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On the dimension of some modular irreducible 
representations of the symmetric group. 

OLIVIER MATHIEU* 

Abstract: We compute the dimension of some irreducible representations of the sym­
metric groups in characteristic ρ (Theorem 2). The representations considered here are 
associated with Young diagrams m : πΐχ > m 2 > ... > m/ such that πΐχ — mi < (jp — I). The 
formula is based on a variant of Verlinde's formula which computes some tensor product 
multiplicities of indecomposable modules for GLi(¥p), as it is proved in [7] [8]. 

Mathematics Subject Classification (1991): 20 C 30 

Introduction: In this paper we will compute the dimension of some modular irreducible 
representations of the symmetric group EJV, (see Theorem 2 below for a precise statement). 
By a classical formula of Frobenius, the dimension of a characteristic zero irreducible Σ^γ-
representation is given as the number of standard tableaux of a given shape. However in 
the modular case, it is not very convenient to use the standard tableaux to describe these 
dimensions. Instead, we will use a combinatorial description based on paths in the set of 
Young diagrams. For this reason, we will first "translate" the classical Frobenius formula 
in terms of paths. 

Recall that a Young diagram of height < / is a sequence of non-negative integers 
m : mi > m 2 > ... > mi. Pictorially one represents a Young diagram as follows, 

namely a set of boxes with m\ boxes on the first line, m2 boxes on the second line and so 
on.... The total number m\ + m2 + ··. of boxes will be called the size of the Young diagram 
m. In order to give a completely rigorous definition, we also require that two Young 
diagrams which can be obtained one from the other one by adding or removing empty 
lines are considered as identical. For example the Young diagrams 3 > 1 and 3 > 1 > 0 
are viewed as the same. 

Let Yi be the set of all Young diagrams of height < /. We consider Y*/ as an oriented 
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graph. Actually there is an oriented edge going from m to m' if and only if we have 
m\ = mj for all indices i except for one, say j , for which we have m1- — m2 + 1. Pictorially, 
this means that we can get m' from m by adding exactly one box to m, e.g. 

Denote by 0 the Young diagram with no boxes. To each Young diagram m of size iV, 
Frobenius associated an irreducible C-representation 25c (m) of .EJV and he proved the 
following result. 

THEOREM 1 (Frobenius formula in terms of paths). The dimension of the complex 
representation 25c (m) is the number of oriented paths from 0 to m. 

Actually Frobenius Theorem was stated in terms of tableaux of shape m. Recall that 
a standard tableau of shape m is a one-to-one labeling of the Ν boxes of m by the integers 
1,2,..., Ν which is increasing along the lines and the columns. Actually it is easy to define a 
bijection between standard tableaux of shape m and paths from 0 to m. Given a standard 
tableau of shape m, one can associate a path 0 = τ 0 ,τχ, . . . ,τ# = m going from 0 to m 
with the requirement that τ*; is the Young tableau of all boxes with label < k. Conversely 
one obtains a standard tableau from a path 0 = τ 0 , τ ΐ 7 . . . ,r# — m by labeling with k the 
unique box of \ Tk-i. 

Now fix a prime number ρ and two positive integers / and N. Set k = Fp. By 
using the Schur Weyl duality one can associate to any Young diagram m of size Ν a k-
representation Ek(m) of Ejy. These representations 22*(m) are irreducible or {0} , and the 
non-zero representations 25fc(m) form a complete set of irreducible representations of EJV 
(see Section 3 for more details). 

Let Yi(p) the set of all Young diagrams m = m l r . . , m | of height < / such that 
m1 — mi < ρ — 1. We will prove: 

THEOREM 2. (Assume / < p) Let m £ Υι(ρ) be a Young diagram. Then the dimen­
sion of the k-representation Ejç(m) is the number of oriented paths from $ to m entirely 
contained in Yi(p). In particular 2?fc(m) φ 0. 

For general irreducible representations of the symmetric group, it is still possible to 
describe the dimension in terms of paths. In section 5, we introduce a natural structure of 
oriented graph on the set of all Young diagrams. As the graph structure depends on ρ we 
will denote by Z(p) this graph. By contrast with the characteristic zero case, or the case 
of the graph Y/(p), the graph Z(p) contains multiple edges. 

THEOREM 3. Let m be a Young diagram of size Ν. Then the dimension of the 
Σ^-module Ek(m) is the number of oriented paths going from $ to m in Z(p). 

