Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds
Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 45 (1993), Exposé no. 1, 10 p.
@article{RCP25_1993__45__1_0,
     author = {Cartier, Pierre},
     title = {Construction combinatoire des invariants de {Vassiliev-Kontsevich} des n{\oe}uds},
     journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25},
     note = {talk:1},
     pages = {1--10},
     publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur},
     volume = {45},
     year = {1993},
     language = {fr},
     url = {http://archive.numdam.org/item/RCP25_1993__45__1_0/}
}
TY  - JOUR
AU  - Cartier, Pierre
TI  - Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds
JO  - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25
N1  - talk:1
PY  - 1993
SP  - 1
EP  - 10
VL  - 45
PB  - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
UR  - http://archive.numdam.org/item/RCP25_1993__45__1_0/
LA  - fr
ID  - RCP25_1993__45__1_0
ER  - 
%0 Journal Article
%A Cartier, Pierre
%T Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds
%J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25
%Z talk:1
%D 1993
%P 1-10
%V 45
%I Institut de Recherche Mathématique Avancée - Université Louis Pasteur
%U http://archive.numdam.org/item/RCP25_1993__45__1_0/
%G fr
%F RCP25_1993__45__1_0
Cartier, Pierre. Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 45 (1993), Exposé no. 1, 10 p. http://archive.numdam.org/item/RCP25_1993__45__1_0/

[1] V. G. Drinfeld, On quasi triangular quasi-Hopf algebras and a group closely connected with Gal ( ¯/), Leningrad Math. J. 2 (1991), p. 829-860. | MR | Zbl

[2] P. J. Freyd et D. N. Yetter, Braided compact closed categories with applications to low dimensional topology. Adv. Math. 77 (1989), p. 156-182. | MR | Zbl

[3] V. Jones, A polynomial invariant of knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985), p. 103-111. | MR | Zbl

[4] A. Joyal et R. Street, Tortile Yang-Baxter operators in tensor categories, Journ. Pure Appl. Alg. 71 (1991), p. 43-51. | MR | Zbl

[5] M. Kontsevtch, Graphs, homotopical algebra and low-dimensional topology, prépublication, 1992.

[6] S. Maclane, Natural associativity and commutativity, Rice Univ. Stud. 49 (1963), p. 28-46. | MR | Zbl

[7] S. Piunikhin, Combinatorial expression for universal Vassiliev link invariant, prépublication, Harvard, mars 1993. | MR | Zbl

[8] D. Quillen, Rational homotopy theory, Ann. of Maths 90 (1969), p. 205-295. | MR | Zbl

[9] N. Y. Reshetikhin et V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys. 127 (1990), p. 1-26. | MR | Zbl

[10] V. A. Vassiliev, Cohomology of knot spaces, in Theory of singularities and its applications, Advances in Soviet Math., A.M.S. (1990), p. 23-69. | MR | Zbl