m - y η Λ / 2i\i + yi - Y 2 \ . u 

where du χ (y) = (λ/2π) 2 exp( iy 3 /6 — \y2/2)dy is the measure of integration over the 

eigenvalues y adapted to our problem, and the double bracket denotes the integral over 

the Ν χ Ν matrix Yo as defined in (1.7). The expansion of both sides of (3.3) in series of 

λ ^ 1 > .. > λ " 1 will characterize the Witten mapping completely. Let us turn to the proof 

of formula (3.3). 

At first the matrices Λ, Λχ, Λ 2 involve diagonal real positive elements, but if we introduce 

a cut in the complex plane along the negative real axis, the integrals make sense for each 
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eigenvalue having a positive real part - as absolutely convergent integrals; as semi-

convergent ones we can even extend them to the imaginary axis except the origin. To give a 

meaning to the following operations we will first continue analytically the Xj to imaginary 

non vanishing values. Similar techniques were implicit in both [11] and [13]. We consider : 

^P (3-4) 

where Zp±yv(A) is defined in (2.2). We perform the change of variables Ζ — Υ + 2ί(Λι Θ 0), 

with the obvious definition for the (p + Ν) χ (p + N) matrix Λχ 0 0 = diag(Ai,.. , A p , 0, . . ,0 ) . 

Due to the relation 

(Λι Θ 0 ) ( 0 θ Λ 2 ) = ( 0 θ Λ 2 ) ( Λ ι Θ 0 ) = 0 

the trace in the exponential becomes 

itr(r 3) - i t r ( A K 2 ) = l t r ( Z 3 ) - ±tr([(0 θ Λ 2 ) - (Λ, φ 0 ) ] Z 2 ) + | t r ( A ? ) (3.5) 

We see that except for a constant term, the form of the exponential term is conserved, 

up to the substitution Λ = Λχ θ Λ 2 - » Λ = (0 θ Λ 2 ) - (Λι θ 0). Let us now perform the 

angular average over Ζ using (2.1), which results in 

p-\- Ν ρ 

wa-)= π ^ / Π ^ ) Π « Κ Π τττ (36) 

l<i<j<N+p A J A * J k=l n = l l < l < r n < N + p 1 m 

where the A's are the diagonal elements of Λ, i.e. Xk = — A^ for 1 < k < p, Xk = Xk for 

p+l<k<p+N (recall that the A's are purely imaginary, so that the minus sign causes 

no harm in the integral). The antisymmetry of the integrand in z's in (3.6) automatically 

takes care of the denominators z\ + zTn, by antisymmetrizing the measure. We proceed and 

perform the opposite change of variables, but this time on the eigenvalues ζ by setting 

Zk = Vk + 2?:A/c 1 < k < ρ 

Zk = Vk p+1 < k <p + Ν 
(3.7) 

which leads to 

ξ ρ + κ ( λ Γ ' φ λ γ ' ) = Π r 1^ Π ^ τ ϊ / Π ^ ω χ 
l < i < J < P 3

 Ρ+\<Κιη<ρ+Ν λ 1 Ä m J fc=l 

x TT y i ~ V m + 2 ϊ ^ 1 ~ γ τ V i ~ yj T T yi + - yj 

i<i<LP *+++λ-) p+iM<p+n » + % xM, + 2 i X<+ 
(3.8) 
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and amounts to (3.3) since 

Π ^ r ^ r / Π Π ^ 
p+l<l<m<p+N 1 m J k=P+l p+l<i<j<P+N J % J j 

T T Vi + 2i\, - y, t t i m + 2i\^Y,\ 

, 1 , 1 W + SA.+W"*,!! " ^ U + ̂  + y J 
P+1<3<P+N 

» (As" 1) 

(3.9) 

Let us rewrite the content of (3.3) for ρ = 1 : 

ΞΝ+ι(λ 1 θ Λ " 1 ) - / duxiy) < det y

( * ^ + ^ » = / dux(y) « / y / 2 * ( A + (y/2z)) > 

(3.10) 

where we identified the generating function / for the odd Schur polynomials (2.5). In the 

sense of asymptotic series of λ - 1 , we are allowed to expand /' and integrate term by term 

over y to get : 

Ξ ^ + ^ λ - 1 θ Λ - 1 ) = £ « Pm(Y/2i) » / dvx(y)(X - f ) — 
m = 0 J 1 

(3.11) 

so that comparing with (3.1), we find the first elements of the Witten mapping : 

pk(d.) Ξ(0.) = Σ « Pk-3s{Y/2i) » 
0 < s < [ f c / 3 ] 

(3.12) 

where 

_ γ> 1 (k - 35 + / - 1)! (6s -21- 1)!! 
l\(k-3s-l)\ 6 2 s - i ( 2 5 - / ) ! 

(3.13) 

and [:/:] denotes the integral part of;/;. 

For ρ generic,we are left with the easy task of expanding the r.h.s. of (3.3) in 

X~[l > .. > λ " 1 and identifying term by term with (3.2). Noting that the integrand in (3.3) 

is again the generating function for <£>'s (2.19), but with the identification Y —» 1^/2'/ and 

yk —> Xh + we can integrate over τ/ι,.., τ/ρ to get the general Witten mapping in the 

form : 

¥ W . , m p ( 0 . ) Ξ(0.) = Σ 
ΊΙ 

I K - ΙΓ''-.s,.,,,, < ^ m i - 3 s i , . . . , r n p - 3 ^ ( ^ / 2 ' t ) » 

(3.14) 
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We list the first few images of c '̂s below. 

12 (d.) Ξ 

Ψ2,ι{9.)^ 

φ A (d.) Ξ 

νβ(5.)Ξ 

Table II : the derivatives of the Kontsevich partition function with respect to the 

Θ. 's expressed as averages over polynomials in odd traces. The notation ô stands for 

{~ 2k+i d02k+i ®· Ξ ^ ( Λ _ 1 ) > while on the r.h.s. the matrix argument of the y?.'s is Yjli. 
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= « ί̂ ι » 

= <T 0?9 ^ > 

= <C (/M - ΟΑΨΙ > 

= « ψ3Λ + ê V l > 

= < ψΑ,Χ > 

ζ/ , „ 5 9 , „ ι 385 ^ 
= < ψ% - 24<£3 + 1 1 5 2 ^ 

= « φ^,ι - §¥>2,ι + m » 

< ^ 3 , 2 , 1 - Jl<f2,l - Τ2Ψ3 + 2§8 ^ 

= < ψ4,2 - = É » 

^ 3 , 2 - - » 

= < ψ5 - ΜΨ2 » 

- -5- » 
24 

= « Ψ2Λ - è » 

c 

« ζ 

4-
17 , 

' 
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