However we do not known how to compute the multiplicities of edges in Z(p). Thus 
Theorem 3 does not give an explicit formula, (as in Theorem 2) for the dimension of general 
simple representations of the symmetric group. However it explains why we believe that the 
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combinatoric in terms of path is more adapted than the classical combinatoric of standard 
tableaux. 

Remarks. 1. The formula and its proof are based on the Schur Weyl duality, Ringel's 
notion of tilting modules [12] and relies heavily on the work [8] (announced in [7]). In the 
work [8], it is proved that some tensor product multiplicities of tilting modules are given 
by Verlinde's formula [13]. However this formula and this work will not appear explicitly 
(although Lemma 12 is equivalent to the main statement of [8] for groups of type A). 

2. K. Erdmann already used the tilting modules for the study of modular represen­
tations of [4]. She recovered the classical dimension formula for all representations 
attached to a two-lines Young diagram (in [4], the author refers to Donkin's paper [6] for 
the basic idea). 

3. A. S. Kleshchev proved independentely a lower bound for the dimension of repre­
sentations in Theorem 1. His proof is based on a very different idea: he used his result 
about the Σ η _ι - soc le of E n-irreducible modules. 

4. In his study [15] of representations of Hecke algebras at p-root of unity, H. Wenzl 
considered Hecke modules parametrized by Young diagrams m = πΐ\,vci\ satisfying 
exactly the same condition m\ — mi < ρ — /. Some authors, including R. Rouquier, told 
us that our formula and proof can be extended to Hecke algebras as well. 

EXAMPLE 4. Denote by Ya^ be the Young diagram m such that mi — α + 1 and 
ml = 1 for 2 < i < b + 1. 

( a + i ) columns 

limes 

In characteristic 0 (or characteristic > a + b + 1) the corresponding representation of 
Σα+&+ι has dimension (a + b)\/a\b\. Now assume that p = a + 6 + l i s a prime number. 
Let 0 = το, τ ι , . . . ,Tp = m be a path in the set of all Young diagrams. We obtain τρ_ι by 
removing from m either the last box of the first line or the last box of the first column. 
In the second case we have τ ρ _ ι ^ ^/(p)- Otherwise the full path 0 = το ,τχ , . , . ,Τρ = m 
belongs to Yi(p) and we have τρ-χ = Ya,b-i- Thus the dimension of Ek(Ya,b) is the number 
of path from 0 to Γ α ,6-ι· Thus we get dim Ek(Ya,b) = (α + δ - 1)!/α!(δ - 1)!. 

Acknowledgment I thank S. Donkin, M. Duflo, G. Georgiev and R. Rouquier for helpful 
conversations. This work has been supported by an NSF Grant and a Sloan Grant (at 
Rutgers University) and by IRMA (at CNRS at Strasbourg). 
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1. Root system of GLi(k). From now on, set k — F p . In this section we will recall 
a few definitions and facts about the representation theory of reductive groups, for the 
particular case of the full linear group GL\{k). 

Let H be the subgroup of all diagonal matrices of GLi(k). Let Ρ be the group of 
all characters of H. We have Ρ = Ζβχ Θ Ze2 Θ ... Θ Ζει where €,· is the character defined 
by 6i(diag(\i,...,\i)) = λ;, where (diag(Xll..., λ/)) is the diagonal matrix whith diagonal 
entries λ 1 ? . . . , λ / . Set P* = Hom(P,Z). For any i with 1 < i < /, set = — ej+i, 
hi = e* — c * + 1 , where (e*)i<i</ is the dual basis of P*. Also set aQ = 6χ — €/, /*o = — e*. 
Let W be the subgroup of GL(P) generated by the reflection sl = I — ht ξξ> I < ι < I 
Recall that W is naturally isomorphic to the symmetric group Σ/ acting by the permutation 
representation on Zl. 

Define the affine reflection sQ of Ρ by s0(X) = λ — (λ( / ι 0 ) - p)a0. The affine Weyl 
group Waff is by definition the group of affine transforms of Ρ generated by W and SQ. 
Set 

P + = { λ G Ρ |λ(Λί) > 0 for any 1 < i < 1} 
C = {\eP+\\(h0)<p-l + l} 
C° = {\eP+\X(h0)<p-l}. 

