@article{RCP25_1993__45__43_0, author = {Schottenloher, Martin}, title = {Metaplectic {Quantization} of the {Moduli} {Spaces} of {Flat} and {Parabolic} {Bundles}}, journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25}, note = {talk:5}, pages = {43--70}, publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur}, volume = {45}, year = {1993}, language = {en}, url = {http://archive.numdam.org/item/RCP25_1993__45__43_0/} }
TY - JOUR AU - Schottenloher, Martin TI - Metaplectic Quantization of the Moduli Spaces of Flat and Parabolic Bundles JO - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 N1 - talk:5 PY - 1993 SP - 43 EP - 70 VL - 45 PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur UR - http://archive.numdam.org/item/RCP25_1993__45__43_0/ LA - en ID - RCP25_1993__45__43_0 ER -
%0 Journal Article %A Schottenloher, Martin %T Metaplectic Quantization of the Moduli Spaces of Flat and Parabolic Bundles %J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 %Z talk:5 %D 1993 %P 43-70 %V 45 %I Institut de Recherche Mathématique Avancée - Université Louis Pasteur %U http://archive.numdam.org/item/RCP25_1993__45__43_0/ %G en %F RCP25_1993__45__43_0
Schottenloher, Martin. Metaplectic Quantization of the Moduli Spaces of Flat and Parabolic Bundles. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 45 (1993), Exposé no. 5, 28 p. http://archive.numdam.org/item/RCP25_1993__45__43_0/
Ash New Hamiltonian Formalism of General Relativity. Phys. Rev. D36 (1987), 1587-1602. | MR
:AtB The Yang-Mills Equations over Riemann Surfaces. Philos. Trans. Royal Soc. London A 308 (1982), 523-615. | MR | Zbl
/ :Ati The Geometry and Physics of Knots. Cambridge: Cambridge Univ. Press, 1991. | MR | Zbl
:APW Geometric Quantization of Chern-Simons Gauge Theory. J. Differential Geometry 33 (1991), 787-902. | MR | Zbl
, / , / :Bau Parabolic Bundles, Elliptic Surfaces and SU(N)-Representations of Genus Zero Fuchsian Groups. Math. Ann. 290 (1991), 509-526. | EuDML | MR | Zbl
:BeL Conformal Blocks and Generalized Theta Functions. Preprint (Orsay 93-52, 1993). | Zbl
/ :BNR Spectral Curves and the Generalized Theta Divisor. J. reine angew. Math. 398 (1989), 169-179. | EuDML | MR | Zbl
/ / :BiF The Analysis of Elliptic Families I. Commun. Math. Phys. 106 (1986), 159-176. | MR | Zbl
/ :BiG Principal Bundles on Open Surfaces and Invariant Functions on Lie Groups. Intern. J. Math. 4 (1993), 535-544. | MR | Zbl
/ :BPV Compact Complex Surfaces. Berlin: Springer-Verlag, 1984. | MR | Zbl
/ / :Cor Flat G-Bundles with Canonical Metrics. J. Differential Geometry 28 (1988), 361-382. | MR | Zbl
:Do1 Anti-Self-Dual Yang-Mills Connections over Complex Algebraic Surfaces and Stable Vector Bundles. Proc. London Math. Soc. 50 (1985), 1-26. | MR | Zbl
:Do2 Infinite Determinants, Stable Bundles and Curvature. Duke Math. J. 54 (1987), 231-247. | MR | Zbl
:DrN Groupes de Picard des variétés de modules de fibres semi-stables sur les courbes algébriques. Invent, math. 97 (1989), 53-94. | MR | Zbl
/ :Fal Stable G-Bundles and Projective Connections. J. Algebraic Geometry 2 (1993), 507-568. | MR | Zbl
:Fuj Hyperkdhler Structure on the Moduli Space of Flat Bundles. In: Prospects in Complex Geometry. Proceedings, Katata/Kyoto (Eds. NOGUCHI, J. / OHSAWA, T.), 1-83. Lect. Notes in Meth. 1468, New York, Springer-Verlag, 1991. | MR | Zbl
:Hi1 The Self-Duality Equations on a Riemann Surface. Proc. London Math. Soc. 55 (1987), 59-126. | MR | Zbl
:Stable Bundles and Integrable Connections. Duke Math. J. 54 (1987), 91-114. | MR | Zbl
:Hi2 Flat Connections and Geometric Quantization. Commun. Math. Phys. 131 (1990) 347-380. | MR | Zbl
:HKLR Hyperkähler Metrics and Super symmetry. Commun. Math. Phys. 108 (1987), 535-589. | MR | Zbl
/ / / :HOM A New Polynomial Invariant of Knots and Links. Bull. Amer. Math. Soc. 12 (1985), 239-245. | MR | Zbl
/ / / / / :Ish Loop Algebras and Canonical Quantum Gravity. In: Mathematical Aspects of Classical Field Theory (Eds. GOTAY, J.M. et alii), 419-138. Contemporary Mathematics 132, Providence, Amer. Math. Soc. 1992. | MR | Zbl
:Jo1 Hecke Algebra Representations of Braid Groups and Link Polynomials. Ann. Math. 126 (1984), 59-126. | MR | Zbl
:Jo2 From Quantum Theory to Knot Theory and Back: A von Neumann Algebra Excursion. In: Proceedings of the AMS Centennial Symposium 1988, 321-337. Providence, Amer. Math. Soc. 1992. | MR | Zbl
:Kau State Models and the Jones Polynomial. Topology 26 (1987), 395-401. | MR | Zbl
:Lol Chromodynamics and Gravity as Theorems on Loop Space. Preprint CGPG-93/9-1, Pennsylvania State University, 1993. | MR
:MeS Moduli of Vector Bundles on Curves with Parabolic Structure. Math. Ann. 248 (1980), 205-239. | MR | Zbl
/ :NaS Stable and Unitary Vector Bundles on a Compact Riemann Surface. Ann. Math. 82 (1965), 540-567. | MR | Zbl
/ :Sch Metaplectic Quantization of the Moduli Spaces of Flat and Parabolic Bundles. Dissertation, Universität München, Jan. 1992. Submitted for publication in J. reine angew. Math.
:Si1 Constructing Variations of Hodge Structurs Using Yang- Mills Theory and Applications to Uniformization. J. Amer. Math. Soc. 1 (1988), 867-918. | MR | Zbl
:Si2 Harmonic Bundles on Noncompact Curves. J. Amer. Math. Soc. 3 (1990), 713-770. | MR | Zbl
:Si3 Higgs Bundles and Local Systems. Publ. Math. IHES (1992), 5-95 | Numdam | MR | Zbl
:Si4 Moduli of Representations of the Fundamental Group of a Smooth Projective Variety I and II. Preprints 1993. | Numdam | MR | Zbl
:TUY Conformal Field Theory on Universal Family of Stable Curves with Gauge Symmetries. Adv. Studies in Pure Math. 19 (1989), 459-566. | MR | Zbl
/ / :Ue On the Diffeomorphism Types of Elliptic Surfaces with Multiple Fibers. Invent. math. 84 (1986), 633-643. | MR | Zbl
:UhY On the Existence of Hermitian-Yang-Mills Connections in Stable Vector Bundles. Commun. Pure Appl. Math. 39 S (1986), 257-293. | MR | Zbl
/ :Wit Quantum Field Theory and the Jones Polynomial. Commun. Math. Phys. 100 (1989), 351-399. | MR | Zbl
:Woo Geometric Quantization. Oxford: Clarendon Press, 1980. | MR | Zbl
: