@article{RCP25_1995__47__269_0, author = {Katz, Mikhail}, title = {A {Proof} {Via} the {Seiberg-Witten} {Moduli} {Space} of {Donaldson{\textquoteright}s} {Theorem} on {Smooth} $4${-Manifolds} with {Definite} {Intersection} {Forms}}, journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25}, note = {talk:11}, pages = {269--274}, publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur}, volume = {47}, year = {1995}, language = {en}, url = {http://archive.numdam.org/item/RCP25_1995__47__269_0/} }
TY - JOUR AU - Katz, Mikhail TI - A Proof Via the Seiberg-Witten Moduli Space of Donaldson’s Theorem on Smooth $4$-Manifolds with Definite Intersection Forms JO - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 N1 - talk:11 PY - 1995 SP - 269 EP - 274 VL - 47 PB - Institut de Recherche Mathématique Avancée - Université Louis Pasteur UR - http://archive.numdam.org/item/RCP25_1995__47__269_0/ LA - en ID - RCP25_1995__47__269_0 ER -
%0 Journal Article %A Katz, Mikhail %T A Proof Via the Seiberg-Witten Moduli Space of Donaldson’s Theorem on Smooth $4$-Manifolds with Definite Intersection Forms %J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25 %Z talk:11 %D 1995 %P 269-274 %V 47 %I Institut de Recherche Mathématique Avancée - Université Louis Pasteur %U http://archive.numdam.org/item/RCP25_1995__47__269_0/ %G en %F RCP25_1995__47__269_0
Katz, Mikhail. A Proof Via the Seiberg-Witten Moduli Space of Donaldson’s Theorem on Smooth $4$-Manifolds with Definite Intersection Forms. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 47 (1995), Exposé no. 11, 6 p. http://archive.numdam.org/item/RCP25_1995__47__269_0/
[1] A characterization of the lattice, Math. Research Letters 2 (1995). | MR | Zbl
,[2] A Course in Arithmetic. | Zbl
,[3] Monopoles and four-manifolds, Math. Research Letters 1 (1994) 769-796. | MR | Zbl
,[4] Characteristic classes. Princeton University Press, 1974. | MR | Zbl
and ,[5] Non-trivial harmonic spinors on generic algebraic surfaces, Proc. of the AMS. | Zbl
,[6] The genus of embedded surfaces in the projective plane, Math. Research Letters 1 (1994) 797-808. | MR | Zbl
and ,[7] Elliptic boundary problems for Dirac operators. Birkhauser, 1993. | MR | Zbl
and ,[8] Unique continuation property and surjectivity of elliptic operators of order 1, preprint.
and ,[9] The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. Differential Geometry 26 (1987) 397-428. | MR | Zbl
,