The following equivalent definitions of C and C° are more usual in the theory of reductive 
groups (see e.g. [9]). Choose any ρ Ε Ρ such that p(hi) = 1 for any i, 1 < i < I. We 
have p(h0) = I — 1. Thus an element λ G P + belongs to C (respectively to C°) iff we have 
λ + p(h0) < ρ (respectively λ + p(h0) < p). 

For any λ € P + we will denote by W(\) the Weyl module with highest weight λ (see 
e.g. [5] or [9] for a definition). By definition a filtration of a rational GL/(fc)-module is 
called a Weyl filtration if its subquotients are Weyl modules W(X) for various λ G P + . For 
any rational module M we define its character as ch(M) = Σμξ.ρ (dimMß)eß G Ζ [Ρ], 
where Μμ denotes the weight space corresponding to the weight μ. 

The following result, which holds for any Chevalley group is usually called the Strong 
Linkage Principle. As it is stated below (namely for type A groups), it is due to Carter 
and Lusztig [3]. The general case is due to Andersen [1] (a convenient reference is [9]). 

THEOREM 5 (Strong Linkage Principle). IfW(X) and W(/x) are in the same block, 
then we have X + ρ = w(u + p), for some w G Waff. 

The following two facts are well known consequences of the Strong Linkage Principle: 
(i) for any λ G C, the Weyl module W(X) is simple and its dual is again a Weyl 

module. 
(ii) for any λ, μ G C with A φ μ, the Weyl modules W(A) and W(ß) are not in the 

same block. 
By definition the fundamental weights of GL\{k) are the weights of the form ω3 = ei+...+€j. 
If V denotes the natural /-dimensional representation of GLi(k), then W(UJ) ~ AJ V. Any 
weights ν of W(UJ) is VT-conjugated to UJ and we have |^(/ ι») | < 1 for any i, 0 < i < I. 

2. Tilting modules for GU{k). 
Set G .= GLi(k). Recall that a finite dimensional rational G-module M is tilting if M 

and M * have a Weyl filtration. 
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THEOREM 6 (Ringel [12], Donkin [6]). 
(1) For any λ G P + there exists a unique indecomposable tilting module Ρ ( λ ) which 

has X as a unique highest weight Moreover P(X)\ has dimension 1. 
(2) Any tilting modules is a direct sum of P(X) and for Χ φ μ, Ρ (X) and Ρ{μ) are 

not isomorphic. 

The following lemma follows immediately from the fact that any tensor product of 
modules having a Weyl filtration has a Weyl filtration (see ([6]). For a reductive group of 
type A, this result is proved in [14]. For general reductive groups see [5], [11]. 

LEMMA 7. The tensor product of two tilting modules is tilting. 

It is easy to prove that the dual W(X)* of a Weyl module W(X) has a Weyl filtration 
if and only if W(X) is simple. Thus any simple Weyl module is tilting. So by Lemma 7 we 
get. 

COROLLARY 8. For any N, the G-module V®N is tilting, where V is the natural 
l-dimensional representation of G. 

The following lemma is well-known. Actually it is valid for any group G, and it is a 
very particular case of results in [2]. A quick proof can be found in [8]. 

LEMMA 9. Let A and Β be two rational G-modules. If A is indecomposable and 
dimA is divisible by p, then any direct summand in A® Β has dimension divisible by p. 

PROPOSITION 10. Assume I < p. Let λ G P + . 
(l)If\eC then Ρ ( λ ) ~ W(X) and Ρ ( λ ) is simple. 
(2) If X £ C° then the dimension of P(X) is divisible by p. 

Proof. Proof of (1): There is a filtration of Ρ ( λ ) whose subquotients are some \ν(μ). 
If ν/(μ) occurs as a subquotient then λ — μ is a linear combination of ot{ with non-negative 
coefficients. Furthermore by the Strong Linkage Principle (Theorem 5), the weights μ + ρ 
and λ + ρ are ^ / / - c o n j u g a t e d . As λ G C this implies λ = μ. Moreover W(X) occurs only 
once and is simple. 

Proof of (2): We will prove (2) by induction on (λ + />)(/ι 0), starting with the case 
λ + p(ho) = p. First if λ + p(ho) = p, then λ G C and by the first point of the proposition, 
we have Ρ ( λ ) == W(X). Its dimension is given by Weyl's formula, namely dim(W(X)) = 
Π α € Δ + ( ^ + P)(ha)/p(ha) (where Δ + = {e^ — ej\i < j} and for any a = e{ — e;- G Δ + we 
set ha = €* — 6p . Note that for any a G Δ + we have p(ha) < p. Thus the denominator 
is prime to p. However the denominator is divisible by ρ = (λ + p)(hQ). Thus dim Ρ ( λ ) is 
divisible by p. 

Next let λ G P + with X + p(h0) > p. There is a fundamental weight ω such that 
λ — ω G Ρ + . By Ringel's theorem, Ρ ( λ ) ® Ρ (ω) contains Ρ ( λ ) as a direct summand. 
Note that (λ — ω ) ( / ι 0 ) = λ( / ι 0 ) — 1. Thus by induction hypothesis Ρ ( λ — ω) has dimension 
divisible by ρ and so is Ρ ( λ ) (Lemma 9). Q.E.D. 

Let ω be a fundamental weight and set Ω(ω) = { W . o ; } . Recall that Ω(ω) is the set of 
weights of W(u;), and all of them have multiplicity one. 

LEMMA 11. For any X G P + , we have ch(W(X)® W{u)) = Y,ch{W(X + v)) where 
the sum runs over all ν G Ω(ω) such that X + ν G P + . 
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Proof. Denote by D : Z[P] —• Z[P] the linear operator defined by D βμ = χμ+ρ/χρ  

where χμ = Σ ^ ^ ^ Κ ^ where e(u;) is the signature. Recall that we have 
(i) D ex = cA(W(A) for any λ € P + , 
(ii) D(A.B) = ( D A ) . P if Ρ is ^-invariant. 
(iii) D e A = 0 if A(/i t ) = - 1 for some i G { 1 , Ζ } . 
As ω is fundamental, we have v{hi) > —1 for any i and any ν G Ω(α>). Also either 

λ + ν is dominant or (λ + ι/)(/ι,·) = —1 for some i G { 1 , / } . Thus we get 

= D(e A).c/i(PF(u;) 
= D(exxh(W(u)) 
= = = Σ ι / € Ω ( α / ) Ό ( β λ + Ι / ) 

= = Σ ι / € Ω ( α / ) , λ + * ' € Ρ + ^ ( e * 4 * 

= Σ„(=Ω(α ; ) ,λ+-<€Ρ+ ch(W(X + 

LEMMA 12. Assume I < p. Let ω be a fundamental weight and let X G P + . 
(1) If λ G C° t/ien we A ave W(a;) ® ~ ®W(\ + v) where the sum runs over all 

ν G Ω(ω) such that X + ν G P + . 
(2) If \ £ C° then W(u) ® P(X) is a sum of tilting modules P(v) where all ν are 

outside C ° . 

Proof Proof of (1): By Lemma 11, we have ch(W(X) ® W(u)) = Y,ch(W(X + i/)) 
where the sum runs over all ν G Ω(ω) such that λ + ζ/ G P + . For any such ι/, we have 
ζ/(Λο) < 1 and λ + ν G C. Note that the tilting modules Ρ ( λ + ν) = W(À + ι/) are simple 
and belongs to disjoint blocks. Thus the character identity corresponds to an isomorphism 
of G-modules. 

Proof of (2): If λ G C ° , then by Lemmas 7 and 9 and Proposition 10 all indecomposable 
summands of W(u) <g> Ρ ( λ ) are tilting modules P{y) with ν £ C°. Q.E.D. 

3. Modular representations ofEjv. 
Let A be an associative algebra, let M be a A-module of finite dimension and let Β be 

the commutant of A in M . Let decompose the A-module M into indecomposable modules 
( 3 . 1 ) M = £ A m A P ( A ) , 

where Λ runs over the set J of all isomorphism classes of indecomposable direct sum­
mands of M. Then we have B/rad(B) ~ ®xMat{m^). This allows to gives a natural 
bijection between the set J and the set of irreducible P-modules. Denote by Ε ι-» Ε (A) 
this bijection. Note that dimE(A) = πΐχ. 

Let /, Ν be integers. Set V = kl and M = V®N. Let A be the subalgebra of End(M) 
generated by the action of GLi(k) on M. Recall that the commutant Β of A is generated 
by the action of Σ,γ on M (see [3]). 

Denote by Pol^ the set of all weights λ = X)i<i<zm«c«* s u c ^ *^at m * — 0 ^ o r a ^ z 

and Σι<ΐ</ m * = Set P o / ^ = P + Π Pol Any weight of M belongs to ΡοΙχ. So by 
Theorem 6"and Corollary 8, any indecomposable summand of the GL/(fc)-module M is of 
type Ρ ( λ ) with λ G Ροΐ^ and there is an isomorphism 

(3.2) ν ® " ~ φ λ 6 Ρ < η , λ Ρ ( λ ) . 
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For any Young diagram m : πΐχ > m2 > ... > rni of size TV, set A(m) = Σπΐ{€{. 
Let YiTN be the set of all Young diagrams m of height < 7 of size N. The map Y^N —> 
Pol~^j, m ι—> A(m) is a bijection. Thus the previous decomposition can be written as 

(3.3) M = e m e y i i J V m Ä ( m ) P ( Ä ( m ) ) . 
By using the previous bijection between A-indecomposable summands of M and B-

irreducible modules we can associate to any m G Y/,jV, such that P ( A ( m ) ) occurs effectively 
in M , a simple representation JEĴ (m) of Σat . Moreover for m G ΥΙ,Ν such that m ^ m ) = 0, 
we set Ek(m) = 0. We have dim£?*(m) = m ^ ( m ) -

It is easy to prove that Ek(m) does not depend on /. More precisely by adding or 
removing empty lines, one can consider m as a Young diagram of height < I for various 
values of /. However the E;y-modules Ek(m) that one obtains as previously, by using the 
GL\ — Σ;ν duality for various /, are all isomorphic. 

4· P r o o f o f T h e o r e m 2· 
Let / be an integer. Set P o / + = ΟΝ>οΡοΙχ. The decomposition (3.2) allows us to 

define a multiplicity m χ for any λ G P o / + . 

LEMMA 13. Assume l < p. Let Ν > I and λ € C° Π Pol%. Then we have m\ — 
Y^m\^ei, where the sum runs over all i such that λ — t{ G C° Π Pol^^. 

Proof. The lemma follows by from Lemma 12. 

Proof of the Theorem 2 stated in the introduction. 
Let m G Υι(ρ)· The assertions 
(i) A(m) G C° 
(ii) mi — mi + I — 1 < ρ 
are equivalent. Thus the dimension formula follows easily by induction from Lemma 

11. To show that this dimension is φ 0 it suffices to exhibit a path going from 0 to m 
inside Y/(p). This is done by filling the first column, then the second one and so on. 

EXAMPLE 14. 
Assume now that ρ = / + 1 and let a, b be integers with 1 < b < p. Let Y be the 

young diagram with (a + 1) boxes on the first b lines and a boxes on the last (/ — b) lines. 
Set Ν = la + b. Ox+i) columns 

Ines 

b l i n e s 

α columns 
There is only one path from 0 to Y (the one described in the proof that dim 22*(m) φ 0 

for m G Υι{ρ))· Although Y is quite rectangular, the associated representation Ek(Y) has 
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dimension 1. It is quite easy to prove that this representation is the signature representation 
of Στν. 

5 . C o n c l u s i o n : the or ien ted g raph s t ructure o n Yj. 
Let / be an integer. Set G — GL\{k) and V = kl. For any \,v G ΡοΙ+ define the 

mutiplicity M\iV by the requirement V®P{y) — @\ Μ\}ί/ Ρ ( λ ) . Now we define an oriented 
graph structure on Y\ by requiring that the number of edges going from m to m ' is precisely 

m ) . À ( m ' ) · 

We should notice that the multiplicities of the edges in Y\ depends on p. However it 
is easy to prove that these multiplicities do not depend on /. That is, for m, m ' G Υι the 
number of edges going from m to m ' in Y\ and Yi+\ are the same. 

Thus the set of all Young diagrams with the previous structure of oriented graph 
will be denoted by Z(p) (note that the analogous graph in caracteristic zero is without 
multiplicities and it is described in the introduction). 

Proof of Theorem 3. The result follows by induction on the size of m and from the 
following identities: 

(i) dimEkim) = m ^ ( m ) (see section 3), 
(ii) τηχ = YJUM\^mlJ. 

Very unfortunately, the question of computing all the tensor product multiplicities 
of tilting modules is still open (see [8]). Theorem 3 means that explicit formulas for the 
dimensions of general irreducible representations of the symmetric groups follow from a 
precise knowledge of mutiplicities Μχ^. 
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